1
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
3
|
De Giglio E, Bakowsky U, Engelhardt K, Caponio A, La Pietra M, Cometa S, Castellani S, Guerra L, Fracchiolla G, Poeta ML, Mallamaci R, Cardone RA, Bellucci S, Trapani A. Solid Lipid Nanoparticles Containing Dopamine and Grape Seed Extract: Freeze-Drying with Cryoprotection as a Formulation Strategy to Achieve Nasal Powders. Molecules 2023; 28:7706. [PMID: 38067437 PMCID: PMC10707881 DOI: 10.3390/molecules28237706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-β-cyclodextrin (Me-β-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-β-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-β-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-β-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.
Collapse
Affiliation(s)
- Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Matteo La Pietra
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| |
Collapse
|
4
|
Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or Discouraging for systemic disorders? Int J Pharm 2022; 614:121457. [PMID: 35026316 PMCID: PMC8744475 DOI: 10.1016/j.ijpharm.2022.121457] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Dry powder inhalation therapy has been shown to be an effective method for treating respiratory diseases like asthma, Chronic Obstructive Pulmonary Diseases and Cystic Fibrosis. It has also been widely accepted and used in clinical practices. Such success has led to great interest in inhaled therapy on treating systemic diseases in the past two decades. The current coronavirus (COVID-19) pandemic also has increased such interest and is triggering more potential applications of dry powder inhalation therapy in vaccines and antivirus drugs. Would the inhaled dry powder therapy on systemic disorders be as encouraging as expected? This paper reviews the marketed and in-development dry powder inhaler (DPI) products on the treatment of systemic diseases, their status in clinical trials, as well as the potential for COVID-19 treatment. The advancements and unmet problems on DPI systems are also summarized. With countless attempts behind and more challenges ahead, it is believed that the dry powder inhaled therapy for the treatment of systemic disorders still holds great potential and promise.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
5
|
Park H, Ha ES, Kim MS. Complexation of exenatide and cyclodextrin: An approach for the stabilization and sustained release of exenatide in PLGA microsphere. Carbohydr Polym 2021; 266:118169. [PMID: 34044960 DOI: 10.1016/j.carbpol.2021.118169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to evaluate the effects of cyclodextrins (CyDs) to stabilize exnatide in the microencapsulation medium and influence on the pharmaceutical properties of exenatide loaded PLGA microsphere. Three CyDs interacted differently with exenatide by investigation using ultraviolet, fluorescence and circular dichroism spectroscopy. The binding affinities of CyDs to the hydrophobic tryptophan residues of exenatide increased in following order: α-CyD < β-CyD < γ-CyD. It was consistent with orders of W/O interface stabilizing and anti-adsorption effects. However, the stabilizing effect of β-CyD on liquid-state and freeze-drying of exenatide was greater than that of γ-CyD. The negative values of ΔH0, ΔS0, and ΔG0 indicated that the exenatide-CyDs complex formation was a favorable exothermic and spontaneous processes that increased the order in the complex with structural rigidity. Furthermore, it was also shown that β-CyD improved encapsulation efficiency, in vitro extended release, and in vivo pharmacokinetic and pharmacodynamic properties of prepared PLGA microspheres.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Duksung Women's University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
6
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
7
|
Amini Moghaddam M, Di Martino A, Šopík T, Fei H, Císař J, Pummerová M, Sedlařík V. Polylactide/Polyvinylalcohol-Based Porous Bioscaffold Loaded with Gentamicin for Wound Dressing Applications. Polymers (Basel) 2021; 13:921. [PMID: 33802770 PMCID: PMC8002437 DOI: 10.3390/polym13060921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study explores the feasibility of modifying the surface liquid spraying method to prepare porous bioscaffolds intended for wound dressing applications. For this purpose, gentamicin sulfate was loaded into polylactide-polyvinyl alcohol bioscaffolds as a highly soluble (hygroscopic) model drug for in vitro release study. Moreover, the influence of inorganic salts including NaCl (10 g/L) and KMnO4 (0.4 mg/L), and post-thermal treatment (T) (80 °C for 2 min) on the properties of the bioscaffolds were studied. The bioscaffolds were characterized by scanning electron microscopy, Fourier Transform infrared spectroscopy, and differential scanning calorimetry. In addition, other properties including porosity, swelling degree, water vapor transmission rate, entrapment efficiency, and the release of gentamicin sulfate were investigated. Results showed that high concentrations of NaCl (10 g/L) in the aqueous phase led to an increase of around 68% in the initial burst release due to the increase in porosity. In fact, porosity increased from 68.1 ± 1.2 to 94.1 ± 1.5. Moreover, the thermal treatment of the Polylactide-polyvinyl alcohol/NaCl (PLA-PVA/NaCl) bioscaffolds above glass transition temperature (Tg) reduced the initial burst release by approximately 11% and prolonged the release of the drug. These results suggest that thermal treatment of polymer above Tg can be an efficient approach for a sustained release.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic; (M.A.M.); (A.D.M.); (T.Š.); (H.F.); (J.C.); (M.P.)
| |
Collapse
|
8
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
9
|
Niewolik D, Bednarczyk-Cwynar B, Ruszkowski P, Sosnowski TR, Jaszcz K. Bioactive Betulin and PEG Based Polyanhydrides for Use in Drug Delivery Systems. Int J Mol Sci 2021; 22:1090. [PMID: 33499242 PMCID: PMC7865682 DOI: 10.3390/ijms22031090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
In the course of this study, a series of novel, biodegradable polyanhydrides based on betulin disuccinate and dicarboxylic derivatives of poly(ethylene glycol) were prepared by two-step polycondensation. These copolymers can be used as carriers in drug delivery systems, in the form of microspheres. Betulin and its derivatives exhibit a broad spectrum of biological activity, including cytotoxic activity, which makes them promising substances for use as therapeutic agents. Microspheres that were prepared from betulin based polyanhydrides show promising properties for use in application in drug delivery systems, including inhalation systems. The obtained copolymers release the active substance-betulin disuccinate-as a result of hydrolysis under physiological conditions. The use of a poly(ethylene glycol) derivative as a co-monomer increases the solubility and bioavailability of the obtained compounds. Microspheres with diameters in the range of 0.5-25 µm were prepared by emulsion solvent evaporation method and their physicochemical and aerodynamic properties were analyzed. The morphological characteristics of the microspheres depended on the presence of poly(ethylene glycol) (PEG) segment within the structure of polyanhydrides. The porosity of the particles depended on the amount and molecular weight of the PEG used and also on the speed of homogenization. The most porous particles were obtained from polyanhydrides containing 20% wt. of PEG 600 by using a homogenization speed of 18,000 rpm.
Collapse
Affiliation(s)
- Daria Niewolik
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Science, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Science, Rokietnicka 5a, 60-806 Poznan, Poland;
| | - Tomasz R. Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland;
| | - Katarzyna Jaszcz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| |
Collapse
|
10
|
He T, Jokerst JV. Structured micro/nano materials synthesized via electrospray: a review. Biomater Sci 2020; 8:5555-5573. [PMID: 32985632 DOI: 10.1039/d0bm01313g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a "platform" approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures (e.g. simple, porous, Janus, and core-shell particles), non-spherical structures (e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions (e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment (e.g. temperature and humidity), and types of collection media are highlighted.
Collapse
Affiliation(s)
- Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
11
|
Zhang L, Zhang X, Li J, Beck-Broichsitter M, Muenster U, Wang X, Zhao J, Mao S. Optimization of budesonide-loaded large-porous microparticles for inhalation using quality by design approach. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Lavanya MN, Dutta S, Moses JA, Chinnaswamy A. Development of β‐carotene aerosol formulations using a modified spray dryer. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Malur Narayanaswamy Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT)Ministry of Food Processing Industries, Govt. of India Tamil Nadu India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT)Ministry of Food Processing Industries, Govt. of India Tamil Nadu India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT)Ministry of Food Processing Industries, Govt. of India Tamil Nadu India
| | - Anandharamakrishnan Chinnaswamy
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT)Ministry of Food Processing Industries, Govt. of India Tamil Nadu India
| |
Collapse
|
13
|
Shiehzadeh F, Tafaghodi M, Dehghani ML, Mashhoori F, Fazly Bazzaz BS, Imenshahidi M. Preparation and Characterization of a Dry Powder Inhaler Composed of PLGA Large Porous Particles Encapsulating Gentamicin Sulfate. Adv Pharm Bull 2019; 9:255-261. [PMID: 31380251 PMCID: PMC6664120 DOI: 10.15171/apb.2019.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: Direct delivery of aminoglycosides to the lungs was under extensive evaluations during the last decades. Because of large particle size, low density and porous structure, large porous particles (LPPs) are versatile carriers for this purpose. In this study, poly (lactic-co-glycolic acid) (PLGA) LPPs encapsulating gentamicin sulfate were prepared and in vitro characteristics of their freeze-dried powder as a dry powder inhaler (DPI) were evaluated.
Methods: To prepare PLGA LPPs, a double emulsification-solvent evaporation method was optimized and gentamicin sulfate was post-loaded in the LPPs. in vitro characteristics including morphological features, thermal behavior, aerodynamic profile and cumulative drug release were evaluated by the scanning electron microscope (SEM), differential scanning calorimetry (DSC), next-generation cascade impactor (NGI) and Franz diffusion cell respectively.
Results: The obtained results revealed that the preparation method was capable to produce spherical large homogenous highly porous particles. 94% of gentamicin sulfate released from LPPs up to 30 minutes. Mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF) were 4.9 µm and 39% respectively.
Conclusion: In this study, dry powder formulation composed of PLGA LPPs encapsulating gentamicin sulfate showed a promising in vitro behavior as a pulmonary delivery carrier. Improvements on the aerodynamic behavior and in vivo evaluations recommended for further developments.
Collapse
Affiliation(s)
- Farideh Shiehzadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid-Laal Dehghani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Mashhoori
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00443-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Polycaprolactone porous template facilitates modulated release of molecules from alginate hydrogels. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Kankala RK, Lin XF, Song HF, Wang SB, Yang DY, Zhang YS, Chen AZ. Supercritical Fluid-Assisted Decoration of Nanoparticles on Porous Microcontainers for Codelivery of Therapeutics and Inhalation Therapy of Diabetes. ACS Biomater Sci Eng 2018; 4:4225-4235. [PMID: 33418821 DOI: 10.1021/acsbiomaterials.8b00992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The impact of nanotechnology and its advancements have allowed us to explore new therapeutic modalities. To this end, we designed nanoparticles-inlaid porous microparticles (NIPMs) coloaded with small interfering RNA (siRNA) and glucagon-like peptide-1 (GLP-1) using the supercritical carbon dioxide (SC-CO2) technology as an inhalation delivery system for diabetes therapy. siRNA-encapsulating chitosan (CS) nanoparticles were first synthesized by an ionic gelation method, which resulted in particles with small sizes (100-150 nm), high encapsulation efficiency (∼94.8%), and sustained release performance (∼60% in 32 h). These CS nanoparticles were then loaded with GLP-1-dispersed poly-l-lactide (PLLA) porous microparticles (PMs) by SC-CO2-assisted precipitation with the compressed antisolvent (PCA) process. The hypoglycemic efficacy of NIPMs administered via pulmonary route in mice persisted longer due to sustained release of siRNA from CS nanoparticles and the synergistic effects of GLP-1 in PMs, which significantly inhibited the expression of dipeptidyl peptidase-4 mRNA (DPP-4-mRNA). This ecofriendly technology provides a convenient way to fabricate nanoparticle-microparticle composites for codelivery of a gene and a therapeutic peptide, which will potentially find widespread applications in the field of pharmaceutics.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiao-Fen Lin
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Hu-Fan Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
17
|
Zhang L, Yang L, Zhang X, Jiaqi L, Fan L, Beck-Broichsitter M, Zhang X, Muenster U, Wang X, Zhao J, Zhang Y, Mao S. Sustained therapeutic efficacy of budesonide-loaded chitosan swellable microparticles after lung delivery: Influence of in vitro release, treatment interval and dose. J Control Release 2018; 283:163-174. [PMID: 29842919 DOI: 10.1016/j.jconrel.2018.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022]
Abstract
Sustained drug delivery to the respiratory tract is highly desirable for local treatment of chronic lung diseases. In this context, a correlation of in vitro drug release with in vivo efficacy data is essential to accelerate the application of sustained drug delivery system for inhalation into the clinical setting. In this study, budesonide was incorporated into distinct chitosan-based swellable microparticles, which were characterized, and the in vitro drug release behavior determined. The particles were then given to an allergic asthma animal model as single and successive administrations, and the therapeutic response was determined by measuring cell counts, IL-4 and IL-5 levels in bronchoalveolar lavage fluid, IL-4 and IL-5 mRNA in the lung and by histopathologic examination of lung tissues. After a single administration, the time-dependent therapeutic effect of the swellable microparticles was correlated with the in vitro release behavior, which lasted for 12 or 18 h depending on the molecular weight of the chitosan. After seven days of successive treatment, the number of eosinophils decreased further and IL-4 and IL-5 mRNA expression in the lung tissue was more greatly inhibited. Moreover, the chitosan-based swellable microparticles allowed longer administration intervals (every two days), which decreased the required dose for effectiveness by 50%. These results demonstrate that chitosan-based swellable microparticles can sustain the therapeutic effect of budesonide in the respiratory tract which in principal can be applied to other drugs for the treatment of local lung diseases.
Collapse
Affiliation(s)
- Lan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linglong Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Jiaqi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Xiao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Uwe Muenster
- Chemical & Pharmaceutical Development, Bayer AG, Wuppertal D-42117, Germany
| | - Xiuhua Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuyang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
18
|
Novel technique of insulin loading into porous carriers for oral delivery. Asian J Pharm Sci 2018; 13:297-309. [PMID: 32104403 PMCID: PMC7032083 DOI: 10.1016/j.ajps.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/29/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The increasing demand for oral macromolecule delivery encouraged the development of microencapsulation technologies to protect such drugs against gastric and enzymatic degradation. However, microencapsulation often requires harsh conditions that may jeopardize their biological activity. Accordingly, many trials attempted to load macromolecules into porous drug carriers to bypass any formulation induced instability. In this study, we prepared chitosan coated porous poly (d, l-lactide-co-glycolide) (PLGA) microparticles (MPs) loaded with insulin using a novel loading technique; double freeze-drying. The results showed a significant increase in drug loading using only 5 mg/ml initial insulin concentration and conveyed a sustained drug release over uncoated MPs. Furthermore, SEM and confocal microscopy confirmed pore blocking and insulin accumulation within the MPs respectively. The oral pharmacodynamic data on rats also proved the preservation of insulin bioactivity after formulation. Finally, the new coating technique proved to be efficient in producing robust layer of chitosan with higher insulin loading while maintaining insulin activity.
Collapse
|
19
|
Wang X, Wang Y, Xi R, Wang Y, Yang X. Process optimization of spray-dried fanhuncaoin powder for pulmonary drug delivery and its pharmacokinetic evaluation in rats. Drug Dev Ind Pharm 2018. [PMID: 29542335 DOI: 10.1080/03639045.2018.1451878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The optimization of process parameters of spray-dried powder containing fanhuncaoin, a newly discovered anti-inflammatorily active phenolic acid isolated from Chinese herb, was conducted using response surface methodology (RSM). The experimental results were fitted into partial cubic polynomial model to describe and predict the response quality in terms of the final angle of repose, aerodynamic diameter, respirable fraction (RF), and yield. The recommended optimum spray-drying parameters for the development of fanhuncaoin powder with optimum quality were 110 °C inlet temperature, 0.50 m3/min aspiration speed, and 7.95 ml/min feed flow rate. The obtained optimum process parameters were employed for the production of spray-dried fanhuncaoin powder and to check the validity of the partial cubic model. Small and insignificant deviations were found between the predicted values and the experimental ones, showing the efficiency of the model in predicting the quality attributes of fanhuncaoin powder. The optimized powder was further examined for its pharmacokinetic properties in rats. A UPLC/MS assay was used to determine plasma fanhuncaoin concentration. Statistical analysis demonstrated that there was no significant difference in the t1/2 and dose-normalized Cmax and AUC as well as other pharmacokinetic parameters between the groups dosed differently following intratracheal administration (p > .05), indicating that fanhuncaoin followed linear kinetics. The pharmacokinetic parameters of fanhuncaoin after intratracheal administration differed significantly from the ones observed after intravenous administration (p < .05). The lower values of Cmax and AUC(0-∞) obtained following intratracheal administration may lead to effective drug concentrations at the target site with minimal systemic bioavailability and side effects.
Collapse
Affiliation(s)
- Xiaobo Wang
- a Department of Clinical Pharmacology, College of Pharmacy , Dalian Medical University , Dalian , China.,b The 210th hospital of People's Liberation Army , Dalian , China
| | - Yinan Wang
- c The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Ronggang Xi
- b The 210th hospital of People's Liberation Army , Dalian , China
| | - Yuanyuan Wang
- b The 210th hospital of People's Liberation Army , Dalian , China.,d Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Xiaobo Yang
- a Department of Clinical Pharmacology, College of Pharmacy , Dalian Medical University , Dalian , China
| |
Collapse
|
20
|
Nishimura S, Takami T, Murakami Y. Porous PLGA microparticles formed by “one-step” emulsification for pulmonary drug delivery: The surface morphology and the aerodynamic properties. Colloids Surf B Biointerfaces 2017; 159:318-326. [DOI: 10.1016/j.colsurfb.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
|
21
|
Wang Z, Gupta SK, Meenach SA. Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery. Int J Pharm 2017; 525:264-274. [PMID: 28450166 DOI: 10.1016/j.ijpharm.2017.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 02/02/2023]
Abstract
Biocompatible, biodegradable polymers are commonly used as excipients to improve the drug delivery properties of aerosol formulations, in which acetalated dextran (Ac-Dex) exhibits promising potential as a polymer in various therapeutic applications. Despite this promise, there is no comprehensive study on the use of Ac-Dex as an excipient for dry powder aerosol formulations. In this study, we developed and characterized pulmonary drug delivery aerosol microparticle systems based on spray-dried Ac-Dex with capabilities of (1) delivering therapeutics to the deep lung, (2) targeting the particles to a desired location within the lungs, and (3) releasing the therapeutics in a controlled fashion. Two types of Ac-Dex, with either rapid or slow degradation rates, were synthesized. Nanocomposite microparticle (nCmP) and microparticle (MP) systems were successfully formulated using both kinds of Ac-Dex as excipients and curcumin as a model drug. The resulting MP were collapsed spheres approximately 1μm in diameter, while the nCmP were similar in size with wrinkled surfaces, and these systems dissociated into 200nm nanoparticles upon reconstitution in water. The drug release rates of the Ac-Dex particles were tuned by modifying the particle size and ratio of fast to slow degrading Ac-Dex. The pH of the environment was also a significant factor that influenced the drug release rate. All nCmP and MP systems exhibited desirable aerodynamic diameters that are suitable for deep lung delivery (e.g. below 5μm). Overall, the engineered Ac-Dex aerosol particle systems have the potential to provide targeted and effective delivery of therapeutics into the deep lung.
Collapse
Affiliation(s)
- Zimeng Wang
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI 02881, USA
| | - Sweta K Gupta
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI 02881, USA
| | - Samantha A Meenach
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI 02881, USA; University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Kingston, RI 02881, USA.
| |
Collapse
|
22
|
Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster EM, Rosenbruch M, Mao S. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: In vitro and in vivo characterization. J Control Release 2017; 249:11-22. [DOI: 10.1016/j.jconrel.2017.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023]
|
23
|
Patel B, Rashid J, Gupta N, Ahsan F. Low-Molecular-Weight Heparin-Coated and Montelukast-Filled Inhalable Particles: A Dual-Drug Delivery System for Combination Therapy in Asthma. J Pharm Sci 2017; 106:1124-1135. [PMID: 28057540 DOI: 10.1016/j.xphs.2016.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022]
Abstract
Montelukast, a cysteinyl leukotriene type 1 receptor antagonist, exhibits secondary anti-inflammatory properties when used at higher concentrations. Low-molecular-weight heparin (LMWH) evokes pronounced anti-inflammatory effects by interrupting leukocyte adhesion and migration. We hypothesized that inhalable particles containing montelukast plus LMWH release both drugs in a sustained fashion and protect the lungs against allergen-induced inflammation. Large porous particles of montelukast and LMWH were prepared using a double-emulsion-solvent-evaporation method. Montelukast was first encapsulated in copolymer-based particles using polyethylenimine as a porosigen; the resulting particles were then coated with LMWH. The particles were evaluated for physicochemical properties, respirability, and release profiles. The anti-inflammatory effect of the optimized formulation was studied in ovalbumin-sensitized asthmatic Sprague Dawley rats. The optimized large porous particles had a diameter of 10.3 ± 0.7 μm, exhibited numerous surface indentations and pores, showed acceptable drug entrapment efficiency (66.8% ± 0.4% for montelukast; 91.7% ± 0.8% adsorption efficiency for LMWH), demonstrated biphasic release patterns, and escaped the uptake by the rat alveolar macrophages. The number of infiltrating inflammatory cells in asthmatic rat lungs, treated with dual-drug particles, was >74% fewer than in untreated asthmatic rat lungs. Similarly, the airway walls of asthmatic animals treated with dual-drug particles were 3-fold thinner than those of untreated asthmatic animals (p < 0.001). The optimized formulation protects lungs against methacholine-induced airway hyper-reactivity. Overall, this study demonstrates the feasibility of loading 2 drugs, montelukast and LMWH, into an inhalable particulate system and establishes that this novel combination therapy produces sustained drug release and elicits a robust anti-inflammatory response in the lungs.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106
| | - Jahidur Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106
| | - Nilesh Gupta
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106.
| |
Collapse
|
24
|
Patel B, Rashid J, Ahsan F. Aerosolizable modified-release particles of montelukast improve retention and availability of the drug in the lungs. Eur J Pharm Sci 2016; 96:560-570. [PMID: 27989858 DOI: 10.1016/j.ejps.2016.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/17/2022]
Abstract
Montelukast, a cysteinyl leukotriene receptor antagonist available as oral tablets, is used as a second-line therapy in asthma. In this study, we sought to enhance the availability of montelukast in the lungs by encapsulating the drug in poly (lactide-co-glycolic acid)-based (PLGA) respirable large porous particles. We determined the oral and lung specific availability of montelukast by assessing metabolic stability of the drug in the lung and liver homogenates, respectively. We similarly measured the oral and inhalational bioavailability by monitoring the pharmacokinetics and disposition of the drug in live animals. After preparing montelukast-loaded particles with various polymers, in the absence or presence of polyethylenimine (PEI-1), we characterized the particles for physical-chemical properties, entrapment efficiency, in vitro release, uptake by alveolar macrophages, deposition in the lungs, and safety after pulmonary administration. When incubated in lung or liver homogenates, the amount of intact drug in the lung homogenates was greater than that in the liver homogenates. Likewise, the extent of montelukast absorption via the lungs was greater than that via the oral route. Compared with smaller non-porous particles, large porous particles (PEI-1) were taken up by the alveolar macrophages at a lesser extent but deposited in the lungs at a greater extent. The levels of injury markers in the bronchoalveolar lavage fluid (BALF), collected from rat lungs treated with PEI-1, were no different from that in BALF collected from saline treated rats. Overall, the retention time and concentration of montelukast in the lungs can be increased by formulating the drug in large porous particles of PLGA.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | - Jahidur Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA.
| |
Collapse
|
25
|
Wu D, Wang C, Yang J, Wang H, Han H, Zhang A, Yang Y, Li Q. Improving the Intracellular Drug Concentration in Lung Cancer Treatment through the Codelivery of Doxorubicin and miR-519c Mediated by Porous PLGA Microparticle. Mol Pharm 2016; 13:3925-3933. [PMID: 27684197 DOI: 10.1021/acs.molpharmaceut.6b00702] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous PLGA microparticle for the coencapsulation of doxorubicin and miR-519c was successfully constructed through the water-oil-water emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. It has been characterized with high porous surface, adaptive aerodynamic diameter (<10 μm), favorable drug loading, and sustained release profile. The release supernatant exhibited a higher inhibition of cell proliferation than those from porous PLGA microparticles harboring a single component (doxorubicin or miR-519c), attributing to the enhanced induction of cell apoptosis and cell cycle arrest at S phase. Finally, the improved intracellular concentration of doxorubicin was elucidated by flow cytometry and liquid chromatography with tandem mass spectrometry, owing to the knockdown of drug transporter ABCG2 by miR-519c. Overall, the porous PLGA microparticle combining chemotherapy and gene therapy could facilitate the antitumor efficacy and reduce the side effects, and thus, it is potential to be used as a sustained release system for lung cancer treatment via pulmonary administration.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Chenhui Wang
- Innovative Drug Research Centre, School of Pharmacy, Chongqing University , Chongqing 401331, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Hao Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Aijun Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| |
Collapse
|
26
|
Wang Z, Cuddigan JL, Gupta SK, Meenach SA. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. Int J Pharm 2016; 512:305-313. [PMID: 27568494 DOI: 10.1016/j.ijpharm.2016.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
Abstract
Tacrolimus (TAC) has exhibited promising therapeutic potential in the treatment of pulmonary arterial hypertension (PAH); however, its application is prevented by its poor solubility, instability, poor bioavailability, and negative systemic side effects. To overcome the obstacles of using TAC for the treatment of PAH, we developed nanocomposite microparticles (nCmP) for the pulmonary delivery of tacrolimus in the form of dry powder aerosols. These particles can provide targeted pulmonary delivery, improved solubility of tacrolimus, the potential of penetration through mucus barrier, and controlled drug release. In this system, tacrolimus-loaded polymeric nanoparticles (NP) were prepared via emulsion solvent evaporation and nCmP were prepared by spray drying these NP with mannitol. The NP were approximately 200nm in diameter with narrow size distribution both before loading into and after redispersion from nCmP. The NP exhibited smooth, spherical morphology and the nCmP were raisin-like spheres. High encapsulation efficacy was achieved both in the encapsulation of tacrolimus in NP and that of NP in nCmP. nCmP exhibited desirable aerosol dispersion properties, allowing them to deposit into the deep lung regions for effective drug delivery. A549 cells were used as in vitro models to demonstrate the non-cytotoxicity of TAC nCmP. Overall, the designed nCmP have the potential to aid in the delivery of tacrolimus for the treatment of PAH.
Collapse
Affiliation(s)
- Zimeng Wang
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Julie L Cuddigan
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Sweta K Gupta
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Samantha A Meenach
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA; University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Kingston, RI, 02881, USA.
| |
Collapse
|
27
|
Wang Z, Meenach SA. Synthesis and Characterization of Nanocomposite Microparticles (nCmP) for the Treatment of Cystic Fibrosis-Related Infections. Pharm Res 2016; 33:1862-72. [PMID: 27091030 PMCID: PMC4945441 DOI: 10.1007/s11095-016-1921-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Pulmonary antibiotic delivery is recommended as maintenance therapy for cystic fibrosis (CF) patients who experience chronic infections. However, abnormally thick and sticky mucus present in the respiratory tract of CF patients impairs mucus penetration and limits the efficacy of inhaled antibiotics. To overcome the obstacles of pulmonary antibiotic delivery, we have developed nanocomposite microparticles (nCmP) for the inhalation application of antibiotics in the form of dry powder aerosols. METHODS Azithromycin-loaded and rapamycin-loaded polymeric nanoparticles (NP) were prepared via nanoprecipitation and nCmP were prepared by spray drying and the physicochemical characteristics were evaluated. RESULTS The nanoparticles were 200 nm in diameter both before loading into and after redispersion from nCmP. The NP exhibited smooth, spherical morphology and the nCmP were corrugated spheres about 1 μm in diameter. Both drugs were successfully encapsulated into the NP and were released in a sustained manner. The NP were successfully loaded into nCmP with favorable encapsulation efficacy. All materials were stable at manufacturing and storage conditions and nCmP were in an amorphous state after spray drying. nCmP demonstrated desirable aerosol dispersion characteristics, allowing them to deposit into the deep lung regions for effective drug delivery. CONCLUSIONS The described nCmP have the potential to overcome mucus-limited pulmonary delivery of antibiotics.
Collapse
Affiliation(s)
- Zimeng Wang
- Department of Chemical Engineering, University of Rhode Island, 202 Crawford Hall, 16 Greenhouse Road, Kingston, RI, 02881, USA
| | - Samantha A Meenach
- Department of Chemical Engineering, University of Rhode Island, 202 Crawford Hall, 16 Greenhouse Road, Kingston, RI, 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
28
|
|
29
|
|
30
|
Ghasemian E, Vatanara A, Rouini MR, Rouholamini Najafabadi A, Gilani K, Lavasani H, Mohajel N. Inhaled sildenafil nanocomposites: lung accumulation and pulmonary pharmacokinetics. Pharm Dev Technol 2015; 21:961-971. [DOI: 10.3109/10837450.2015.1086369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Elham Ghasemian
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran and
| | - Alireza Vatanara
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran and
| | - Mohammad Reza Rouini
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran and
| | | | - Kambiz Gilani
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran and
| | - Hoda Lavasani
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran and
| | - Nasir Mohajel
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
31
|
Insulin-loaded poly-l-lactide porous microspheres prepared in supercritical CO2 for pulmonary drug delivery. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015; 20:380-9. [DOI: 10.1016/j.drudis.2014.09.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
|
33
|
Effect of protease inhibitors on pulmonary bioavailability of therapeutic proteins and peptides in the rat. Eur J Pharm Sci 2015; 68:1-10. [DOI: 10.1016/j.ejps.2014.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022]
|
34
|
Feng T, Tian H, Xu C, Lin L, Xie Z, Lam MHW, Liang H, Chen X. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm 2014; 88:1086-93. [PMID: 25305583 DOI: 10.1016/j.ejpb.2014.09.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
Abstract
PLGA porous microspheres loaded with doxorubicin (DOX) and paclitaxel (PTX) were developed for in situ treatment of metastatic lung cancer. The synergistic effect of the combined drugs was investigated against B16F10 cells to obtain the optimal prescription for in vivo studies. The combination therapy showed great synergism when DOX was the majority in the combination therapy, while they showed moderate antagonism when PTX is in major. The combination of DOX and PTX at a molar ratio of 5/1 showed the best synergistic therapeutic effect in the free form. However, the drugs exhibited more synergism in the PLGA microspheres at a molar ratio of 2/1, due to the difference in drug release rate. The in vivo study verified the synergism of DOX and PTX at the optimal molar ratio. These results suggested that dual encapsulation of DOX and PTX in porous PLGA microspheres would be a promising technology for long effective lung cancer treatment.
Collapse
Affiliation(s)
- Tianshi Feng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China; Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China; Advanced Laboratory of Environmental Research and Technology (ALERT), Joint Advanced Research Center, Suzhou, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Michael Hon-Wah Lam
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China; Advanced Laboratory of Environmental Research and Technology (ALERT), Joint Advanced Research Center, Suzhou, China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China; Advanced Laboratory of Environmental Research and Technology (ALERT), Joint Advanced Research Center, Suzhou, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
35
|
Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering. Colloids Surf B Biointerfaces 2014; 122:439-446. [DOI: 10.1016/j.colsurfb.2014.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/09/2023]
|
36
|
A micro- and nano-structured drug carrier based on biocompatible, hybrid polymeric nanoparticles for potential application in dry powder inhalation therapy. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev 2014; 75:32-52. [PMID: 24735676 DOI: 10.1016/j.addr.2014.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
Dry powder inhaler (DPI) products have traditionally comprised a simple formulation of micronised drug mixed with a carrier excipient, typically lactose monohydrate. The presence of the carrier is aimed at overcoming issues of poor flowability and dispersibility, associated with the cohesive nature of small, micronised active pharmaceutical ingredient (API) particles. Both the powder blend and the DPI device must be carefully designed so as to ensure detachment of the micronised drug from the carrier excipient on inhalation. Over the last two decades there has been a significant body of research undertaken on the design of carrier-free formulations for DPI products. Many of these formulations are based on sophisticated particle engineering techniques; a common aim in formulation design of carrier-free products being to reduce the intrinsic cohesion of the particles, while maximising dispersion and delivery from the inhaler. In tandem with the development of alternative formulations has been the development of devices designed to ensure the efficient delivery and dispersion of carrier-free powder on inhalation. In this review we examine approaches to both the powder formulation and inhaler design for carrier-free DPI products.
Collapse
|
38
|
d'Angelo I, Conte C, La Rotonda MI, Miro A, Quaglia F, Ungaro F. Improving the efficacy of inhaled drugs in cystic fibrosis: challenges and emerging drug delivery strategies. Adv Drug Deliv Rev 2014; 75:92-111. [PMID: 24842473 DOI: 10.1016/j.addr.2014.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians associated with early death. Although the faulty gene is expressed in epithelia throughout the body, lung disease is still responsible for most of the morbidity and mortality of CF patients. As a local delivery route, pulmonary administration represents an ideal way to treat respiratory infections, excessive inflammation and other manifestations typical of CF lung disease. Nonetheless, important determinants of the clinical outcomes of inhaled drugs are the concentration/permanence at the lungs as well as the ability of the drug to overcome local extracellular and cellular barriers. This review focuses on emerging delivery strategies used for local treatment of CF pulmonary disease. After a brief description of the disease and formulation rules dictated by CF lung barriers, it describes current and future trends in inhaled drugs for CF. The most promising advanced formulations are discussed, highlighting the advantages along with the major challenges for researchers working in this field.
Collapse
Affiliation(s)
- Ivana d'Angelo
- Di.S.T.A.B.i.F., Second University of Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Conte
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Maria Immacolata La Rotonda
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Agnese Miro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
39
|
Aerosolized montelukast polymeric particles-an alternative to oral montelukast-alleviate symptoms of asthma in a rodent model. Pharm Res 2014; 31:3095-105. [PMID: 24934662 DOI: 10.1007/s11095-014-1402-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/28/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE Cysteinyl leukotrienes (CysLTs) propagate inflammatory reactions that result from allergen exposure in asthma. Montelukast, a CysLT type-1 receptor antagonist, disrupts mediator-receptor interactions and minimizes inflammatory response. In this study, we have evaluated anti-asthmatic efficacy of inhalable montelukast-loaded large porous particulate formulations in ovalbumin-induced rat airway inflammation model that mimics asthma. METHODS The anti-inflammatory effects of a montelukast-loaded formulation were investigated in rats by measuring the total protein content, levels of injury markers and number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). The histopathological studies assessed the morphological and structural changes that occur in asthmatic lungs. Animals were also challenged with methacholine to examine the airway hyper-reactivity. RESULTS Compared with healthy animals, asthmatic animals showed a 3.8- and 4.77-fold increase in the protein content and number of inflammatory cells in BALF, respectively. Intratracheal montelukast particles reduced the protein content by 3.3-fold and the number of inflammatory cells by 2.62-fold. Also, montelukast particles reduced the lactate dehydrogenase (LDH) and myeloperoxidase (MPO) levels by a 4.87- and 6.8-fold in BALF, respectively. Montelukast particles reduced the airway wall thickness by 2.5-fold compared with untreated asthmatic lungs. Further, particulate formulation protected the lungs against methacholine-induced bronchial provocation (p < 0.05). CONCLUSIONS Respirable large porous particles containing montelukast alleviated allergen-induced inflammatory response in an animal model and prevented histological changes associated with asthma. Thus montelukast-loaded large porous polylactic acid (PLA) particles could be an aerosolized delivery approach for administration of currently available oral montelukast.
Collapse
|
40
|
Behara SRB, Longest PW, Farkas DR, Hindle M. Development of high efficiency ventilation bag actuated dry powder inhalers. Int J Pharm 2014; 465:52-62. [PMID: 24508552 PMCID: PMC4051231 DOI: 10.1016/j.ijpharm.2014.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023]
Abstract
New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 μm of 65-85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs.
Collapse
Affiliation(s)
- Srinivas R B Behara
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States.
| | - Dale R Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
41
|
Study of aerodynamic and release properties of inhaled particles containing cyclodextrins. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0400-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Influence of Suspension Stabilisers on the Delivery of Protein-Loaded Porous Poly (DL-Lactide-co-Glycolide) (PLGA) Microparticles via Pressurised Metered Dose Inhaler (pMDI). Pharm Res 2014; 31:2000-9. [DOI: 10.1007/s11095-014-1302-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
43
|
|
44
|
Abstract
A significant number of research articles have focused on pulmonary delivery as an alternative administration route owing to no first-pass metabolism, low protease activity, thin epithelium barrier and large surface area in the lung system. Controlled release in the pulmonary delivery system further reduces loading dose, frequency of dosing and systemic side effects, and also increases duration of action and patient compliance. Compared with other microparticles used in controlled-release pulmonary administration, hydrogels (3D polymeric matrix networks) have recently been investigated due to their swelling and mucoadhesive properties that could help bypass pulmonary delivery barriers. This review introduces controlled-release drug delivery to the lung, followed by a summary of currently available approaches for controlled-release pulmonary drug delivery. Lastly, the origin, advantages, detailed applications and concerns of hydrogels in pulmonary delivery are discussed.
Collapse
|
45
|
Zhang L, Zhang Z, Li N, Wang N, Wang Y, Tang S, Xu L, Ren Y. Synthesis and evaluation of a novel β-cyclodextrin derivative for oral insulin delivery and absorption. Int J Biol Macromol 2013; 61:494-500. [DOI: 10.1016/j.ijbiomac.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022]
|
46
|
Wang Y, Zhao Y, Han B. Preparation of Tris(2-aminoethyl)amine-Cross-Linked Cyclodextrin-Based Porous Nanospheres and Their Application as Drug Delivery Systems. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Depreter F, Pilcer G, Amighi K. Inhaled proteins: Challenges and perspectives. Int J Pharm 2013; 447:251-80. [DOI: 10.1016/j.ijpharm.2013.02.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/12/2013] [Indexed: 12/26/2022]
|
48
|
Abstract
Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies.
Collapse
Affiliation(s)
- Yunpeng Cai
- Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine
- School of Pharmacy, Shanghai JiaoTong University
| | - Yinghui Chen
- Department of Neurology Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoyun Hong
- School of Pharmacy, Shanghai JiaoTong University
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University
| |
Collapse
|
49
|
Meenach SA, Vogt FG, Anderson KW, Hilt JZ, McGarry RC, Mansour HM. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine 2013; 8:275-93. [PMID: 23355776 PMCID: PMC3552552 DOI: 10.2147/ijn.s30724] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.
Collapse
Affiliation(s)
- Samantha A Meenach
- Department of Pharmaceutical Sciences-Drug Development Division, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
50
|
Niwa T, Mizutani D, Danjo K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem Pharm Bull (Tokyo) 2012; 60:870-6. [PMID: 22790820 DOI: 10.1248/cpb.c12-00208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Particles of poorly water-soluble drugs were prepared to develop a dry powder inhaler (DPI). Spray freeze-drying (SFD) technique using a four-fluid nozzle (4N), which has been developed by authors, was applied in this research. Ciclosporin and mannitol were used as a poorly water-soluble model drug and a dissolution-enhanced carrier, respectively. The organic solution of ciclosporin and aqueous solution of mannitol were separately and simultaneously atomized through the 4N, and the two solutions were collided with each other at the tip of the nozzle edge. The spray mists were immediately frozen in liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier. tert-Butyl alcohol (t-BuOH) was used as the organic spray solvent due to its relatively high freezing point. The resultant composite particles with varying drug content were characterized depending on their morphological and physicochemical properties. The particles contained amorphous ciclosporin and δ-crystalline mannitol. The characteristic porous structure of SFD particles potentially contributed to their good aerodynamic performance. A series of particles with a similar size distribution and different drug content revealed that the incorporation of mannitol successfully improved the cohesive behavior of ciclosporin, leading to enhanced aerosol dispersion. The dissolution test method using low-volume medium was newly established to simulate the release process from particles deposited on the surface of the bronchus and pulmonary mucosa. The composite with hydrophilic mannitol dramatically improved the in vitro dissolution behavior of ciclosporin in combination with the porous structure of SFD particles.
Collapse
Affiliation(s)
- Toshiyuki Niwa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, Yagotoyama, Tempaku-ku, Nagoya, Japan.
| | | | | |
Collapse
|