1
|
Chen J, Zhang W, Zhang X, Zhang Y, Yang G, Yang D, Gao Y. Fabrication and characterization of a multifunctional hyaluronic acid-based microneedle system for diabetic wound healing. Eur J Pharm Biopharm 2025:114704. [PMID: 40174679 DOI: 10.1016/j.ejpb.2025.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Diabetes mellitus (DM)-associated wounds, characterized by chronic bacterial infections and elevated glucose levels, present significant challenges to effective healing. To overcome these issues, a novel transdermal drug delivery system was developed, integrating microneedles (MNs) with biofilm-penetrating capability, the wound-healing properties of hyaluronic acid (HA), the antibacterial effects of silver nanoparticles (AgNPs), and the glucose-lowering action of insulin (Ins). Named HAMNs@AgNPs-Ins, this system demonstrated optimal morphological characteristics, robust mechanical strength, and 100 % skin penetration efficiency. It exhibited sustained antibacterial activity in vitro, ensured skin safety, and provided controlled, steady blood glucose reductions, achieving a 72.29 % reduction at 8 h, compared to the sharp decline seen with subcutaneous injection. Additionally, wound healing experiments showed a significant improvement in the healing rate of 89.66 ± 1.34 % in the HAMNs@AgNPs-Ins group, compared to 48.19 ± 9.03 % in the control group. These results underscore the potential of HAMNs@AgNPs-Ins as an effective treatment for DM-associated wounds.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; School of Pharmacy, Fujian Medical University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| | - Wenqin Zhang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; School of Pharmacy, Fujian Medical University, Fujian, China
| | - Xinyi Zhang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; School of Pharmacy, Fujian Medical University, Fujian, China
| | - Yuelian Zhang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; School of Pharmacy, Fujian Medical University, Fujian, China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd, Beijing 102609, China
| | - Dechao Yang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| | - Yunhua Gao
- Beijing CAS Microneedle Technology Ltd, Beijing 102609, China.
| |
Collapse
|
2
|
Park SH, Shah IR, Jhumur NC, Mo Y, Tendolkar S, Lallow EO, Shan JW, Zahn JD, Maslow JN, Pelegri AA, Lin H, Shreiber DI, Singer JP. Microneedle arrays coated with Middle East respiratory syndrome coronavirus DNA vaccine via electrospray deposition. SOFT MATTER 2025. [PMID: 40151993 DOI: 10.1039/d4sm01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microneedle arrays have been shown to be a minimally invasive method of transdermal drug delivery. However, methods to coat these arrays often require a reservoir of the active ingredient, leading to unused and wasted material. Electrospray deposition is a targeted coating method that offers a competitive alternative for coating microneedles. By architecting the charge landscape of the setup, this technology can achieve coating deposition efficiencies nearing 100%, with little to no material wasted during the coating process. A Middle East respiratory syndrome coronavirus DNA vaccine was used as the model material to assess deposition efficiency as well as the efficacy of fragile biological materials subjected to electrospray deposition. Trehalose and polystyrene-block-polyacrylic acid were used as excipients to encourage coating dispersion. These coatings were inserted into Sprague Dawley rats where the antigen was subsequently detected and located using immunohistochemistry. Both coatings, with and without excipients, showed that protein expression is achieved after the vaccine is subjected to electrospray, however, the presence of excipients qualitatively leads to a more disperse diffusion profile. Further, this work demonstrates the capability of electrospray deposition as a highly efficient method to coat microneedles for transdermal drug delivery.
Collapse
Affiliation(s)
- Sarah H Park
- Department of Materials Science and Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA.
| | - Isha R Shah
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Nandita C Jhumur
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Yaxin Mo
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Shalaka Tendolkar
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | | | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | | | - Assimina A Pelegri
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Jonathan P Singer
- Department of Materials Science and Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA.
- Department of Mechanical and Aerospace Engineering, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
4
|
Chaiprateep EO, Sengupta S, Keck CM. Microneedle-Assisted Delivery of Curcumin: Evaluating the Effects of Needle Length and Formulation. MICROMACHINES 2025; 16:155. [PMID: 40047600 PMCID: PMC11857367 DOI: 10.3390/mi16020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 03/09/2025]
Abstract
Dermal drug delivery presents a significant challenge for poorly soluble active compounds like curcumin, which often struggle to penetrate the skin barrier effectively. In this study, the dermal penetration efficacy of curcumin nanocrystals and bulk suspensions when applied to skin using microneedles of varying lengths-0.25 mm, 0.5 mm, and 1.0 mm-was investigated in an ex vivo porcine ear model. The findings revealed that all formulations, in conjunction with microneedle application, facilitated transepidermal penetration; however, the combination of microneedles and curcumin nanocrystals demonstrated the highest efficacy. Notably, the 1.0 mm microneedle length provided optimal penetration, significantly enhancing curcumin delivery compared with bulk suspensions alone. Additionally, even the use of 0.25 mm microneedles resulted in a high level of efficiency, indicating that shorter microneedles can still effectively facilitate drug delivery. Overall, this study underscores the potential of microneedle technology in improving the transepidermal absorption of poorly soluble actives like curcumin, suggesting that the integration of nanocrystals with microneedles could enhance the therapeutic effects of topical curcumin applications.
Collapse
Affiliation(s)
- Em-on Chaiprateep
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (E.-o.C.); (S.S.)
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi 12130, Thailand
| | - Soma Sengupta
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (E.-o.C.); (S.S.)
| | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (E.-o.C.); (S.S.)
| |
Collapse
|
5
|
Yang P, Song Q, Zhang L, Liu Z, Ma H. Numerical modeling and simulation for microneedles drug delivery: A novel comprehensive swelling-obstruction-mechanics model. Eur J Pharm Biopharm 2025; 206:114583. [PMID: 39603481 DOI: 10.1016/j.ejpb.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Hydrogel microneedles have attracted significant attention in drug delivery due to their non-invasiveness and efficient administration. However, a thorough understanding of the drug transport mechanism is essential to achieve controlled drug delivery and geometry optimization of microneedles. In this study, a new swelling-obstruction-mechanics model is presented to describe the swelling and drug release behavior of hydrogel microneedles. The model integrates the swelling kinetics, the obstruction scaling of drug molecules, and the mechanical properties of hydrogel and skin and reveals the effects of swelling of the microneedle matrix and drug molecules on drug release. Subsequently, numerical simulations were conducted using the model, which enabled the optimization of hydrogel microneedle design parameters by adjusting the input variables. The results show that the geometric parameters of microneedles, especially the cross-sectional shape, have a significant effect on the drug release performance. Nevertheless, the parameters affect each other and need to be considered in the selection of a variety of factors. Additionally, penetration depth significantly affects drug release efficiency, highlighting the need for auxiliary application devices. In summary, the model advances both theoretical understanding and practical design of hydrogel microneedles, identifying key factors in drug release and optimizing their efficiency and reliability for clinical applications.
Collapse
Affiliation(s)
- Peijing Yang
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China
| | - Qinghua Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Jinan 250061, PR China.
| | - Lujie Zhang
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China
| | - Zhanqiang Liu
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China; School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, PR China
| | - Haifeng Ma
- School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Jinan 250061, PR China
| |
Collapse
|
6
|
Czyrski GS, Frese Hjort MK, Rades T, Heinz A. Comparing effects of terpene-based deep eutectic solvent and solid microneedles on skin permeation of drugs with varying lipophilicity. Eur J Pharm Biopharm 2024; 205:114576. [PMID: 39522705 DOI: 10.1016/j.ejpb.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Transdermal delivery of therapeutic molecules is often hindered by the properties of the skin, with the stratum corneum serving as the primary permeation barrier. To overcome this barrier, the integrity of the stratum corneum can be modified by chemical permeation enhancers, such as deep eutectic solvents (DESs), or by mechanically impairing the skin with microneedles (MNs). However, a systematic comparison between these strategies is currently lacking. Hence, this study examined the potential of DESs and MNs to promote the permeation and retention of drugs with varying lipophilicities - specifically, the hydrophilic drug metronidazole (logP ∼ 0), the moderately lipophilic drug lidocaine (logP ∼ 2.3), and the highly lipophilic drug clotrimazole (logP ∼ 5). A mixture of menthol and thymol was selected as a model terpene-based DES and delivery vehicle, while a DermaPen equipped with solid MNs was used to mechanically impair the skin. Permeation rates of model drugs applied to the skin with either DES, MNs, or both were compared to the rates determined for the drugs applied in control vehicles. Both strategies were found to compromise the skin barrier function, but their permeation-enhancing effect was dependent on the lipophilicity of tested model drug. The DES was most effective for the hydrophilic drug metronidazole, while the MNs were more effective in increasing the permeation of the highly lipophilic drug clotrimazole. For the moderately lipophilic drug lidocaine, neither the DES nor microneedles increased its permeation rate, as the drug permeated through the skin well on its own. Notably, the combination of both enhancement strategies did not result in significantly better permeation rates of the drugs compared to the individual approaches. In conclusion, both the terpene-based DES and solid MNs are effective strategies to enhance drug permeation through the skin, but our results suggest that the choice of strategy should be dictated by the drug's lipophilicity. Moreover, from a permeation-enhancing perspective, there is no benefit in combining these two strategies.
Collapse
Affiliation(s)
- Grzegorz S Czyrski
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mikkel K Frese Hjort
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Raz A, Gubi H, Cohen A, Patolsky F. Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles. ACS NANO 2024; 18:30848-30862. [PMID: 39463189 PMCID: PMC11544710 DOI: 10.1021/acsnano.4c11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Biomarkers detection has become essential in medical diagnostics and early detection of life-threatening diseases. Modern-day medicine relies heavily on painful and invasive tests, with the extraction of large volumes of venous blood being the most common tool of biomarker detection. These tests are time-consuming, complex, expensive and require multiple sample manipulations and trained staff. The application of "intradermal" biosensors utilizing microneedles as minimally invasive sensing elements for capillary blood biomarkers detection has gained extensive interest in the past few years as a central point-of-care (POC) detection platform. Herein, we present a diagnosis paradigm based on vertically aligned nanopillar array-embedded microneedles sampling-and-detection elements for the direct optical detection and quantification of biomarkers in capillary blood. We present here a demonstration of the simple fabrication route for the creation of a multidetection-zone silicon nanopillar array, embedded in microneedle elements, followed by their area-selective chemical modification, toward the multiplex intradermal biomarkers detection. The utilization of the rapid and specific antibody-antigen binding, combined with the intrinsically large sensing area created by the nanopillar array, enables the simultaneous efficient ultrafast and highly sensitive intradermal capillary blood sampling and detection of protein biomarkers of clinical relevance, without requiring the extraction of blood samples for the ex vivo biomarkers analysis. Through preliminary in vitro and in vivo experiments, the direct intradermal in-skin blood extraction-free platform has demonstrated excellent sensitivity (low pM) and specificity for the accurate multiplex detection of protein biomarkers in capillary blood.
Collapse
Affiliation(s)
- Adva Raz
- Department
of Materials Science and Engineering, The Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Gubi
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adam Cohen
- Department
of Materials Science and Engineering, The Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fernando Patolsky
- Department
of Materials Science and Engineering, The Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
9
|
Monou PK, Andriotis EG, Saropoulou E, Tzimtzimis E, Tzetzis D, Komis G, Bekiari C, Bouropoulos N, Demiri E, Vizirianakis IS, Fatouros DG. Fabrication of Hybrid Coated Microneedles with Donepezil Utilizing Digital Light Processing and Semisolid Extrusion Printing for the Management of Alzheimer's Disease. Mol Pharm 2024; 21:4450-4464. [PMID: 39163171 PMCID: PMC11372831 DOI: 10.1021/acs.molpharmaceut.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material. Physiochemical characterization of the coated MNs confirmed the successful incorporation of donepezil as well as the stability and suitability of the materials for transdermal delivery. Optical microscopy and SEM studies validated the uniform weight distribution and precise dimensions of the MN arrays, while mechanical testing ensured the MNs' robustness, ensuring efficient skin penetration. In vitro studies were conducted to evaluate the produced transdermal patches, indicating their potential use in clinical treatment. Permeation studies revealed a significant increase in DN permeation compared to plain coating material, affirming the effectiveness of the MNs in enhancing transdermal drug delivery. Confocal laser scanning microscopy (CLSM) elucidated the distribution of the API, within skin layers, demonstrating sustained drug release and transcellular transport pathways. Finally, cell studies were also conducted on NIH3T3 fibroblasts to evaluate the biocompatibility and safety of the printed objects for transdermal applications.
Collapse
Affiliation(s)
- Paraskevi-Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Eleftherios G Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eirini Saropoulou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Emmanouil Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14km Thessaloniki - N. Moudania, Thermi GR, Thessaloniki 57001, Greece
| | - Dimitrios Tzetzis
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Georgios Komis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Chrysanthi Bekiari
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Rio, Patras 26504, Greece
| | - Efterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ag. Pavlos, Thessaloniki 56429, Greece
| | - Ioannis S Vizirianakis
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
- Department of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Department of Life and Health Sciences, University of Nicosia, Nicosia CY-1700, Cyprus
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
10
|
Singh P, Vinikoor T, Sharma N, Nelson N, Prasadh S, Oiknine R, Nguyen TD. Single-Administration Self-Boosting Microneedle Patch for The Treatment of Obesity. ADVANCED THERAPEUTICS 2024; 7:2400028. [PMID: 39429250 PMCID: PMC11486425 DOI: 10.1002/adtp.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 10/22/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are one of the most effective treatments for obesity. The current therapy associated with repeated subcutaneous injections to maintain the drug therapeutic effect causes patient compliance issues and raises environmental concerns (due to sharp biohazard waste from disposed syringes/needles). Herein, we report a programmable scheduled release microneedles (PSR-MNs) system for delivering Semaglutide (a GLP-1 RA agent with a half-life of ~ 7 days) to manage and treat obesity. A single skin administration of a PSR-MNs patch (2 cm × 2 cm) which contains 4 programmable core-shell MNs patches (1 cm2 each, so-called pixels) enables the repeated release of Semaglutide every 7 days and sustains the drug efficacy for an unprecedented one-month period, simulating the effect of using four bolus injections spaced 7 days apart. Our PSR-MNs system provides an advanced injection-free platform to significantly enhance the current treatment of obesity with GLP-1RAs, addressing concerns related to pain, needle phobia, high cost and the need of medical facilities/personnel in traditional injections to administer the drug.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, United States
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Center, Farmington, CT 06030, USA
| | - Nidhi Sharma
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Nicole Nelson
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | | | - Thanh Duc Nguyen
- Department of Mechanical Engineering, University of Connecticut, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
11
|
Theodorakopoulou E, Aguilera SB, Duncan DI. A New Therapeutic Approach With Rose Stem-Cell-Derived Exosomes and Non-Thermal Microneedling for the Treatment of Facial Pigmentation. Aesthet Surg J Open Forum 2024; 6:ojae060. [PMID: 39233774 PMCID: PMC11372705 DOI: 10.1093/asjof/ojae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background Facial dyspigmentation is a challenging concern which cannot easily be corrected. Although the application of topical exosomes has shown some efficacy, there is still scarce data addressing the role of plant-derived exosomes for skin hyperpigmentation. Objectives This study using rose stem-cell-derived exosomes (RSCE) was performed as a proof-of-concept case series to evaluate the efficacy and safety of microneedling and topical RSCE, for the reduction of pigmentation and photoaging in adult volunteers. Methods Twelve female volunteers were recruited, with a mean age of 46.64 years and a moderate-to-severe facial pigmentation, due to solar lentigines, melasma, postinflammatory hyperpigmentation, and periorbital hyperpigmentation. Three treatments were performed at 3 weeks intervals. These consisted of the topical application of RSCE with microneedling and a 20 min LED light with an RSCE-infused mask. A 3D facial analyzer was used to quantify improvement in superficial, deep pigmentation, skin redness, and wrinkles at baseline, Weeks 3, 6, and 12. Global Aesthetic Improvement Scale (GAIS), Dermatology Life and Quality Index (DLQI), and Melasma Quality of Life Scale (MELASQoL) scores were noted at the same time points. Results GAIS scores improved by at least 1 scale point. Superficial pigmentation and spots decreased by 12.95% and deep pigmentation improved by 15.9%, by Week 12. Skin redness was reduced by 7.34% at the same time point. The measured wrinkle reduction was 6.34%. DLQI scores were reduced by 10 points, and MELASQoL scores had a mean reduction of 30 points at Week 12. Conclusions Improvement of facial pigmentation is possible when combining nonthermal microneedling and the use of topical RSCE. Level of Evidence 4
Collapse
|
12
|
Liu Y, Zhao ZQ, Liang L, Jing LY, Wang J, Dai Y, Chen BZ, Guo XD. Toward a solid microneedle patch for rapid and enhanced local analgesic action. Drug Deliv Transl Res 2024; 14:1810-1819. [PMID: 38236507 DOI: 10.1007/s13346-023-01486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/19/2024]
Abstract
Analgesic creams find widespread application as adjuncts for localized anesthesia prior to surgical procedures. Nevertheless, the onset of analgesic action is protracted due to the skin barrier's inherent characteristics, which necessitates prolonged intervals of patient and clinician waiting, consequently impinging upon patient compliance and clinician workflow efficiency. In this work, a biodegradable microneedles (MNs) patch was introduced to enhance the intradermal administration of lidocaine cream to achieve rapid analgesia through a minimally invasive and conveniently accessible modality. The polylactic acid (PLA) MNs were mass-produced using a simple hot-pressing method and served the purpose of creating microchannels across the skin's surface for rapid absorption of lidocaine cream. Optical and electron microscopes were applied to meticulously scrutinize the morphology of the fabricated MNs, and the comprehensive penetration tests involving dynamometer tests, evaluation on porcine cadaver skin, artificial film, optical coherence tomography (OCT), transepidermal water loss, and analysis on rats' skins, demonstrated the robust mechanical strength of PLA MNs for successful intradermal penetration. The behavioral pain sensitivity tests on living rats using Von Frey hair filaments revealed that the MN-assisted lidocaine treatment expeditiously accelerated the onset of action from 40 to 10 min and substantially enhanced the efficacy of localized anesthesia. Furthermore, different treatment protocols encompassing the sequence of drug application relative to MN treatment, MN dimensions, and the frequency of MN insertions exhibited noteworthy influence on the resultant local anesthesia efficacy. Together, these results demonstrated that the lidocaine cream followed by diverse PLA MN treatments would be a promising strategy for rapid clinical local anesthesia with wide-ranging applications.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Yue Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Yun Dai
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, China.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Karve T, Dandekar A, Agrahari V, Melissa Peet M, Banga AK, Doncel GF. Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches. Adv Drug Deliv Rev 2024; 210:115326. [PMID: 38692457 DOI: 10.1016/j.addr.2024.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics. An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.
Collapse
Affiliation(s)
- Tanvi Karve
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Amruta Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - M Melissa Peet
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | | |
Collapse
|
14
|
Pereira R, Vinayakumar KB, Sillankorva S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens 2024; 9:2294-2309. [PMID: 38654679 PMCID: PMC11129353 DOI: 10.1021/acssensors.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Bioanalyte collection by blood draw is a painful process, prone to needle phobia and injuries. Microneedles can be engineered to penetrate the epidermal skin barrier and collect analytes from the interstitial fluid, arising as a safe, painless, and effective alternative to hypodermic needles. Although there are plenty of reviews on the various types of microneedles and their use as drug delivery systems, there is a lack of systematization on the application of polymeric microneedles for diagnosis. In this review, we focus on the current state of the art of this field, while providing information on safety, preclinical and clinical trials, and market distribution, to outline what we believe will be the future of health monitoring.
Collapse
Affiliation(s)
- Raquel
L. Pereira
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - K. B. Vinayakumar
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL − International Iberian
Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
15
|
Wei F, Cheng jun C, Cheng S, Fang L. Effect of minoxidil combined with triamcinolone acetonide on alopecia areata by microneedle injection. Skin Res Technol 2024; 30:e13713. [PMID: 38634160 PMCID: PMC11024500 DOI: 10.1111/srt.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Alopecia areata (AA) is often characterized by sudden onset of patchy hair loss. Topical corticosteroid injection is the most common treatment. This study retrospectively observed the clinical efficacy of microneedle minoxidil combined with triamcinolone acetonide in the treatment of AA. METHODS A total of 230 patients with AA were selected. The experimental group (n = 120) received physician training and home microneedle treatment with minoxidil combined with triamcinolone acetonide once a week. Topical minoxidil and triamcinolone acetonide were used twice daily at other times. The control group (n = 110) was treated with minoxidil combined with triamcinolone acetonide, twice a day. Cure rate, response rate, SALT, dermatological Quality of Life Index (DLQI), visual analogue (VAS), and cost were assessed at weeks 4 and 12. RESULTS Treated group SALT score(Severity of Alopecia Tool) remarkable lower than control group after treated 4 and 12 weeks. After 12 weeks treatment, DLQI score of the treated group (1.8 ± 1.67) were significantly lower than those of the control group (2.45 ± 1.88) (p < 0.05). VAS score and adverse reaction between two group showed no significant different (p = 0.823, p = 0.484 respectively). The total cost was 53.93 ± 15.85 in the treatment group and 53.26 ± 11.51 in the control group. There was no significant difference between the two groups (p = 0.72). In the treated group, the complete response rate (CR: 78.33%) and total effective rate (CR+PR: 95%) were significantly higher than those in the control group (CR: 40.91% and CR+PR: 51.82%), with statistically significant differences (p < 0.001). CONCLUSION Microneedle introduction of minoxidil and triamcinolone acetonide in the treatment of AA is a safe, effective, economical, and convenient method, with few adverse reactions, and has a good application prospect.
Collapse
Affiliation(s)
- Fanglin Wei
- Department of DermatologyXishan People's Hospital of Wuxi CityWuxi Branch of Zhongda Hospital Southeast UniversityWuxiJiangsuChina
| | - Cui Cheng jun
- Department of DermatologyXishan People's Hospital of Wuxi CityWuxi Branch of Zhongda Hospital Southeast UniversityWuxiJiangsuChina
| | - Shasha Cheng
- Department of DermatologyXishan People's Hospital of Wuxi CityWuxi Branch of Zhongda Hospital Southeast UniversityWuxiJiangsuChina
| | - Ling Fang
- Department of DermatologyXishan People's Hospital of Wuxi CityWuxi Branch of Zhongda Hospital Southeast UniversityWuxiJiangsuChina
| |
Collapse
|
16
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
17
|
Naik DA, Matonis S, Balakrishnan G, Bettinger CJ. Intestinal retentive systems - recent advances and emerging approaches. J Mater Chem B 2023; 12:64-78. [PMID: 38047746 DOI: 10.1039/d3tb01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Intestinal retentive devices (IRDs) are devices designed to anchor within the lumen of the intestines for long-term residence in the gastrointestinal tract. IRDs can enable impactful medical device technologies including sustained oral drug delivery systems, indwelling sensors, or real-time diagnostics. The design and testing of IRDs present a myriad of challenges, including precise deployment of the device at desired intestinal locations, secure anchoring within the gastrointestinal tract to allow for natural function, and safe removal of the IRD at user-defined times. Advancing the state-of-the-art of IRD is an interdisciplinary effort that requires innovations such as new materials, novel anchoring mechanisms, and medical device design with consistent input from clinical practitioners and end-users. This perspective briefly reviews the current state-of-the-art for IRDs and charts a path forward to inform the design of future concepts. Specifically, this article will highlight materials, retention mechanisms, and test beds to measure the efficacy of IRDs and their mechanisms. Finally, potential synergies between IRD and other medical device technologies are presented to identify future opportunities.
Collapse
Affiliation(s)
- Durva A Naik
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Spencer Matonis
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Gaurav Balakrishnan
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4N201, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Kim J, Moon JW, Kim GR, Kim W, Hu HJ, Jo WJ, Baek SK, Sung GH, Park JH, Park JH. Safety tests and clinical research on buccal and nasal microneedle swabs for genomic analysis. Front Bioeng Biotechnol 2023; 11:1296832. [PMID: 38116201 PMCID: PMC10729317 DOI: 10.3389/fbioe.2023.1296832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional swabs have been used as a non-invasive method to obtain samples for DNA analysis from the buccal and the nasal mucosa. However, swabs may not always collect pure enough genetic material. In this study, buccal and nasal microneedle swab is developed to improve the accuracy and reliability of genomic analysis. A cytotoxicity test, a skin sensitivity test, and a skin irritation test are conducted with microneedle swabs. Polymer microneedle swabs meet the safety requirements for clinical research and commercial use. When buccal and nasal microneedle swabs are used, the amount of genetic material obtained is greater than that from commercially available swabs, and DNA purity is also high. The comparatively short microneedle swab (250 μm long) cause almost no pain to all 25 participants. All participants also report that the microneedle swabs are very easy to use. When genotypes are compared at five SNP loci from blood of a participant and from that person's buccal or nasal microneedle swab, the buccal and nasal microneedle swabs show 100% concordance for all five SNP genotypes. Microneedle swabs can be effectively used for genomic analysis and prevention through genomic analysis, so the utilization of microneedle swabs is expected to be high.
Collapse
Affiliation(s)
- JeongHyeon Kim
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | | | | | - Wonsub Kim
- Endomics Inc, Seongnam, Republic of Korea
| | - Hae-Jin Hu
- Endomics Inc, Seongnam, Republic of Korea
| | - Won-Jun Jo
- QuadMedicine R&D Centre, QuadMedicine Co. Ltd., Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Co. Ltd., Seongnam, Republic of Korea
| | - Gil-Hwan Sung
- QuadMedicine R&D Centre, QuadMedicine Co. Ltd., Seongnam, Republic of Korea
| | - Jung Ho Park
- Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of Bionano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
19
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
20
|
Hou X, Li J, Hong Y, Ruan H, Long M, Feng N, Zhang Y. Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines 2023; 11:2119. [PMID: 37626616 PMCID: PMC10452559 DOI: 10.3390/biomedicines11082119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Transdermal drug delivery (TDD) is one of the key approaches for treating diseases, avoiding first-pass effects, reducing systemic adverse drug reactions and improving patient compliance. Microneedling, iontophoresis, electroporation, laser ablation and ultrasound facilitation are often used to improve the efficiency of TDD. Among them, microneedling is a relatively simple and efficient means of drug delivery. Microneedles usually consist of micron-sized needles (50-900 μm in length) in arrays that can successfully penetrate the stratum corneum and deliver drugs in a minimally invasive manner below the stratum corneum without touching the blood vessels and nerves in the dermis, improving patient compliance. Hydrogel-forming microneedles (HFMs) are safe and non-toxic, with no residual matrix material, high drug loading capacity, and controlled drug release, and they are suitable for long-term, multiple drug delivery. This work reviewed the characteristics of the skin structure and TDD, introduced TDD strategies based on HFMs, and summarized the characteristics of HFM TDD systems and the evaluation methods of HFMs as well as the application of HFM drug delivery systems in disease treatment. The HFM drug delivery system has a wide scope for development, but the translation to clinical application still has more challenges.
Collapse
Affiliation(s)
- Xiaolin Hou
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Jiaqi Li
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongyu Hong
- Xiamen Hospital of Chinese Medicine, No. 1739 Xiangyue Road, Huli District, Xiamen 361015, China;
| | - Hang Ruan
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Meng Long
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Nianping Feng
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongtai Zhang
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| |
Collapse
|
21
|
Pervez S, Nasir F, Hidayatullah T, Khattak MA, Alasmari F, Zainab SR, Gohar S, Tahir A, Maryam GE. Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles. Pharmaceutics 2023; 15:2019. [PMID: 37631233 PMCID: PMC10459310 DOI: 10.3390/pharmaceutics15082019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Glimepiride (GM) is a hydrophobic drug that dissolves slowly and yields inconsistent clinical responses after oral administration. Transdermal drug delivery (TDD) is an appropriate alternative to oral administration. Microneedles (MNs) offer a promising delivery system that penetrates the skin, while polymeric micelles can enhance the solubility; hence, the combination of both results in high drug bioavailability. This study aims to improve glimepiride's solubility, dissolution rate, and bioavailability by incorporating nanomicelles into MNs for TDD. The nanomicelles formulated with 10% Soluplus® (SP) and 40% GM had a mean particle size of 82.6 ± 0.54, PDI of 0.1 ± 0.01, -16.2 ± 0.18 zeta potential, and achieved a 250-fold increase in solubility. The fabricated pyramid shaped GM-dissolving MNs were thermally stable and had no formulation incompatibility, as confirmed by thermal and FTIR analysis. The in vitro dissolution profile revealed that the GM release from nanomicelles and nanomicelle-loaded DMN was concentration-independent following non-Fickian transport mechanism. Improved pharmacokinetic parameters were obtained with dose of 240 µg as compared to 1 mg of GM oral tablet, in healthy human volunteers. The observed Cmax, Tmax and MRT were 1.56 μg/mL ± 0.06, 4 h, and 40.04 h ± 3.37, respectively. The safety profile assessment indicated that microneedles are safe with no adverse effects on skin or health. This study provides an alternative delivery system for the administration of glimepiride, resulting in improved bioavailability, enhanced patient compliance, and reduced dosing frequency.
Collapse
Affiliation(s)
- Sadia Pervez
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Talaya Hidayatullah
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Muzna Ali Khattak
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syeda Rabqa Zainab
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Shazma Gohar
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Arbab Tahir
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Gul e Maryam
- Department of Pharmacy, Qurtaba University of Science and Information Technology, Peshawar 25000, Pakistan;
| |
Collapse
|
22
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
23
|
Zhang R, Miao Q, Deng D, Wu J, Miao Y, Li Y. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids Surf B Biointerfaces 2023; 226:113302. [PMID: 37086686 DOI: 10.1016/j.colsurfb.2023.113302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Transdermal drug delivery is an effective way of drug delivery in addition to oral and intravenous administration. Among them, microneedle administration is a new type of subcutaneous drug delivery, which forms micron-level pores on the surface of the skin, making the drug enter the dermis through the cuticular layer of the skin in the least invasive way. This mode of drug delivery not only increases the permeation efficiency of transdermal drug delivery but also improves the bioavailability of drug delivery. At present, there are many kinds of research on microneedles, such as solid microneedles, hollow microneedles, soluble polymer microneedles, etc. However, some new microneedle drug delivery systems have been gradually developed and applied with the development of microneedle drug delivery technology, for meeting the more complex pathological environment. In this review, we focus on the principle, structure, and function of some new types of microneedles, such as stimulus-response microneedles, iontophoresis microneedles, and bionic microneedles. We summarize the effects of materials, geometry, and size on the properties of microneedles as well as their applications and potential developments in the field of biomedicine. We hope that this review can provide new ideas and help with the development of new microneedle drug delivery systems.
Collapse
Affiliation(s)
- Rui Zhang
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
24
|
Iachina I, Eriksson AH, Bertelsen M, Petersson K, Jansson J, Kemp P, Engell KM, Brewer JR, Nielsen KT. Dissolvable microneedles for transdermal drug delivery showing skin pentation and modified drug release. Eur J Pharm Sci 2023; 182:106371. [PMID: 36621615 DOI: 10.1016/j.ejps.2023.106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.
Collapse
Affiliation(s)
- Irina Iachina
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - André H Eriksson
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Malene Bertelsen
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jörgen Jansson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Pernille Kemp
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karen M Engell
- Small Molecule Early Pharmaceutical Development, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Kim T Nielsen
- Advanced Analytical and Structural Chemistry, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark.
| |
Collapse
|
25
|
Study on the Influence of Microinjection Molding Processing Parameters on Replication Quality of Polylactic Acid Microneedle Array Product. Polymers (Basel) 2023; 15:polym15051199. [PMID: 36904441 PMCID: PMC10007380 DOI: 10.3390/polym15051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Biodegradable microneedles with a drug delivery channel have enormous potential for consumers, including use in chronic disease, vaccines, and beauty applications, due to being painless and scarless. This study designed a microinjection mold to fabricate a biodegradable polylactic acid (PLA) in-plane microneedle array product. In order to ensure that the microcavities could be well filled before production, the influences of the processing parameters on the filling fraction were investigated. The results indicated that the PLA microneedle can be filled under fast filling, higher melt temperature, higher mold temperature, and higher packing pressure, although the dimensions of the microcavities were much smaller than the base portion. We also observed that the side microcavities filled better than the central ones under certain processing parameters. However, this does not mean that the side microcavities filled better than the central ones. The central microcavity was filled when the side microcavities were not, under certain conditions in this study. The final filling fraction was determined by the combination of all parameters, according to the analysis of a 16 orthogonal latin hypercube sampling analysis. This analysis also showed the distribution in any two-parameter space as to whether the product was filled entirely or not. Finally, the microneedle array product was fabricated according to the investigation in this study.
Collapse
|
26
|
Xie Z, Zhang X, Chen G, Che J, Zhang D. Wearable microneedle-integrated sensors for household health monitoring. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
28
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
29
|
The clinical and translational prospects of microneedle devices, with a focus on insulin therapy for diabetes mellitus as a case study. Int J Pharm 2022; 628:122234. [PMID: 36191817 DOI: 10.1016/j.ijpharm.2022.122234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
Microneedles have the clinical advantage of being able to deliver complex drugs across the skin in a convenient and comfortable manner yet haven't successfully transitioned to medical practice. Diabetes mellitus is a complicated disease, which is commonly treated with multiple daily insulin injections, contributing to poor treatment adherence. Firstly, this review determines the clinical prospect of microneedles, alongside considerations that ought to be addressed before microneedle technology can be translated from bench to bedside. Thereafter, we use diabetes as a case study to consider how microneedle-based-technology may be successfully harnessed. Here, publications referring to insulin microneedles were evaluated to understand whether insertion efficiency, angle of insertion, successful dose delivery, dose adjustability, material biocompatibility and therapeutic stability are being addressed in early stage research. Moreover, over 3,000 patents from 1970-2019 were reviewed with the search term '"microneedle" AND "insulin"' to understand the current status of the field. In conclusion, the reporting of early stage microneedle research demonstrated a lack of consistency relating to the translational factors addressed. Additionally, a more rational design, based on a patient-centred approach is required before microneedle-based delivery systems can be used to revolutionise the lives of people living with diabetes following regulatory approval.
Collapse
|
30
|
Harpak N, Borberg E, Raz A, Patolsky F. The "Bloodless" Blood Test: Intradermal Prick Nanoelectronics for the Blood Extraction-Free Multiplex Detection of Protein Biomarkers. ACS NANO 2022; 16:13800-13813. [PMID: 36006419 PMCID: PMC9527802 DOI: 10.1021/acsnano.2c01793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Protein biomarkers' detection is of utmost importance for preventive medicine and early detection of illnesses. Today, their detection relies entirely on clinical tests consisting of painful, invasive extraction of large volumes of venous blood; time-consuming postextraction sample manipulation procedures; and mostly label-based complex detection approaches. Here, we report on a point-of-care (POC) diagnosis paradigm based on the application of intradermal finger prick-based electronic nanosensors arrays for protein biomarkers' direct detection and quantification down to the sub-pM range, without the need for blood extraction and sample manipulation steps. The nanobioelectronic array performs biomarker sensing by a rapid intradermal prick-based sampling of proteins biomarkers directly from the capillary blood pool accumulating at the site of the microneedle puncture, requiring only 2 min and less than one microliter of a blood sample for a complete analysis. A 1 mm long microneedle element was optimal in allowing for pain-free dermal sampling with a 100% success rate of reaching and rupturing dermis capillaries. Current common micromachining processes and top-down fabrication techniques allow the nanobioelectronic sensor arrays to provide accurate and reliable clinical diagnostic results using multiple sensing elements in each microneedle and all-in-one direct and label-free multiplex biomarkers detection. Preliminary successful clinical studies performed on human volunteers demonstrated the ability of our intradermal, in-skin, blood extraction-free detection platform to accurately detect protein biomarkers as a plausible POC detection for future replacement of today's invasive clinical blood tests. This approach can be readily extended in the future to detect other clinically relevant circulating biomarkers, such as miRNAs, free-DNAs, exosomes, and small metabolites.
Collapse
Affiliation(s)
- Nimrod Harpak
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Ella Borberg
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Adva Raz
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Fernando Patolsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
31
|
Cao X, Chen G. Advances in microneedles for non-transdermal applications. Expert Opin Drug Deliv 2022; 19:1081-1097. [DOI: 10.1080/17425247.2022.2118711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Wang J, Zeng J, Liu Z, Zhou Q, Wang X, Zhao F, Zhang Y, Wang J, Liu M, Du R. Promising Strategies for Transdermal Delivery of Arthritis Drugs: Microneedle Systems. Pharmaceutics 2022; 14:pharmaceutics14081736. [PMID: 36015362 PMCID: PMC9416616 DOI: 10.3390/pharmaceutics14081736] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Arthritis is a general term for various types of inflammatory joint diseases. The most common clinical conditions are mainly represented by rheumatoid arthritis and osteoarthritis, which affect more than 4% of people worldwide and seriously limit their mobility. Arthritis medication generally requires long-term application, while conventional administrations by oral delivery or injections may cause gastrointestinal side effects and are inconvenient for patients during long-term application. Emerging microneedle (MN) technology in recent years has created new avenues of transdermal delivery for arthritis drugs due to its advantages of painless skin perforation and efficient local delivery. This review summarizes various types of arthritis and current therapeutic agents. The current development of MNs in the delivery of arthritis drugs is highlighted, demonstrating their capabilities in achieving different drug release profiles through different self-enhancement methods or the incorporation of nanocarriers. Furthermore, the challenges of translating MNs from laboratory studies to the clinical practice and the marketplace are discussed. This promising technology provides a new approach to the current drug delivery paradigm in treating arthritis in transdermal delivery.
Collapse
Affiliation(s)
- Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Zeng
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai 200032, China
| | - Zhidan Liu
- Department of Rehabilitation, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Qin Zhou
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamiao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (M.L.); (R.D.)
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (M.L.); (R.D.)
| |
Collapse
|
33
|
Azizi Machekposhti S, Nguyen AK, Vanderwal L, Stafslien S, Narayan RJ. Micromolding of Amphotericin-B-Loaded Methoxyethylene-Maleic Anhydride Copolymer Microneedles. Pharmaceutics 2022; 14:pharmaceutics14081551. [PMID: 35893806 PMCID: PMC9331399 DOI: 10.3390/pharmaceutics14081551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal agent, using microneedles that were fabricated using a micromolding technique. The microneedle matrix was made from GantrezTM AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride copolymer. The GantrezTM AN-119 BF was mixed with water; after water evaporation, the polymer exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was used to determine the height and tip diameter for the microneedles. Nanoindentation was used to obtain the hardness and Young’s modulus values of the polymer. Load–displacement testing was used to assess the failure force of the needles under compressive loading. These two mechanical tests confirmed the mechanical properties of the needles. In vitro studies validated the presence of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B GantrezTM microneedles fabricated in this study showed appropriate characteristics for clinical translation in terms of mechanical properties, sharpness, and antifungal properties.
Collapse
Affiliation(s)
- Sina Azizi Machekposhti
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.M.); (A.K.N.)
| | - Alexander K. Nguyen
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.M.); (A.K.N.)
| | - Lyndsi Vanderwal
- Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA; (L.V.); (S.S.)
| | - Shane Stafslien
- Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA; (L.V.); (S.S.)
| | - Roger J. Narayan
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA; (S.A.M.); (A.K.N.)
- Correspondence:
| |
Collapse
|
34
|
Yerneni SS, Yalcintas EP, Smith JD, Averick S, Campbell PG, Ozdoganlar OB. Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater 2022; 149:198-212. [PMID: 35809788 DOI: 10.1016/j.actbio.2022.06.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Therapeutic benefits of curcumin for inflammatory diseases have been demonstrated. However, curcumin's potential as a clinical therapeutic has been hindered due to its low solubility and stability in vivo. We hypothesized that a hybrid curcumin carrier that incorporates albumin-binding and extracellular vesicle (EV) encapsulation could effectively address the current challenges of curcumin delivery. We further postulated that using dissolvable microneedle arrays (dMNAs) for local delivery of curcumin-albumin-EVs (CA-EVs) could effectively control skin inflammation in vivo. Mild sonication was used to encapsulate curcumin and albumin into EVs, and the resulting CA-EVs were integrated into tip-loaded dMNAs. In vitro and in vivo studies were performed to assess the stability, cellular uptake, and anti-inflammatory bioactivity of dMNA-delivered CA-EVs. Curcumin in CA-EVs exhibited at least five-fold higher stability in vitro than naïve curcumin or curcumin-EVs without albumin. Incorporating CA-EVs into dMNAs did not alter their cellular uptake or anti-inflammatory bioactivity. The dMNA embedded CA-EVs retained their bioactivity when stored at room temperature for at least 12 months. In rat and mice models, dMNA delivered CA-EVs suppressed and significantly reduced lipopolysaccharide and Imiquimod-triggered inflammation. We conclude that dMNA delivery of CA-EVs has the potential to become an effective local-delivery strategy for inflammatory skin diseases. STATEMENT OF SIGNIFICANCE: We introduce and evaluate a skin-targeted delivery system for curcumin that synergistically combines albumin association, extracellular-vesicle encapsulation, and dissolvable microneedle arrays (dMNAs) . In vitro, curcumin-albumin encapsulated extracellular vesicles (CA-EVs) inhibit and reverse the LPS-triggered expression of inflammatory transcription factor NF-κB. The integration of CA-EVs into dMNAs does not affect them physically or functionally. Importantly, dMNAs extend EV storage stability for at least 12 months at room temperature with minimal loss in their bioactivity. We demonstrate that dMNA delivered CA-EVs effectively block and reverse skin inflammation in vivo in mouse and rat models.
Collapse
Affiliation(s)
| | - Ezgi P Yalcintas
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason D Smith
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, PA, USA.; Neuroscience Disruptive Research Lab, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Phil G Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - O Burak Ozdoganlar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Liu RX, He YT, Liang L, Hu LF, Liu Y, Yu RX, Chen BZ, Cui Y, Guo XD. Mechanical evaluation of polymer microneedles for transdermal drug delivery: In vitro and in vivo. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Junaid MSA, Banga AK. Transdermal Delivery of Baclofen Using Iontophoresis and Microneedles. AAPS PharmSciTech 2022; 23:84. [PMID: 35288825 DOI: 10.1208/s12249-022-02232-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Baclofen, a GABAb agonist, is used in the treatment of multiple sclerosis, a neurodegenerative disease. Currently available dosage forms to deliver baclofen are through the oral and the intrathecal routes. The disadvantage of oral baclofen is that it requires administering the drug multiple times a day, owing to baclofen's short half-life. On the other hand, intrathecal baclofen pumps are invasive and cannot be an alternative to oral baclofen. Hence, there is a need to develop a dosage form that can deliver baclofen non-invasively and for an extended period at a steady rate, increasing the dosing interval. A transdermal baclofen delivery system might be the solution to this problem. Hence, this research focuses on evaluating microneedles, iontophoresis, and a combination of microneedles-iontophoresis as transdermal delivery enhancement strategies for baclofen. In vitro permeation studies were conducted on dermatomed porcine ear skin using vertical Franz diffusion cells to evaluate transdermal baclofen delivery. Anodal iontophoresis was applied at a current density of 0.5 mA/cm2, and transdermal delivery was assessed from pH 4.5 (45.51±0.76 μg/cm2) and pH 7.4 (68.84±10.13 μg/cm2) baclofen solutions. Iontophoresis enhanced baclofen delivery but failed to reach target delivery. Maltose microneedles were used to create hydrophilic microchannels on the skin, and this technique enhanced baclofen delivery by 89-fold. Both microneedles (447.88±68.06 μg/cm2) and combination of microneedles - iontophoresis (428.56±84.33 μg/cm2) reached the target delivery range (222-1184 μg/cm2) for baclofen. The findings of this research suggest that skin could be a viable route for delivery of baclofen. Graphical Abstract.
Collapse
|
37
|
Bao L, Park J, Bonfante G, Kim B. Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Deliv Transl Res 2022; 12:395-414. [PMID: 34415566 PMCID: PMC8724174 DOI: 10.1007/s13346-021-01045-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
In the past two decades, microneedles (MNs), as a painless and simple drug delivery system, have received increasing attention for various biomedical applications such as transdermal drug delivery, interstitial fluid (ISF) extraction, and biosensing. Among the various types of MNs, porous MNs have been recently researched owing to their distinctive and unique characteristics, where porous structures inside MNs with continuous nano- or micro-sized pores can transport drugs or biofluids by capillary action. In addition, a wide range of materials, including non-polymers and polymers, were researched and used to form the porous structures of porous MNs. Adjustable porosity by different fabrication methods enables the achievement of sufficient mechanical strength by optimising fluid flows inside MNs. Moreover, biocompatible porous MNs integrated with biosensors can offer portable detection and rapid measurement of biomarkers in a minimally invasive manner. This review focuses on several aspects of current porous MN technology, including material selection, fabrication processes, biomedical applications, primarily covering transdermal drug delivery, ISF extraction, and biosensing, along with future prospects as well as challenges.
Collapse
Affiliation(s)
- Leilei Bao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- LIMMS/CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
38
|
Swellable microneedles based transdermal drug delivery: Mathematical model development and numerical experiments. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Nguyen TT, Nguyen TTD, Tran NMA, Nguyen HT, Vo GV. Microneedles enable the development of skin-targeted vaccines against coronaviruses and influenza viruses. Pharm Dev Technol 2021; 27:83-94. [PMID: 34802372 DOI: 10.1080/10837450.2021.2008967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Throughout the COVID-19 pandemic, many have seriously worried that the plus burden of seasonal influenza that might create a destructive scenario, resulting in overwhelmed healthcare capacities and onwards loss of life. Many efforts to develop a safe and efficacious vaccine to prevent infection by coronavirus and influenza, highlight the importance of vaccination to combat infectious pathogens. While vaccines are traditionally given as injections into the muscle, microneedle (MN) patches designed to precisely deliver cargos into the cutaneous microenvironment, rich in immune cells, provide a noninvasive and self-applicable vaccination approach, reducing overall costs and improving access to vaccines in places with limited supply. The current review aimed to highlight advances in research on the development of MNs-mediated cutaneous vaccine delivery. Concluding remarks and challenges on MNs-based skin immunization are also provided to contribute to the rational development of safe and effective MN-delivered vaccines against these emerging infectious diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
40
|
Valdivia-Olivares RY, Rodriguez-Fernandez M, Álvarez-Figueroa MJ, Kalergis AM, González-Aramundiz JV. The Importance of Nanocarrier Design and Composition for an Efficient Nanoparticle-Mediated Transdermal Vaccination. Vaccines (Basel) 2021; 9:vaccines9121420. [PMID: 34960166 PMCID: PMC8705631 DOI: 10.3390/vaccines9121420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that the pandemic caused by the SARS-CoV-2 virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance of vaccination programs and the urgency of working on new technologies that allow an efficient, safe, and effective immunization. From this perspective, nanomedicine has provided novel tools for the design of the new generation of vaccines. Among the challenges of the new vaccine generations is the search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and low acceptance in the population associated with the parenteral route. Along these lines, transdermal immunization has been raised as a promising alternative for antigen delivery and vaccination based on a large absorption surface and an abundance of immune system cells. These features contribute to a high barrier capacity and high immunological efficiency for transdermal immunization. However, the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical forms for transdermal antigen delivery. This review addresses the biological bases for transdermal immunomodulation and the technological advances in the field of nanomedicine, from the passage of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an emphasis on the importance of design and composition towards the new generation of needle-free nanometric transdermal systems.
Collapse
Affiliation(s)
- Rayen Yanara Valdivia-Olivares
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins No. 340, Santiago 7810000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| |
Collapse
|
41
|
Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, Wen P. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res 2021; 12:2403-2427. [PMID: 34671948 PMCID: PMC8528479 DOI: 10.1007/s13346-021-01077-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus is a metabolic disease manifested by hyperglycemia. For patients with type 1 and advanced type 2 diabetes mellitus, insulin therapy is essential. Subcutaneous injection remains the most common administration method. Non-invasive insulin delivery technologies are pursued because of their benefits of decreasing patients' pain, anxiety, and stress. Transdermal delivery systems have gained extensive attention due to the ease of administration and absence of hepatic first-pass metabolism. Microneedle (MN) technology is one of the most promising tactics, which can effectively deliver insulin through skin stratum corneum in a minimally invasive and painless way. This article will review the research progress of MNs in insulin transdermal delivery, including hollow MNs, dissolving MNs, hydrogel MNs, and glucose-responsive MN patches, in which insulin dosage can be strictly controlled. The clinical studies about insulin delivery with MN devices have also been summarized and grouped based on the study phase. There are still several challenges to achieve successful translation of MNs-based insulin therapy. In this review, we also discussed these challenges including safety, efficacy, patient/prescriber acceptability, manufacturing and scale-up, and regulatory authority acceptability.
Collapse
Affiliation(s)
- Jing Zhao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Genying Xu
- Department of Pharmacy, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Xin Yao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Huirui Zhou
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Boyang Lyu
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Shuangshuang Pei
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Ping Wen
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road Zhangjiang Hi-Tech Park , Shanghai, 200120 China
| |
Collapse
|
42
|
Ziaeifar E, Ziaeifar F, Mozafarpoor S, Goodarzi A. Applications of microneedling for various dermatologic indications with a special focus on pigmentary disorders: A comprehensive review study. Dermatol Ther 2021; 34:e15159. [PMID: 34657363 DOI: 10.1111/dth.15159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Microneedling can accelerate skin repair through numerous complex processes triggered by micro-injuries it produces on the skin surface with very thin needles. The current growth in the application of microneedling in the treatment of cutaneous diseases can be explained by its numerous effects on the skin as reported in the literature. Despite the numerous studies conducted on the application of microneedling in the treatment of skin lesions, its effects on pigmented skin lesions have remained relatively unexplored. The present review comprises an examination of the evidence for the application of microneedling in skin diseases in general and a comprehensive review of the applications of microneedling in pigmentation disorders. The review involved a search of all clinical studies, including trials, case reports, and case series, in the databases MEDLINE/PubMed and Google Scholar using the following keywords: "microneedling," "dermal needling," "percutaneous collagen induction," "skin needling," "dermaroller," and "dermatology disorder." Pertinent data were extracted from all relevant articles published from 1990 to April 2021, and focused on the application of microneedling in the treatment of pigmented skin lesions. Despite the limited number of available studies, evidence suggests the effectiveness and safety of microneedling in treating vitiligo, melasma, and periorbital hypermelanosis. It is noteworthy that the combination of any type of non-aggressive needing technique with other effective therapies (especially topical agents and mesotherapy) yields more promising therapeutic results than single therapy for melasma, dark cycles, and vitiligo as the prototype of pigmentary disorders. However, single needling therapy is significantly effective, too.
Collapse
Affiliation(s)
- Elham Ziaeifar
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine، Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Ziaeifar
- Department of General Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samaneh Mozafarpoor
- Department of Dermatology, Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine، Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
43
|
|
44
|
Singh V, Kesharwani P. Recent advances in microneedles-based drug delivery device in the diagnosis and treatment of cancer. J Control Release 2021; 338:394-409. [PMID: 34481019 DOI: 10.1016/j.jconrel.2021.08.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Microneedles are unique, novel and an effective approach designed to deliver therapeutic agents and immunobiologicals in several diseases. These tiny needle patches are designed to load vaccine, small or large drug molecule, heavy molecular weighted proteins, genes, antibodies, nanoparticles and many more. These nanoparticles loaded microneedles deliver drugs deep within the skin near underlying neutrophils, langerhans and dendritic cells and induces required immunological response. With the drawbacks associated with conventional methods of cancer chemotherapy, the focus was shifted towards use of microneedles in not just anti-cancer vaccine/drug delivery but also for their early diagnosis. This delivery device is also suited for synergistic approaches such as chemotherapy or gene therapy combined with photothermal or photodynamic therapy. The painless self-administrative device offers an alternative over traditional routes of drug delivery including systemic administration via hypodermic needles. Additionally, these microneedles can be fabricated and altered in shape, size and geometry and the material polymer can be chosen depending on use and release mechanism. This review consolidates positive results obtained from studies done for different type of microneedle array in several tumor cell lines and animal models. It further highlights the use of biodegradable polymers such as hydrogel or any dissolving polymer that can be utilized for sustained codelivery of drug/vaccine to shun the need of multiple dosing. It covers the existing limitations that still needs to be resolved and further highlights on the future aspects of their use in cancer therapy.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
45
|
Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Deliv Rev 2021; 177:113931. [PMID: 34416311 DOI: 10.1016/j.addr.2021.113931] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Ingestible smart pills have the potential to be a powerful clinical tool in the diagnosis and treatment of gastrointestinal disease. Though examples of this technology, such as capsule endoscopy, have been successfully translated from the lab into clinically used products, there are still numerous challenges that need to be overcome. This review gives an overview of the research being done in the area of ingestible smart pills and reports on the technical challenges in this field.
Collapse
|
46
|
Advances of Microneedles in Biomedical Applications. Molecules 2021; 26:molecules26195912. [PMID: 34641460 PMCID: PMC8512585 DOI: 10.3390/molecules26195912] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.
Collapse
|
47
|
Liu Y, Yu Q, Luo X, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. MICROSYSTEMS & NANOENGINEERING 2021; 7:75. [PMID: 34631143 PMCID: PMC8481261 DOI: 10.1038/s41378-021-00302-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 05/14/2023]
Abstract
Diabetes is a prevalent chronic metabolic disease with multiple clinical manifestations and complications, and it is among the leading causes of death. Painless and continuous monitoring of interstitial glucose is highly desirable for diabetes management. Here we unprecedentedly show continuous monitoring of diabetes with an integrated microneedle biosensing device. The device was manufactured with a 3D printing process, a microfabrication process, an electroplating process, and an enzyme immobilization step. The device was inserted into the dermis layer of mouse skin and showed accurate sensing performance for monitoring subcutaneous glucose levels in normal or diabetic mice. The detection results were highly correlated with those obtained from a commercial blood glucose meter. We anticipate that the study could open exciting avenues for monitoring and managing diabetes, alongside fundamental studies of subcutaneous electronic devices.
Collapse
Affiliation(s)
- Yiqun Liu
- School of Materials Science and Engineering, Peking University, 100871 Beijing, P. R. China
| | - Qi Yu
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, 100034 Beijing, P. R. China
| | - Xiaojin Luo
- School of Materials Science and Engineering, Peking University, 100871 Beijing, P. R. China
| | - Li Yang
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, 100034 Beijing, P. R. China
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, 100871 Beijing, P. R. China
| |
Collapse
|
48
|
Tu J, Gao W. Ethical Considerations of Wearable Technologies in Human Research. Adv Healthc Mater 2021; 10:e2100127. [PMID: 33870653 PMCID: PMC8429072 DOI: 10.1002/adhm.202100127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Indexed: 01/07/2023]
Abstract
Wearable technologies hold great promise for disease diagnosis and patient care. Despite the flourishing research activities in this field, only a handful of wearable devices are commercialized and cleared for medical usage. The successful translation of current proof-of-concept prototypes requires extensive in-human testing. There is a lag between current standards and operation protocols to guide the responsible and ethical conduct of researchers in such in-human studies and the rapid development of the field. This essay presents relevant ethical concerns in early-stage human research from a researcher's perspective.
Collapse
Affiliation(s)
- Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, United States
| |
Collapse
|
49
|
Bhadale RS, Londhe VY. A systematic review of carbohydrate-based microneedles: current status and future prospects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:89. [PMID: 34331594 PMCID: PMC8325649 DOI: 10.1007/s10856-021-06559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 06/01/2023]
Abstract
Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
50
|
Feng YH, Zhang XP, Hu LF, Chen BZ, Guo XD. Mesoscopic Simulation for the Effect of Cross-Linking Reactions on the Drug Diffusion Properties in Microneedles. J Chem Inf Model 2021; 61:4000-4010. [PMID: 34319097 DOI: 10.1021/acs.jcim.1c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The drug diffusion issue in microneedles is the focus of its medical application. It will not only affect the distribution of drugs in the needle body but will also have an impact on the drug release performance of the microneedle. The utilization of cross-linked polymer materials to obtain the drug diffusion control has been experimentally verified as a feasible method. However, the mechanism research on the molecular level is still incomplete. In this study, the dissipative particle dynamics (DPD) simulation has been applied to study the effect of the cross-linking reaction on drug diffusion in hyaluronic acid microneedles. We have discovered that when the cross-linking degree reaches 90%, the diffusion coefficient of the drug is 6.45 times lower than that of the uncross-linked system. The main reason for the decline in drug diffusion ability is that the cross-linking reaction varies the conformation of the polymer. The amplification in the cross-linking degree makes the polymer coils more compact and approach each other, finally forming a continuously distributed cross-linked network, which reduces its degradation rate in the body. Simultaneously, these cross-linked networks can also hinder the interaction of soluble drugs with water, thereby preventing the premature release of drugs. The simulation results are consistent with the data collected in the previous microneedle experiment. This work will be an extension of DPD simulation in the application of biological materials.
Collapse
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liu Fu Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|