1
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
2
|
Yousef M, Park C, Henostroza M, Bou Chacra N, Davies NM, Löbenberg R. Development of a Novel In Vitro Model to Study Lymphatic Uptake of Drugs via Artificial Chylomicrons. Pharmaceutics 2023; 15:2532. [PMID: 38004512 PMCID: PMC10674476 DOI: 10.3390/pharmaceutics15112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The lymphatic system plays a crucial role in the absorption of lipophilic drugs, making it an important route for drug delivery. In this study, an in vitro model using Intralipid® was developed to investigate the lymphatic uptake of drugs. The model was validated using cannabidiol, halofantrine, quercetin, and rifampicin. Remarkably, the uptake of these drugs closely mirrored what would transpire in vivo. Furthermore, adding peanut oil to the model system significantly increased the lymphatic uptake of rifampicin, consistent with meals containing fat stimulating lymphatic drug uptake. Conversely, the inclusion of pluronic L-81 was observed to inhibit the lymphatic uptake of rifampicin in the model. This in vitro model emerges as a valuable tool for investigating and predicting drug uptake via the lymphatic system. It marks the first phase in developing a physiologically based predictive tool that can be refined further to enhance the precision of drug interaction predictions with chylomicrons and their subsequent transport via the lymphatic system. Moreover, it can be employed to explore innovative drug formulations and excipients that either enhance or hinder lymphatic drug uptake. The insights gained from this study have significant implications for advancing drug delivery through the lymphatic system.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (R.L.)
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Mirla Henostroza
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.H.); (N.B.C.)
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.H.); (N.B.C.)
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (R.L.)
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.Y.); (R.L.)
| |
Collapse
|
3
|
Chu Y, Wong A, Chen H, Ji L, Qin C, Feng W, Stocks MJ, Gershkovich P. Development of lipophilic ester prodrugs of dolutegravir for intestinal lymphatic transport. Eur J Pharm Biopharm 2023; 191:90-102. [PMID: 37634824 DOI: 10.1016/j.ejpb.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The establishment of latent cellular and anatomical viral reservoirs is a major obstacle to achieving a cure for people infected by HIV. Mesenteric lymph nodes (MLNs) are one of the most important anatomical reservoirs of HIV. Suboptimal levels of antiretroviral (ARVs) drugs in these difficult-to-penetrate viral reservoirs is one of the limitations of current antiretroviral therapy (ART) regimens. This study aimed to design and assess highly lipophilic ester prodrugs of dolutegravir (DTG) formulated with long-chain triglyceride (LCT) for delivery of DTG to the viral reservoir in mesenteric lymph and MLNs. A number of alkyl ester prodrugs of DTG were designed based on the predicted affinity to chylomicrons (CM), and the six most promising prodrugs were selected and synthesised. The synthesised prodrugs were further assessed for their intestinal lymphatic transport potential and biotransformation in biorelevant media in vitro and ex vivo. DTG and the most promising prodrug (prodrug 5) were then assessed in pharmacokinetic and biodistribution studies in rats. Although oral administration of 5 mg/kg of unmodified DTG (an allometrically scaled dose from humans) with or without lipids achieved concentrations above protein binding-adjusted IC90 (PA-IC90) (64 ng/mL) in most tissues, the drug was not selectively targeted to MLNs. The combination of lipophilic ester prodrug and LCT-based formulation approach improved the targeting selectivity of DTG to MLNs 4.8-fold compared to unmodified DTG. However, systemic exposure to DTG was limited, most likely due to poor intestinal absorption of the prodrug following oral administration. In vitro lipolysis showed a good correlation between micellar solubilisation of the prodrug and systemic exposure to DTG in rats in vivo. Thus, it is prudent to include in vitro lipolysis in the early assessment of orally administered drugs and prodrugs in lipidic formulations, even when intestinal lymphatic transport is involved in the absorption pathway. Further studies are needed to clarify the underlying mechanisms of low systemic bioavailability of DTG following oral administration of the prodrug and potential ways to overcome this limitation.
Collapse
Affiliation(s)
- Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Abigail Wong
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
4
|
Koch N, Jennotte O, Toussaint C, Lechanteur A, Evrard B. Production challenges of tablets containing lipid excipients: Case study using cannabidiol as drug model. Int J Pharm 2023; 633:122639. [PMID: 36693485 DOI: 10.1016/j.ijpharm.2023.122639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
The aims of this study were, firstly, to select an optimal lipid solid dispersion of cannabidiol among different lipid excipients (Gelucire® 50/13, 48/16, 44/14 and Labrasol®) and inorganic carriers (colloidal silica, Syloid® XDP and Neusilin® US2) through a screening plan. The enhancement of aqueous solubility of cannabidiol from a free-flowing powder with adequate drug content was obtained by mixing cannabidiol (20%) with Gelucire® 50/13 (40%; Gattefossé, France), both incorporated inside mesopores of mesoporous silica Syloid® XDP (40%; Grace, Germany). Secondly, we have studied the tableting properties of this selected dispersion through a Design of Experiments (DoE) by manufacturing tablets with other excipients with using a compression simulator (Styl'One® Evo, Medelpharm, France). The design of experiments included the percentage of lipid solid dispersion, of glidant, of lubricant and different compression forces. The dissolution efficiency, the drug content, the tensile strength and the ejection force were analyzed. The DoE showed that % of dispersion as well as compression forces were the main influential variables. An exit of lipid materials outside the mesopores of silica due to compression process has been highlighted, reflected by reduced tensile strength. This study showed the possibility of manufacturing tablets with lipid materials even if limitations have been highlighted. Indeed, the dispersion percentage must not exceed 27% and compression forces up to 13 kN are required to produce lipid tablets with optimal properties.
Collapse
Affiliation(s)
- Nathan Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Céline Toussaint
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
5
|
A lymphatic-absorbed multi-targeted kinase inhibitor for myelofibrosis therapy. Nat Commun 2022; 13:4730. [PMID: 35977945 PMCID: PMC9386018 DOI: 10.1038/s41467-022-32486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Activation of compensatory signaling nodes in cancer often requires combination therapies that are frequently plagued by dose-limiting toxicities. Intestinal lymphatic drug absorption is seldom explored, although reduced toxicity and sustained drug levels would be anticipated to improve systemic bioavailability. A potent orally bioavailable multi-functional kinase inhibitor (LP-182) is described with intrinsic lymphatic partitioning for the combined targeting of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways without observable toxicity. We demonstrate selectivity and therapeutic efficacy through reduction of downstream kinase activation, amelioration of disease phenotypes, and improved survival in animal models of myelofibrosis. Our further characterization of synthetic and physiochemical properties for small molecule lymphatic uptake will support continued advancements in lymphatropic therapy for altering disease trajectories of a myriad of human disease indications. Combination therapies simultaneously inhibiting different therapeutic targets in cancer is challenged by individual pharmacokinetic profiles. Here, the authors generate an orally provided multi-targeted kinase inhibitor that is lymphatic absorbed and increases survival in a murine model of myelofibrosis.
Collapse
|
6
|
Bar-Hai A, Domb AJ, Hoffman A. Strategies for enhancing the oral bioavailability of cannabinoids. Expert Opin Drug Metab Toxicol 2022; 18:313-322. [PMID: 35818714 DOI: 10.1080/17425255.2022.2099837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Oral administration of cannabinoids is a convenient route of administration in many cases. To enhance the poor and variable bioavailability of cannabinoids, selected strategies utilizing proper delivery systems have been designed. Low solubility in the GI aqueous media is the first and most critical barrier. Thereafter, cannabinoids can reach the systemic blood circulation via the portal vein that is associated with significant hepatic first pass metabolism (FPM) or bypass it via lymphatic absorption. AREAS COVERED The solubility obstacle of cannabinoids is mainly addressed with lipid-based formulations such as self-nanoemulsifying drug delivery systems (SNEDDS). Certain lipids are used to overcome the solubility issue. Surfactants and other additives in the formulation have additional impact on several barriers, including dictating the degree of lymphatic bioavailability and hepatic FPM. Gastro-retentive formulation is also plausible. EXPERT OPINION Comparison of the role of the same SNEDDS formulation, cyclosporine vs. cannabinoids, when used to elevate the oral bioavailability of different compounds, is presented. It illustrates some similarities and major mechanistic differences obtained by the same SNEDDS. Thus, the different influence over the absorption pathway illuminates the importance of understanding the absorption mechanism and its barriers to properly select appropriate strategies to achieve enhanced oral bioavailability.
Collapse
Affiliation(s)
- Ayala Bar-Hai
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Abraham J Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Feng W, Qin C, Abdelrazig S, Bai Z, Raji M, Darwish R, Chu Y, Ji L, Gray DA, Stocks MJ, Constantinescu CS, Barrett DA, Fischer PM, Gershkovich P. Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. Int J Pharm 2022; 624:121947. [PMID: 35753538 DOI: 10.1016/j.ijpharm.2022.121947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
Although natural sesame oil has been shown to facilitate the lymphatic delivery and oral bioavailability of the highly lipophilic drug cannabidiol (CBD), considerable variability remains an unresolved challenge. Vegetable oils differ substantially in composition, which could lead to differences in promotion of intestinal lymphatic transport of lipophilic drugs. Therefore, the differences in composition of sesame, sunflower, peanut, soybean, olive and coconut oils and their corresponding role as vehicles in promoting CBD lymphatic targeting and bioavailability were investigated in this study. The comparative analysis suggests that the fatty acids profile of vegetable oils is overall similar to the fatty acids profile in the corresponding chylomicrons in rat lymph. However, arachidonic acid (C20:4), was introduced to chylomicrons from endogenous nondietary sources. Overall, fatty acid composition of natural vegetable oils vehicles affected the intestinal lymphatic transport and bioavailability of CBD following oral administration in this work. Olive oil led to the highest concentration of CBD in the lymphatic system and in the systemic circulation in comparison to the other natural vegetable oils following oral administration in rats.
Collapse
Affiliation(s)
- Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Salah Abdelrazig
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ziyu Bai
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mekha Raji
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; School of Pharmacy, Universita di Roma Tor Vergata, Rome
| | - Randa Darwish
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - YenJu Chu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Tri-Service General Hospital, Medical supplies and maintenance office, National Defense Medical Center, Taipei, Taiwan
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David A Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, University of Nottingham and Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter M Fischer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
9
|
Bloomingdale P, Meregalli C, Pollard K, Canta A, Chiorazzi A, Fumagalli G, Monza L, Pozzi E, Alberti P, Ballarini E, Oggioni N, Carlson L, Liu W, Ghandili M, Ignatowski TA, Lee KP, Moore MJ, Cavaletti G, Mager DE. Systems Pharmacology Modeling Identifies a Novel Treatment Strategy for Bortezomib-Induced Neuropathic Pain. Front Pharmacol 2022; 12:817236. [PMID: 35126148 PMCID: PMC8809372 DOI: 10.3389/fphar.2021.817236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity is a common dose-limiting side effect of several cancer chemotherapeutic agents, and no effective therapies exist. Here we constructed a systems pharmacology model of intracellular signaling in peripheral neurons to identify novel drug targets for preventing peripheral neuropathy associated with proteasome inhibitors. Model predictions suggested the combinatorial inhibition of TNFα, NMDA receptors, and reactive oxygen species should prevent proteasome inhibitor-induced neuronal apoptosis. Dexanabinol, an inhibitor of all three targets, partially restored bortezomib-induced reduction of proximal action potential amplitude and distal nerve conduction velocity in vitro and prevented bortezomib-induced mechanical allodynia and thermal hyperalgesia in rats, including a partial recovery of intraepidermal nerve fiber density. Dexanabinol failed to restore bortezomib-induced decreases in electrophysiological endpoints in rats, and it did not compromise bortezomib anti-cancer effects in U266 multiple myeloma cells and a murine xenograft model. Owing to its favorable safety profile in humans and preclinical efficacy, dexanabinol might represent a treatment option for bortezomib-induced neuropathic pain.
Collapse
Affiliation(s)
- Peter Bloomingdale
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Cristina Meregalli
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Kevin Pollard
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Annalisa Canta
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Louise Carlson
- Department of Immunology, Roswell Park Comprehensive Cancer Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Wensheng Liu
- Department of Immunology, Roswell Park Comprehensive Cancer Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Mehrnoosh Ghandili
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael J. Moore
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- AxoSim, Inc., New Orleans, LA, United States
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- *Correspondence: Guido Cavaletti, ; Donald E. Mager,
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Enhanced Pharmacodynamics, LLC, Buffalo, NY, United States
- *Correspondence: Guido Cavaletti, ; Donald E. Mager,
| |
Collapse
|
10
|
Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 2021; 162:S5-S25. [PMID: 33729211 PMCID: PMC8819673 DOI: 10.1097/j.pain.0000000000002268] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated.
Collapse
Affiliation(s)
- David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, Human Biology Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Simon Haroutounian
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Elliot Krane
- Departments of Anesthesiology, Perioperative, and Pain Medicine, & Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Soliman
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - Andrew SC Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
11
|
Feng W, Qin C, Chu Y, Berton M, Lee JB, Zgair A, Bettonte S, Stocks MJ, Constantinescu CS, Barrett DA, Fischer PM, Gershkovich P. Natural sesame oil is superior to pre-digested lipid formulations and purified triglycerides in promoting the intestinal lymphatic transport and systemic bioavailability of cannabidiol. Eur J Pharm Biopharm 2021; 162:43-49. [PMID: 33677067 DOI: 10.1016/j.ejpb.2021.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 11/19/2022]
Abstract
Lipid-based formulations play a significant role in oral delivery of lipophilic drugs. Previous studies have shown that natural sesame oil promotes the intestinal lymphatic transport and oral bioavailability of the highly lipophilic drug cannabidiol (CBD). However, both lymphatic transport and systemic bioavailability were also associated with considerable variability. The aim of this study was to test the hypothesis that pre-digested lipid formulations (oleic acid, linoleic acid, oleic acid with 2-oleoylglycerol, oleic acid with 2-oleoylglycerol and oleic acid with glycerol) could reduce variability and increase the extent of the intestinal lymphatic transport and oral bioavailability of CBD. The in vivo studies in rats showed that pre-digested or purified triglyceride did not improve the lymphatic transport and bioavailability of CBD in comparison to sesame oil. Moreover, the results suggest that both the absorption of lipids and the absorption of co-administered CBD were more efficient following administration of natural sesame oil vehicle compared with pre-digested lipids or purified trioleate. Although multiple small molecule constituents and unique fatty acid compositions could potentially contribute to a better performance of sesame oil in oral absorption of lipids or CBD, further investigation will be needed to identify the mechanisms involved.
Collapse
Affiliation(s)
- Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - YenJu Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Tri-Service General Hospital, Medical Supplies and Maintenance Office, National Defense Medical Center, Taipei, Taiwan
| | - Mattia Berton
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jong Bong Lee
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Atheer Zgair
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; College of Pharmacy, University of Anbar, Ramadi, Anbar 31001, Iraq
| | - Sara Bettonte
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, University of Nottingham and Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter M Fischer
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
12
|
Ryšánek P, Grus T, Šíma M, Slanař O. Lymphatic Transport of Drugs after Intestinal Absorption: Impact of Drug Formulation and Physicochemical Properties. Pharm Res 2020; 37:166. [PMID: 32770268 DOI: 10.1007/s11095-020-02858-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE To provide a comprehensive and up-to-date overview focusing on the extent of lymphatic transport of drugs following intestinal absorption and to summarize available data on the impact of molecular weight, lipophilicity, formulation and prandial state. METHODS Literature was searched for in vivo studies quantifying extent of lymphatic transport of drugs after enteral dosing. Pharmacokinetic data were extracted and summarized. Influence of molecular weight, log P, formulation and prandial state was analyzed using relative bioavailability via lymph (FRL) as the parameter for comparison. The methods and animal models used in the studies were also summarized. RESULTS Pharmacokinetic data on lymphatic transport were available for 103 drugs. Significantly higher FRL [median (IQR)] was observed in advanced lipid based formulations [54.4% (52.0)] and oil solutions [38.9% (60.8)] compared to simple formulations [2.0% (27.1)], p < 0.0001 and p = 0.004, respectively. Advanced lipid based formulations also provided substantial FRL in drugs with log P < 5, which was not observed in simple formulations and oil solutions. No relation was found between FRL and molecular weight. There were 10 distinct methods used for in vivo testing of lymphatic transport after intestinal absorption so far. CONCLUSION Advanced lipid based formulations provide superior ability to increase lymphatic absorption in drugs of various molecular weights and in drugs with moderate to low lipophilicity.
Collapse
Affiliation(s)
- Pavel Ryšánek
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Tomáš Grus
- Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Izgelov D, Regev A, Domb AJ, Hoffman A. Using the Absorption Cocktail Approach to Assess Differential Absorption Kinetics of Cannabidiol Administered in Lipid-Based Vehicles in Rats. Mol Pharm 2020; 17:1979-1986. [DOI: 10.1021/acs.molpharmaceut.0c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dvora Izgelov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Aviva Regev
- PureForm Global Inc., 5700 Melrose Ave #208, Los Angeles, California 90038, United States
| | - Abraham J. Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Challenges and Opportunities in Preclinical Research of Synthetic Cannabinoids for Pain Therapy. ACTA ACUST UNITED AC 2020; 56:medicina56010024. [PMID: 31936616 PMCID: PMC7023162 DOI: 10.3390/medicina56010024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Cannabis has been used in pain management since 2900 BC. In the 20th century, synthetic cannabinoids began to emerge, thus opening the way for improved efficacy. The search for new forms of synthetic cannabinoids continues and, as such, the aim of this review is to provide a comprehensive tool for the research and development of this promising class of drugs. Methods for the in vitro assessment of cytotoxic, mutagenic or developmental effects are presented, followed by the main in vivo pain models used in cannabis research and the results yielded by different types of administration (systemic versus intrathecal versus inhalation). Animal models designed for assessing side-effects and long-term uses are also discussed. In the second part of this review, pharmacokinetic and pharmacodynamic studies of synthetic cannabinoid biodistribution, together with liquid chromatography–mass spectrometric identification of synthetic cannabinoids in biological fluids from rodents to humans are presented. Last, but not least, different strategies for improving the solubility and physicochemical stability of synthetic cannabinoids and their potential impact on pain management are discussed. In conclusion, synthetic cannabinoids are one of the most promising classes of drugs in pain medicine, and preclinical research should focus on identifying new and improved alternatives for a better clinical and preclinical outcome.
Collapse
|
15
|
Fathordoobady F, Singh A, Kitts DD, Pratap Singh A. Hemp (Cannabis Sativa L.) Extract: Anti-Microbial Properties, Methods of Extraction, and Potential Oral Delivery. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1600539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Farahnaz Fathordoobady
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anika Singh
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David D. Kitts
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap Singh
- Faculty of Land & Food System, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
17
|
Lee JB, Zgair A, Malec J, Kim TH, Kim MG, Ali J, Qin C, Feng W, Chiang M, Gao X, Voronin G, Garces AE, Lau CL, Chan TH, Hume A, McIntosh TM, Soukarieh F, Al-Hayali M, Cipolla E, Collins HM, Heery DM, Shin BS, Yoo SD, Kagan L, Stocks MJ, Bradshaw TD, Fischer PM, Gershkovich P. Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system. J Control Release 2018; 286:10-19. [PMID: 30016732 PMCID: PMC6143478 DOI: 10.1016/j.jconrel.2018.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Abstract
The intestinal lymphatic system plays an important role in the pathophysiology of multiple diseases including lymphomas, cancer metastasis, autoimmune diseases, and human immunodeficiency virus (HIV) infection. It is thus an important compartment for delivery of drugs in order to treat diseases associated with the lymphatic system. Lipophilic prodrug approaches have been used in the past to take advantage of the intestinal lymphatic transport processes to deliver drugs to the intestinal lymphatics. Most of the approaches previously adopted were based on very bulky prodrug moieties such as those mimicking triglycerides (TG). We now report a study in which a lipophilic prodrug approach was used to efficiently deliver bexarotene (BEX) and retinoic acid (RA) to the intestinal lymphatic system using activated ester prodrugs. A range of carboxylic ester prodrugs of BEX were designed and synthesised and all of the esters showed improved association with chylomicrons, which indicated an improved potential for delivery to the intestinal lymphatic system. The conversion rate of the prodrugs to BEX was the main determinant in delivery of BEX to the intestinal lymphatics, and activated ester prodrugs were prepared to enhance the conversion rate. As a result, an 4-(hydroxymethyl)-1,3-dioxol-2-one ester prodrug of BEX was able to increase the exposure of the mesenteric lymph nodes (MLNs) to BEX 17-fold compared to when BEX itself was administered. The activated ester prodrug approach was also applied to another drug, RA, where the exposure of the MLNs was increased 2.4-fold through the application of a similar cyclic activated prodrug. Synergism between BEX and RA was also demonstrated in vitro by cell growth inhibition assays using lymphoma cell lines. In conclusion, the activated ester prodrug approach results in efficient delivery of drugs to the intestinal lymphatic system, which could benefit patients affected by a large number of pathological conditions.
Collapse
Affiliation(s)
- Jong Bong Lee
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Atheer Zgair
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; College of Pharmacy, University of Anbar, Anbar 31001, Iraq
| | - Jed Malec
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; DMPK, Evotec, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Min Gi Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joseph Ali
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Manting Chiang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xizhe Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gregory Voronin
- Comparative Medicine Resources, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Aimie E Garces
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chun Long Lau
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ting-Hoi Chan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amy Hume
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Fadi Soukarieh
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Elena Cipolla
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; School of Pharmacy, Universita di Roma Tor Vergata, Rome 00173, Italy
| | - Hilary M Collins
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Dong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter M Fischer
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
18
|
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15:787-804. [PMID: 30025212 DOI: 10.1080/17425247.2018.1503249] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The major challenge of first pass metabolism in oral drug delivery can be surmounted by directing delivery toward intestinal lymphatic system (ILS). ILS circumvents the liver and transports drug directly into systemic circulation via thoracic duct. Lipid and polymeric nanoparticles are transported into ILS through lacteal and Peyer's patches. Moreover, surface modification of nanoparticles with ligand which is specific for Peyer's patches enhances the uptake of drugs into ILS. Bioavailability enhancement by lymphatic uptake is an advantageous approach adopted by scientists today. Therefore, it is important to understand clear insight of ILS in targeted drug delivery and challenges involved in it. AREAS COVERED Current review includes an overview of ILS, factors governing lymphatic transport of nanoparticles and absorption mechanism of lipid and polymeric nanoparticles into ILS. Various ligands used to target Peyer's patch and their conjugation strategies to nanoparticles are explained in detail. In vitro and in vivo models used to assess intestinal lymphatic transport of molecules are discussed further. EXPERT OPINION Although ILS offers a versatile pathway for nanotechnology based targeted drug delivery, extensive investigations on validation of the lymphatic transport models and on the strategies for gastric protection of targeted nanocarriers have to be perceived in for excellent performance of ILS in oral drug delivery.
Collapse
Affiliation(s)
- Renuka Suresh Managuli
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Sushil Yadaorao Raut
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Meka Sreenivasa Reddy
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| |
Collapse
|
19
|
PTL401, a New Formulation Based on Pro-Nano Dispersion Technology, Improves Oral Cannabinoids Bioavailability in Healthy Volunteers. J Pharm Sci 2018; 107:1423-1429. [DOI: 10.1016/j.xphs.2017.12.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
|
20
|
Guo XJ, Fan XJ, Qiao B, Ge ZQ. A lipophilic prodrug of Danshensu: preparation, characterization, and in vitro and in vivo evaluation. Chin J Nat Med 2018; 15:355-362. [PMID: 28558871 DOI: 10.1016/s1875-5364(17)30056-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Danshensu [3-(3, 4-dihydroxyphenyl) lactic acid, DSS], one of the significant cardioprotective components, is extracted from the root of Salvia miltiorrhiza. In the present study, an ester prodrug of Danshensu (DSS), palmitoyl Danshensu (PDSS), was synthesized with the aim to improve its oral bioavailability and prolong its half-life. The in vitro experiments were carried out to evaluate the physicochemical properties and stability of PDSS. Although the solubility of PDSS in water was only 0.055 mg·mL-1, its solubility in FaSSIF and FeSSIF reached 4.68 and 9.08 mg·mL-1, respectively. Octanol-water partition coefficient (log P) was increased from -2.48 of DSS to 1.90 of PDSS. PDSS was relatively stable in the aqueous solution in pH range from 5.6 to 7.4. Furthermore, the pharmacokinetics in rats was evaluated after oral administration of PDSS and DSS. AUC and t1/2 of PDSS were enhanced up to 9.8-fold and 2.2-fold, respectively, compared to that of DSS. Cmax was 1.67 ± 0.11 μg·mL-1 for PDSS and 0.81 ± 0.06 μg·mL-1 for DSS. Thus, these results demonstrated that PDSS had much higher oral bioavailability and longer circulation time than its parent drug.
Collapse
Affiliation(s)
- Xue-Jiao Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, China
| | - Xue-Jiao Fan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, China
| | - Bin Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, China
| | - Zhi-Qiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Education Ministry Key Laboratory of Systems Bioengineering, Tianjin 300072, China.
| |
Collapse
|
21
|
Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation. Sci Rep 2017; 7:14542. [PMID: 29109461 PMCID: PMC5674070 DOI: 10.1038/s41598-017-15026-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. CBD concentrations in the lymph were 250-fold higher than in plasma, while THC concentrations in the lymph were 100-fold higher than in plasma. Since cannabinoids are currently in clinical use for the treatment of spasticity in multiple sclerosis (MS) patients and to alleviate nausea and vomiting associated with chemotherapy in cancer patients, lymphocytes from those patients were used to assess the immunomodulatory effects of cannabinoids. The levels of cannabinoids recovered in the intestinal lymphatic system, but not in plasma, were substantially above the immunomodulatory threshold in murine and human lymphocytes. CBD showed higher immunosuppressive effects than THC. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders. However, intestinal lymphatic transport of cannabinoids in immunocompromised patients requires caution.
Collapse
|
22
|
Lee JB, Zgair A, Kim TH, Kim MG, Yoo SD, Fischer PM, Gershkovich P. Simple and sensitive HPLC-UV method for determination of bexarotene in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:73-80. [DOI: 10.1016/j.jchromb.2016.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
|
23
|
He X, Zhu Y, Wang M, Jing G, Zhu R, Wang S. Antidepressant effects of curcumin and HU-211 coencapsulated solid lipid nanoparticles against corticosterone-induced cellular and animal models of major depression. Int J Nanomedicine 2016; 11:4975-4990. [PMID: 27757031 PMCID: PMC5055126 DOI: 10.2147/ijn.s109088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Major depression is a complex neuropsychiatric disorder with few treatment approaches. The use of nontargeted antidepressants induced many side effects with their low efficacy. A more precise targeting strategy is to develop nanotechnology-based drug delivery systems; hence, we employed solid lipid nanoparticles (SLNs) to encapsulate HU-211 and curcumin (Cur). The antidepressant effects of the dual-drug nanoparticles (Cur/SLNs-HU-211) for major depression treatment were investigated in corticosterone-induced cellular and animal models of major depression. Cur/SLNs-HU-211 can effectively protect PC12 cells from corticosterone-induced apoptosis and can release more dopamine, which may be associated with the higher uptake of Cur/SLNs-HU-211 shown by cellular uptake behavior analysis. Additionally, Cur/SLNs-HU-211 significantly reduced the immobility time in forced swim test, enhanced fall latency in rotarod test, and improved the level of dopamine in mice blood. Cur/SLNs-HU-211 can deliver more Cur to the brain and thus produce a significant increase in neurotransmitters level in brain tissue, especially in the hippocampus and striatum. The results of Western blot and immunofluorescence revealed that Cur/SLNs-HU-211 can significantly enhance the expression of CB1, p-MEK1, and p-ERK1/2. Our study suggests that Cur/SLNs-HU-211 may have great potential for major depression treatment.
Collapse
Affiliation(s)
- Xiaolie He
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yanjing Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Mei Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Han S, Hu L, Quach T, Simpson JS, Trevaskis NL, Porter CJH. Constitutive Triglyceride Turnover into the Mesenteric Lymph Is Unable to Support Efficient Lymphatic Transport of a Biomimetic Triglyceride Prodrug. J Pharm Sci 2016; 105:786-796. [PMID: 26540595 DOI: 10.1002/jps.24670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
The triglyceride (TG) mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) biochemically integrates into intestinal lipid transport and lipoprotein assembly pathways and thereby promotes the delivery of mycophenolic acid (MPA) into the lymphatic system. As lipoprotein (LP) formation occurs constitutively, even in the fasted state, the current study aimed to determine whether lymphatic transport of 2-MPA-TG was dependent on coadministered exogenous lipid. In vitro incubation of the prodrug with rat digestive fluid and in situ intestinal perfusion experiments revealed that hydrolysis and absorption of the prodrug were relatively unaffected by the quantity of lipid in formulations. In vivo studies in rats, however, showed that the lymphatic transport of TG and 2-MPA-TG was significantly higher following administration with higher quantities of lipid and that oleic acid (C18:1) was more effective in promoting prodrug transport than lipids with higher degrees of unsaturation. The recovery of 2-MPA-TG and TG in lymph correlated strongly (R(2) = 0.99) and more than 97% of the prodrug was associated with chylomicrons. Inhibition of LP assembly by Pluronic L81 simultaneously inhibited the lymphatic transport of 2-MPA-TG and TG. In conclusion, although the TG mimetic prodrug effectively incorporates into TG resynthetic pathways, lipid coadministration is still required to support efficient lymphatic transport.
Collapse
Affiliation(s)
- Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tim Quach
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jamie S Simpson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
25
|
Zgair A, Wong JCM, Sabri A, Fischer PM, Barrett DA, Constantinescu CS, Gershkovich P. Development of a simple and sensitive HPLC-UV method for the simultaneous determination of cannabidiol and Δ(9)-tetrahydrocannabinol in rat plasma. J Pharm Biomed Anal 2015; 114:145-51. [PMID: 26048666 DOI: 10.1016/j.jpba.2015.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
There has been increased interest in the medical use of cannabinoids in recent years, particularly in the predominant natural cannabinoids, cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC). The aim of the current study was to develop a sensitive and reliable method for the quantification of CBD and THC in rat plasma. A combination of protein precipitation using cold acetonitrile and liquid-liquid extraction using n-hexane was utilised to extract CBD and THC from rat plasma. Samples were then evaporated and reconstituted in acetonitrile and 30 μL was injected into an HPLC system. Separation was achieved using an ACE C18-PFP 150 mm × 4.6 mm, 3 μm column at 55 °C with isocratic elution using a mobile phase consisting of acetonitrile-water (62:38, v/v) at 1 mL/min for 20 min. Both cannabinoids, as well as the internal standard (4,4-dichlorodiphenyltrichloroethane, DDT) were detected at 220 nm. Our new method showed linearity in the range of 10-10,000 ng/mL and a lower limit of quantification (LLOQ) of 10 ng/mL for both cannabinoids, which is comparable to previously reported LC-MS/MS methods. Inter- and intra-day precision and accuracy were below 15% RSD and RE, respectively. To demonstrate the suitability of the method for in vivo studies in rats, the assay was applied to a preliminary pharmacokinetic study following IV bolus administration of 5 mg/kg CBD or THC. In conclusion, a simple, sensitive, and cost-efficient HPLC-UV method for the simultaneous determination of CBD and THC has been successfully developed, validated and applied to a pharmacokinetic study in rats.
Collapse
Affiliation(s)
- Atheer Zgair
- School of Pharmacy, University of Nottingham, Nottingham, UK; College of Pharmacy, University of Anbar, Anbar, Iraq
| | | | - Akmal Sabri
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Peter M Fischer
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, University of Nottingham and Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
26
|
Caliph SM, Faassen FW, Porter CJH. The influence of intestinal lymphatic transport on the systemic exposure and brain deposition of a novel highly lipophilic compound with structural similarity to cholesterol. J Pharm Pharmacol 2014; 66:1377-87. [DOI: 10.1111/jphp.12268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
To assess the role of intestinal lymphatic transport in the oral bioavailability and brain deposition of a highly lipophilic, centrally acting drug candidate (Org 49209) in comparison to cholesterol, a close structural analogue.
Methods
The intestinal lymphatic transport of Org 49209 and cholesterol was assessed in lymph-cannulated anaesthetised rats and total bioavailability evaluated in non-lymph-cannulated animals. Parallel groups were employed to examine the brain deposition of Org 49209 after intraduodenal and intraperitoneal administrations.
Key findings
The contribution of intestinal lymphatic transport to total bioavailability was similar for Org 49209 and cholesterol (approximately 40% of the absorbed dose). However, the oral bioavailability of Org 49209 was significantly (fourfold) lower than cholesterol. Brain deposition of Org 49209 was similar after intraduodenal and intraperitoneal administration. Systemic exposure, however, was higher after intraduodenal administration and brain-to-plasma ratios were therefore reduced.
Conclusion
The oral bioavailability of Org 49209 was significantly lower than that of its structural analogue cholesterol; however, intestinal lymphatic transport played a similar role in oral bioavailability for both compounds. Brain to plasma ratios were lower after intraduodenal versus intraperitoneal administration, suggesting that drug association with intestinal lymph lipoproteins may limit central nervous system access for highly lipophilic drugs.
Collapse
Affiliation(s)
- Suzanne M Caliph
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Vic, Australia
| | - Fried W Faassen
- Pharmaceutical Sciences and Clinical Supply, Merck Sharp & Dohme, Oss, The Netherlands
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Vic, Australia
| |
Collapse
|
27
|
Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm 2013; 453:215-24. [PMID: 23578826 DOI: 10.1016/j.ijpharm.2013.03.054] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 11/18/2022]
Abstract
Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving/dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect on the biopharmaceutical aspects of drug absorption and distribution both in vitro and in vivo. The aim of this review is to provide an overview of the different lipid-based dosage forms from a biopharmaceutical point of view and to describe effects of lipid dosage forms and lipid excipients on drug solubility, absorption and distribution.
Collapse
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
28
|
Yáñez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev 2011; 63:923-42. [PMID: 21689702 PMCID: PMC7126116 DOI: 10.1016/j.addr.2011.05.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 12/16/2022]
Abstract
Intestinal lymphatic transport has been shown to be an absorptive pathway following oral administration of lipids and an increasing number of lipophilic drugs, which once absorbed, diffuse across the intestinal enterocyte and while in transit associate with secretable enterocyte lipoproteins. The chylomicron-associated drug is then secreted from the enterocyte into the lymphatic circulation, rather than the portal circulation, thus avoiding the metabolically-active liver, but still ultimately returning to the systemic circulation. Because of this parallel and potentially alternative absorptive pathway, first-pass metabolism can be reduced while increasing lymphatic drug exposure, which opens the potential for novel therapeutic modalities and allows the implementation of lipid-based drug delivery systems. This review discusses the physiological features of the lymphatics, enterocyte uptake and metabolism, links between drug transport and lipid digestion/re-acylation, experimental model (in vivo, in vitro, and in silico) of lymphatic transport, and the design of lipid- or prodrug-based drug delivery systems for enhancing lymphatic drug transport.
Collapse
|
29
|
Srinivas NR. Blonanserin's interesting food-effect observations: is lymphatic transport involved? Eur J Clin Pharmacol 2011; 67:975-6. [PMID: 21468742 DOI: 10.1007/s00228-011-1039-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/16/2011] [Indexed: 01/20/2023]
|
30
|
Abstract
Medication management is a major part of nursing practice. Ensuring safety in medication management is all the more important in the community, where patients are not under constant observation of a health-care professional. One of the prime factors in maintaining safety with medication is establishing and maintaining adequate and safe drug levels in the body. Before drugs can have an effect, they are acted upon by the body; these processes change the drug, mainly to enhance its removal from the body. Study of these processes is called pharmacokinetics and includes the processes of absorption, distribution, metabolism and excretion. Pharmacokinetic processes determine the time of onset and duration of drug action. In turn drug pharmacokinetics is affected by concordance with medication regimes and systemic illness; factors which may render the medication useless or toxic. This article introduces the reader to the principles of pharmacokinetics and shows the link between pharmacokinetics and disease and administration of multiple drugs (polypharmacy). With an aim to equip the community nurse with a better understanding of how to recognize and foresee problems associated with medication management.
Collapse
Affiliation(s)
- Ehsan Khan
- Florence Nightingale School of Nursing and Midwifery, King's College
| |
Collapse
|
31
|
Trevaskis NL, McEvoy CL, McIntosh MP, Edwards GA, Shanker RM, Charman WN, Porter CJH. The Role of the Intestinal Lymphatics in the Absorption of Two Highly Lipophilic Cholesterol Ester Transfer Protein Inhibitors (CP524,515 and CP532,623). Pharm Res 2010; 27:878-93. [DOI: 10.1007/s11095-010-0083-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/09/2010] [Indexed: 01/01/2023]
|
32
|
Gershkovich P, Fanous J, Qadri B, Yacovan A, Amselem S, Hoffman A. The role of molecular physicochemical properties and apolipoproteins in association of drugs with triglyceride-rich lipoproteins: in-silico prediction of uptake by chylomicrons. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.01.0005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The uptake of drugs by chylomicrons is a key element in both intestinal lymphatic transport and postprandial alterations in the disposition profile of lipophilic drugs. The aim of this article was to elucidate the factors that affect this phenomenon.
Methods
The degree of association of 22 model lipophilic molecules with rat chylomicrons was assessed and correlated in silico with calculated physicochemical properties. The in-silico model was then validated using an external set of molecules. The uptake by chylomicrons was also compared to the association with a marketed artificial emulsion.
Key findings
The most important physicochemical property that affects the affinity to chylomicrons was found to be LogD7.4; however, a multiparameter model was required to describe properly the uptake process. The in-silico model (R2Y = 0.91, R2X = 0.91 and Q2 = 0.82) that was created using a combination of eight molecular descriptors enabled successful prediction of the affinity of the external set of molecules to chylomicrons. The association with the artificial emulsion was statistically different from the uptake by chylomicrons for four (out of nine) molecules.
Conclusions
The association of drugs with chylomicrons is a complex process, which involves the lipophilic core as well as surface apoproteins. The in-silico model based on multiple physicochemical properties of the drugs is able to predict successfully the degree of association with chylomicrons.
Collapse
Affiliation(s)
- Pavel Gershkovich
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Joseph Fanous
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Bashir Qadri
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Amnon Hoffman
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
33
|
Haroutiunian S, Rosen G, Shouval R, Davidson E. Open-Label, Add-on Study of Tetrahydrocannabinol for Chronic Nonmalignant Pain. J Pain Palliat Care Pharmacother 2009; 22:213-7. [DOI: 10.1080/15360280802251215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Gershkovich P, Itin C, Yacovan A, Amselem S, Hoffman A. Effect of abdominal surgery on the intestinal absorption of lipophilic drugs: possible role of the lymphatic transport. Transl Res 2009; 153:296-300. [PMID: 19446284 DOI: 10.1016/j.trsl.2009.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 11/28/2022]
Abstract
Although abdominal surgery is a routine procedure in clinical practice and in preclinical investigation, little is known regarding its effect on the intestinal absorption of drugs. The aim of this study was to investigate the effect of abdominal surgery on the intestinal absorption of highly lipophilic compounds with different absorption mechanisms following oral administration. The 2 compounds that were tested were biopharmaceutical classification system (BCS) class 2 model lipophilic cannabinoid derivatives, dexanabinol and PRS-211,220. Although dexanabinol is mostly absorbed via passive diffusion to the portal blood, PRS-211,220 is absorbed mostly via lymphatic transport. In this work, we compared the absorption of these compounds after abdominal surgery in rat with the absorption data obtained from naïve animals. The outcomes of this investigation showed that the abdominal surgery mostly affected the absorption process on the preenterocyte level, as indicated by the 2-fold increase in the extent of intestinal absorption of dexanabinol, which is a compound with a low degree of intestinal lymphatic transport. However, the lymphatic transport was not affected by the surgical procedure as evident by the absence of change in the extent of absorption of PRS-211,220, which is transported to the systemic circulation mainly by intestinal lymphatics. In conclusion, abdominal surgery can significantly affect the intestinal absorption of lipophilic drugs; however, intestinal lymphatic transport seems to be less affected by the abdominal surgery.
Collapse
Affiliation(s)
- Pavel Gershkovich
- Department of Pharmaceutics, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
35
|
Oral bioavailability of the novel cannabinoid CB1 antagonist AM6527: effects on food-reinforced behavior and comparisons with AM4113. Pharmacol Biochem Behav 2008; 91:303-6. [PMID: 18703081 DOI: 10.1016/j.pbb.2008.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/20/2022]
Abstract
Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors, and may be clinically useful as appetite suppressants. Several CB1 receptor inverse agonists, such as rimonabant and AM251, as well as the CB1 receptor neutral antagonist, AM4113, have been assessed for their effects on food-motivated behavior. One important criterion for establishing if a drug may be useful clinically is the determination of its oral bioavailability. The present studies compared the effects of AM4113 and a novel CB1 antagonist, AM6527, on the suppression of food-reinforced behavior following intraperitoneal (IP) and oral administration. AM4113 and AM6527 both suppressed lever pressing after IP injections. The ED50 for the effect on FR5 responding was 0.78 mg/kg for IP AM4113, and 0.5763 mg/kg for IP AM6527. AM6527 also was effective after oral administration (ED50=1.49 mg/kg), however, AM 4113 was ineffective up to oral doses of 32.0 mg/kg. AM 4113 may be very useful as a research tool, but its lack of oral activity suggests that this drug might not be effective if orally administered in humans. In contrast, AM 6527 is an orally active CB1 antagonist, which may be useful for clinical research on the appetite suppressant effects of CB1 antagonists.
Collapse
|
36
|
Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release 2008; 129:1-10. [DOI: 10.1016/j.jconrel.2008.03.021] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
|
37
|
Kagan L, Hoffman A. Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations. Expert Opin Drug Deliv 2008; 5:681-92. [DOI: 10.1517/17425247.5.6.681] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 2008; 60:702-16. [PMID: 18155316 PMCID: PMC7103284 DOI: 10.1016/j.addr.2007.09.007] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 09/30/2007] [Indexed: 12/11/2022]
Abstract
After oral administration, the majority of drug molecules are absorbed across the small intestine and enter the systemic circulation via the portal vein and the liver. For some highly lipophilic drugs (typically log P > 5, lipid solubility > 50 mg/g), however, association with lymph lipoproteins in the enterocyte leads to transport to the systemic circulation via the intestinal lymph. The attendant delivery benefits associated with lymphatic drug transport include a reduction in first-pass metabolism and lymphatic exposure to drug concentrations orders of magnitude higher than that attained in systemic blood. In the current review we briefly describe the mechanisms by which drug molecules access the lymph and the formulation strategies that may be utilised to enhance lymphatic drug transport. Specific focus is directed toward recent advances in understanding regarding the impact of lipid source (both endogenous and exogenous) and intracellular lipid trafficking pathways on lymphatic drug transport and enterocyte-based first-pass metabolism.
Collapse
|