1
|
Saiprasad G, Chitra P, Manikandan R, Koodalingam A, Sudhandiran G. Hesperetin regulates PI3K/Akt and mTOR pathways to exhibit its antiproliferative effect against colon cancer cells. Biotech Histochem 2024:1-18. [PMID: 39172499 DOI: 10.1080/10520295.2024.2382764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Hesperetin, a citrus flavonoid, has been a widely studied anticancer agent against many types of cancers, but the exact mechanism of efficacy is still unrevealed. Therefore, this study has attempted to delineate the mechanical aspect of hesperetin's anticancer efficacy against colon cancer using immunoblotting, scanning, and transmission electron microscopic studies. The treatment with hesperetin (25 and 50 µM) has significantly (p < 0.0001) curbed down the proliferation and cell viability of HCT-15 cells in a concentration as well as time dependent manner. Hesperetin was able to achieve this through the induction of caspase-dependent apoptosis. Moreover, hesperetin effectively inhibited phosphorylation of Akt with a parallel increase in PTEN expression thereby inhibiting the PI3K signaling axis, which contributes to the suppression of proliferation. In addition, hesperetin enhanced autophagy through dephosphorylating mTOR, one of the downstream targets of Akt with simultaneous acceleration in Beclin-1 and LC3-II expression levels. Interestingly, hesperetin enhanced the effects of Akt inhibitor LY294002 and mTOR inhibitor rapamycin. This study documented the potential of hesperetin to induce apoptosis through simultaneous acceleration over the autophagic process in colon cancer cells. Thus, hesperetin played a beneficial therapeutic role in preventing colon carcinoma growth by regulating the Akt and mTOR signaling axis.
Collapse
Affiliation(s)
- Gowrikumar Saiprasad
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| | - Palanivel Chitra
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| | | | | | - Ganaspasam Sudhandiran
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Chennai, India
| |
Collapse
|
2
|
Cazacu N, Chilom CG. Modulation of the structural and functional properties of α1-antitrypsin by interaction with flavonoid luteolin. J Biomol Struct Dyn 2023; 41:7884-7891. [PMID: 36184736 DOI: 10.1080/07391102.2022.2127909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 10/07/2022]
Abstract
α1-antitrypsin (A1AT) is a circulating serine protease inhibitor and an acute phase reactant, the deficiency of which can lead to liver failure and chronic lung disease. Flavonoid treatment may induce changes in α1-antitrypsin production in some human cells. The purpose of this study is to investigate the properties of the A1AT protein that interacts with the flavonoid luteolin, which exhibits numerous properties, including antioxidant properties. For this purpose, multi-spectroscopic (UV-Vis spectroscopy, fluorescence and FRET) methods and molecular docking were used. The intrinsic fluorescence of A1AT was quenched by luteolin through a static mechanism. Luteolin binds to one site of the A1AT protein, with a moderate binding constant, and the binding process was driven by entropy and hydrophobic interactions. Hydrophobicity around Trp decreased as a result of luteolin binding to the A1AT site and FRET occurred at a distance of 3.11 nm. Under the action of temperature, the stability of A1AT structure was decreased by the presence of luteolin. Molecular docking confirmed that luteolin binds to one site, with a moderate affinity. The results would give a better understanding of the functional changes that occurred in the structure of A1AT induced by luteolin binding, which may have implications in the field of pharmaceutical research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
3
|
Ai Y, Zhao Z, Wang H, Zhang X, Qin W, Guo Y, Zhao M, Tang J, Ma X, Zeng J. Pull the plug: Anti‐angiogenesis potential of natural products in gastrointestinal cancer therapy. Phytother Res 2022; 36:3371-3393. [PMID: 35871532 DOI: 10.1002/ptr.7492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yanling Ai
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hengyi Wang
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Weihan Qin
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Yanlei Guo
- Institute of Medicinal Chemistry of Chinese Medicine Chongqing Academy of Chinese Materia Medica Chongqing China
| | - Maoyuan Zhao
- Department of Oncology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Department of Geriatrics Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
4
|
Chen L, Chang S, Zhao L, Li B, Zhang S, Yun C, Wu X, Meng J, Li G, Guo S, Duan J. Biosynthesis of a water solubility-enhanced succinyl glucoside derivative of luteolin and its neuroprotective effect. Microb Biotechnol 2022; 15:2401-2410. [PMID: 35730125 PMCID: PMC9437877 DOI: 10.1111/1751-7915.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
The natural flavonoids luteolin and luteoloside have anti-bacterial, anti-inflammatory, anti-oxidant, anti-tumour, hypolipidemic, cholesterol lowering and neuroprotective effects, but their poor water solubility limits their application in industrial production and the pharmaceutical industry. In this study, luteolin-7-O-β-(6″-O-succinyl)-d-glucoside, a new compound that was prepared by succinyl glycosylation of luteolin by the organic solvent tolerant bacterium Bacillus amyloliquefaciens FJ18 in an 8.0% DMSO (v/v) system, was obtained and identified. Its greater water solubility (2293 times that of luteolin and 12 232 times that of luteoloside) provides the solution to the application problems of luteolin and luteoloside. The conversion rate of luteolin (1.0 g l-1 ) was almost 100% at 24 h, while the yield of luteolin-7-O-β-(6″-O-succinyl)-d-glucoside reached 76.2%. In experiments involving the oxygen glucose deprivation/reoxygenation injury model of mouse hippocampal neuron cells, the cell viability was significantly improved with luteolin-7-O-β-(6″-O-succinyl)-d-glucoside dosing, and the expressions of the anti-oxidant enzyme HO-1 in the nucleus increased, providing a neuroprotective effect for ischemic cerebral cells. The availability of biosynthetic luteolin-7-O-β-(6″-O-succinyl)-d-glucoside, which is expected to replace luteolin and luteoloside, would effectively expand the clinical application value of luteolin derivatives.
Collapse
Affiliation(s)
- Liangliang Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Siyuan Chang
- College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing, 210048, Jiangsu, China
| | - Lin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Bingfeng Li
- College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing, 210048, Jiangsu, China
| | - Sen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Chenke Yun
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Xiao Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Jingyi Meng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Guoqing Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Sheng Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Jinao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
5
|
Shi ML, Chen YF, Wu WQ, Lai Y, Jin Q, Qiu WL, Yu DL, Li YZ, Liao HF. Luteolin inhibits the proliferation, adhesion, migration and invasion of choroidal melanoma cells in vitro. Exp Eye Res 2021; 210:108643. [PMID: 34058231 DOI: 10.1016/j.exer.2021.108643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Choroidal melanoma is a devastating disease that causes visual loss and a high mortality rate due to metastasis. Luteolin, a potential anticancer compound, is widely found in natural plants. The aim of this study was to evaluate the antiproliferative, antiadhesive, antimigratory and anti-invasive effects of luteolin on choroidal melanoma cells in vitro and to explore its potential mechanism. Cell counting kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) assays, Cell adhesion, migration, and invasion assays were performed to examine the inhibitory effects of luteolin on cell cell viability, proliferation, adhesion, migration and invasion capacities, respectively. Considering the correlation between Matrix metalloenzymes and tumor metastasis, Enzyme-linked immunosorbent assays (ELISAs) were used to assess matrix metalloproteases MMP-2 and MMP-9 secretion. Western blotting was performed to detect p-PI3K P85, Akt, and p-Akt protein expression. The cytoskeletal proteins vimentin were observed with cell immunofluorescence staining. Luteolin can inhibit OCM-1 cell proliferation, migration, invasion and adhesion and C918 cell proliferation, migration, and invasion through the PI3K/Akt signaling pathway. Therefore, Luteolin may have potential as a therapeutic medication for Choroidal melanoma.
Collapse
Affiliation(s)
- Meng-Lin Shi
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Province Blood Center, Nanchang, 330052, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China
| | - Yu-Fen Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Wei-Qi Wu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yao Lai
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qi Jin
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Wan-Lu Qiu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Dong-Lian Yu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yi-Zhong Li
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Hong-Fei Liao
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
6
|
Anti-fatigue activity of hemp leaves water extract and the related biochemical changes in mice. Food Chem Toxicol 2021; 150:112054. [DOI: 10.1016/j.fct.2021.112054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
|
7
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Moon SJ, Lee CH, Lee DY. Systems Pharmacology Study of the Anticervical Cancer Mechanisms of FDY003. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing data support that herbal medicines are beneficial in the treatment of cervical cancer; however, their mechanisms of action remain to be elucidated. In the current study, we used a systems pharmacology approach to explore the pharmacological mechanisms of FDY003, an anticancer herbal formula comprising Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris (Linn.) Link, in the treatment of cervical cancer. Through the pharmacokinetic assessment of absorption-distribution-metabolism-excretion characteristics, we found 18 active compounds that might interact with 106 cervical cancer-related targets responsible for the pharmacological effects. FDY003 targets were significantly associated with gene ontology terms related to the regulation of cellular behaviors, including cell proliferation, cell cycle processes, cell migration, cell apoptosis, cell death, and angiogenesis. The therapeutic targets of the herbal drug were further enriched in various oncogenic pathways that are implicated in the tumorigenesis and progression of cervical cancer, including the phosphatidylinositol 3-kinase, mitogen-activated protein kinase, focal adhesion, human papillomavirus infection, and tumor necrosis factor signaling pathways. Our study provides a systematic approach to explore the anticancer properties of herbal medicines against cervical cancer.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | | | - Chol Hee Lee
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Iqbal Z, Joshi A, Ranjan De S. Recent Advancements on Transition‐Metal‐Catalyzed, Chelation‐Induced
ortho
‐Hydroxylation of Arenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000762] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zafar Iqbal
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Asha Joshi
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| |
Collapse
|
9
|
Gupta J, Sharma S, Sharma NR, Kabra D. Phytochemicals enriched in spices: a source of natural epigenetic therapy. Arch Pharm Res 2019; 43:171-186. [DOI: 10.1007/s12272-019-01203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
|
10
|
|
11
|
Cavalcanti ÉB, Félix MB, Scotti L, Scotti MT. Virtual Screening of Natural Products to Select Compounds with Potential Anticancer Activity. Anticancer Agents Med Chem 2019; 19:154-171. [DOI: 10.2174/1871520618666181119110934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 03/21/2018] [Indexed: 12/28/2022]
Abstract
Cancer is the main cause of death, so the search for active agents to be used in the therapy of this
disease, is necessary. According to studies conducted, substances derived from natural products have shown to
be promising in this endeavor. To these researches, one can associate with the aid of computational chemistry,
which is increasingly gaining popularity, due to the possibility of developing alternative strategies that could
help in choosing an appropriate set of compounds, avoiding unnecessary expenses with resources that would
generate unwanted substance. Thus, the objective of this study was to carry out an approach to several studies
that apply different methods of virtual screening to select natural products with potential anticancer activity.
This review presents reports of studies conducted with some natural products, such as coumarin, quinone, tannins,
alkaloids, flavonoids and terpenes.
Collapse
Affiliation(s)
- Élida B.V.S. Cavalcanti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Mayara B. Félix
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Marcus T. Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
12
|
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 2018; 17:48. [PMID: 29455673 PMCID: PMC5817855 DOI: 10.1186/s12943-018-0804-2] [Citation(s) in RCA: 728] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Naiara Orrego Lagarón
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Science, University of Technology, New South Wales, Australia
| | - Indu Parmar
- Division of Product Development, Radient Technologies, Edmonton, AB, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
13
|
Wang Z, Lan Y, Chen M, Wen C, Hu Y, Liu Z, Ye L. Eriodictyol, Not Its Glucuronide Metabolites, Attenuates Acetaminophen-Induced Hepatotoxicity. Mol Pharm 2017; 14:2937-2951. [DOI: 10.1021/acs.molpharmaceut.7b00345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhaoyu Wang
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Lan
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - MingHao Chen
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cailing Wen
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxian Hu
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongqiu Liu
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- International
Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China, 510006
| | - Ling Ye
- State
Key Laboratory of Organ Failure Research, Guangdong Provincial Key
Laboratory of New Drug Screening, department of biopharmaceutics,
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Zheng S, Cheng Y, Teng Y, Liu X, Yu T, Wang Y, Liu J, Hu Y, Wu C, Wang X, Liu Y, You C, Gao X, Wei Y. Application of luteolin nanomicelles anti-glioma effect with improvement in vitro and in vivo. Oncotarget 2017; 8:61146-61162. [PMID: 28977853 PMCID: PMC5617413 DOI: 10.18632/oncotarget.18019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant tumor. Luteolin, a polyphenolic compound, has been proposed to have anti-tumor activity against various cancers. However, the greatest obstacle in the administration of luteolin is its hydrophobicity as well as the low oral bioavailability. In this study, we formulated luteolin-loaded MPEG-PCL (Luteolin/MPEG-PCL) micelles aiming to improve its solubility in aqueous solution and investigate the anti-tumor effect on glioma in vitro and in vivo. The spherical Luteolin/MPEG-PCL micelles were completely dispersible in normal saline and could release luteolin in a sustained manner in vitro. We demonstrated that Luteolin/MPEG-PCL micelles had stronger cytotoxicity and induced a higher percentage of apoptosis in C6 and U87 cells than free luteolin in vitro. The immunohistochemical study revealed that Luteolin/MPEG-PCL micelles induced more glioma cell apoptosis than free luteolin and inhibited neovascularization in tumor tissues. The Pro-caspase9 and Bcl-2 down-regulation and cleaved-caspase9 and Bax up-regulation suggested that luteolin induced apoptosis via the mitochondrial pathway in vitro. What is more, we found the drug could cumulated much more in the nano-drug group than free drug group through imaging in vivo. In conclusion, the Luteolin/MPEG-PCL micelles have the potential clinical application in glioma chemotherapy.
Collapse
Affiliation(s)
- Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yan Teng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiaoxiao Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ting Yu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yi Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Jiagang Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Cong Wu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiang Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yanhui Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Chao You
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yuquan Wei
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|
15
|
Effect of luteolin on inflammatory responses in RAW264.7 macrophages activated with LPS and IFN-γ. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Selvi RB, Swaminathan A, Chatterjee S, Shanmugam MK, Li F, Ramakrishnan GB, Siveen KS, Chinnathambi A, Zayed ME, Alharbi SA, Basha J, Bhat A, Vasudevan M, Dharmarajan A, Sethi G, Kundu TK. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model. Oncotarget 2016; 6:43806-18. [PMID: 26517526 PMCID: PMC4791268 DOI: 10.18632/oncotarget.6245] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.
Collapse
Affiliation(s)
- Ruthrotha B Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Amrutha Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Snehajyoti Chatterjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gowsica B Ramakrishnan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - M Emam Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jeelan Basha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | - Akshay Bhat
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| | | | - Arunasalam Dharmarajan
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Jakkur, Bangalore, India
| |
Collapse
|
17
|
Fan Y, Lu H, Ma H, Feng F, Hu X, Zhang Q, Wang J, Xu Y, Zhao Q. Bioactive compounds of Eriocaulon sieboldianum blocking proliferation and inducing apoptosis of HepG2 cells might be involved in Aurora kinase inhibition. Food Funct 2016; 6:3746-59. [PMID: 26369427 DOI: 10.1039/c5fo00371g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eriocaulon sieboldianum (Sieb. & Zucc. ex Steud.) is an edible and medicinal plant used in traditional Chinese medicine. Often in combination with other herbs, it is processed into healthcare beverages for expelling wind-heat, protecting eyes, and reducing blood lipids. Besides, its water decoction together with other herbs has been utilized to treat cancer in China. However, the active ingredients and the precise cellular mechanisms of E. sieboldianum remain to be elucidated. The Aurora kinase family plays critical roles in the regulation of cell division and has attracted great attention to the identification of small-molecule Aurora kinase inhibitors for potential treatment of cancer. A molecular docking study was employed for docking of the most bioactive compounds. Hispidulin (HPDL) and quercetin-3-O-(6''-O-galloyl)-β-D-galactopyranoside (QGGP) were singled out as potent inhibitors of Aurora kinase. Their inhibitory activity towards Aurora kinase was further confirmed by the obvious decrease in autophosphorylation of Aurora-A (Thr288) and Aurora-B (Thr232). Moreover, the induction of cell cycle arrest in HepG2 cells and the suppressed phosphorylation of histone H3 were also consistent with the inhibition of Aurora kinase. The data indicate that the E. sieboldianum extract and its two active compounds, HPDL and QGGP, could effectively induce apoptosis via p53, MAPKs and the mitochondrial apoptotic pathways. These findings could improve the understanding and enhance the development of drugs based on E. sieboldianum and raise its application value in anticancer therapy or prevention. In addition, our results indicated that Aurora kinase might be a novel target of HPDL and QGGP.
Collapse
Affiliation(s)
- Yanhua Fan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Hongyuan Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Hongda Ma
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Xiaolong Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Qiao Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| | - Jian Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yongnan Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China. and Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| |
Collapse
|
18
|
Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant Cell Cancer: May Natural Phenolic Compounds Prevent Onset and Development of Plant Cell Malignancy? A Literature Review. Molecules 2016; 21:E1104. [PMID: 27563858 PMCID: PMC6274315 DOI: 10.3390/molecules21091104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
Phenolic compounds (PCs) are known as a chemically diverse category of secondary and reactive metabolites which are produced in plants via the shikimate-phenylpropanoid pathways. These compounds-ubiquitous in plants-are an essential part of the human diet, and are of considerable interest due to their antioxidant properties. Phenolic compounds are essential for plant functions, because they are involved in oxidative stress reactions, defensive systems, growth, and development. A large body of cellular and animal evidence carried out in recent decades has confirmed the anticancer role of PCs. Phytohormones-especially auxins and cytokinins-are key contributors to uncontrolled growth and tumor formation. Phenolic compounds can prevent plant growth by the endogenous regulation of auxin transport and enzymatic performance, resulting in the prevention of tumorigenesis. To conclude, polyphenols can reduce plant over-growth rate and the development of tumors in plant cells by regulating phytohormones. Future mechanistic studies are necessary to reveal intracellular transcription and transduction agents associated with the preventive role of phenolics versus plant pathological malignancy cascades.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Mohammad Hosein Farzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Sara Mohammadzadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714967346, Iran.
| |
Collapse
|
19
|
Fan Y, Lu H, An L, Wang C, Zhou Z, Feng F, Ma H, Xu Y, Zhao Q. Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:13-20. [PMID: 26923230 DOI: 10.1016/j.etap.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Eriocaulon sieboldianum (Sieb. & Zucc. ex Steud.), a genus of Eriocaulon in the Eriocaulaceae family, is an edible and medicinal plant used in traditional Chinese medicine. It was processed into healthcare beverages for expelling wind-heat, protecting eyes, and reducing blood fat. Also, it has been used with other herbs as Traditional Chinese herbal compound to treat cancer as adjuvants in tumor therapy in China. However, the active fractions and precise cellular mechanisms of E. sieboldianum extract remain to be illustrated. The goal of this study was to investigate the effects of the active fraction of E. sieboldianum on the growth of K562 cells and understand the possible mechanisms of its action. Our findings suggested that the fraction E3 of E. sieboldianum could effectively inhibit the activity of Aurora kinase and induce apoptosis via blocking cell cycle, up-regulating the expression of proapoptotic proteins including p53 and Bax and reducing the expression of Bcl-2. The levels of Cytochrome C, cleaved caspase-9, cleaved caspase-3 and cleaved PARP were also found to be increased after treatment with fraction E3 of E. sieboldianum. This study could improve the development of E. sieboldianum and raise its application value in cancer adjuvant therapy. Considering it is both a dietary supplement and a traditional Chinese herbal medicine which exhibits anticancer activities, it can be developed into functional food.
Collapse
Affiliation(s)
- Yanhua Fan
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyuan Lu
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li An
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Changli Wang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Zhipeng Zhou
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Hongda Ma
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Yongnan Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| |
Collapse
|
20
|
Chakrabarti M, Ray SK. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells. Brain Res 2015; 1629:85-93. [DOI: 10.1016/j.brainres.2015.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
|
21
|
Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, Nabavi SM. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015; 119:1-11. [PMID: 26361743 DOI: 10.1016/j.brainresbull.2015.09.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
According to the World Health Organization, two billion people will be aged 60 years or older by 2050. Aging is a major risk factor for a number of neurodegenerative disorders. These age-related disorders currently represent one of the most important and challenging health problems worldwide. Therefore, much attention has been directed towards the design and development of neuroprotective agents derived from natural sources. These phytochemicals have demonstrated high efficacy and low adverse effects in multiple in vitro and in vivo studies. Among these phytochemicals, dietary flavonoids are an important and common chemical class of bioactive products, found in several fruits and vegetables. Luteolin is an important flavone, which is found in several plant products, including broccoli, pepper, thyme, and celery. Numerous studies have shown that luteolin possesses beneficial neuroprotective effects both in vitro and in vivo. Despite this, an overview of the neuroprotective effects of luteolin has not yet been accomplished. Therefore, the aim of this paper is to provide a review of the available literature regarding the neuroprotective effects of luteolin and its molecular mechanisms of action. Herein, we also review the available literature regarding the chemistry of luteolin, its herbal sources, and bioavailability as a pharmacological agent for the treatment and management of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostel, 15782 Santiago de Compostela, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Sak K. Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac J Cancer Prev 2015; 15:8007-19. [PMID: 25338977 DOI: 10.7314/apjcp.2014.15.19.8007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is the most common gynecologic malignancy worldwide and development of new therapeutic strategies and anticancer agents is an urgent priority. Plants have remained an important source in the search for novel cytotoxic compounds and several polyphenolic flavonoids possess antitumor properties. In this review article, data about potential anticarcinogenic activity of common natural flavonoids on various human cervical cancer cell lines are compiled and analyzed showing perspectives for the use of these secondary metabolites in the treatment of cervical carcinoma as well as in the development of novel chemotherapeutic drugs. Such anticancer effects of flavonoids seem to differentially depend on the cellular type and origin of cervical carcinoma creating possibilities for specific targeting in the future. Besides the cytotoxic activity per se, several flavonoids can also contribute to the increase in efficacy of conventional therapies rendering tumor cells more sensitive to standard chemotherapeutics and irradiation. Although the current knowledge is still rather scarce and further studies are certainly needed, it is clear that natural flavonoids may have a great potential to benefit cervical cancer patients.
Collapse
|
23
|
Kim K, Choe H, Jeong Y, Lee JH, Hong S. Ru(II)-Catalyzed Site-Selective Hydroxylation of Flavone and Chromone Derivatives: The Importance of the 5-Hydroxyl Motif for the Inhibition of Aurora Kinases. Org Lett 2015; 17:2550-3. [DOI: 10.1021/acs.orglett.5b01138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kiho Kim
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Hyeonjeong Choe
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Yujeong Jeong
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Jun Hee Lee
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sungwoo Hong
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| |
Collapse
|
24
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
25
|
Jung Y, Shin SY, Yong Y, Jung H, Ahn S, Lee YH, Lim Y. Plant-Derived Flavones as Inhibitors of Aurora B Kinase and Their Quantitative Structure-Activity Relationships. Chem Biol Drug Des 2014; 85:574-85. [DOI: 10.1111/cbdd.12445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/12/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yearam Jung
- Division of Bioscience and Biotechnology; BMIC; Konkuk University; Seoul 143-701 Korea
| | - Soon Young Shin
- Department of Biological Sciences; Konkuk University; Seoul 143-701 Korea
| | - Yeonjoong Yong
- Division of Bioscience and Biotechnology; BMIC; Konkuk University; Seoul 143-701 Korea
| | - Hyeryoung Jung
- Division of Bioscience and Biotechnology; BMIC; Konkuk University; Seoul 143-701 Korea
| | - Seunghyun Ahn
- Division of Bioscience and Biotechnology; BMIC; Konkuk University; Seoul 143-701 Korea
| | - Young Han Lee
- Department of Biological Sciences; Konkuk University; Seoul 143-701 Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology; BMIC; Konkuk University; Seoul 143-701 Korea
| |
Collapse
|
26
|
Xie F, Zhu H, Zhang H, Lang Q, Tang L, Huang Q, Yu L. In vitro and in vivo characterization of a benzofuran derivative, a potential anticancer agent, as a novel Aurora B kinase inhibitor. Eur J Med Chem 2014; 89:310-9. [PMID: 25462247 DOI: 10.1016/j.ejmech.2014.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Abstract
Aurora B is a serine/threonine kinase that has a key role in mitosis and is overexpressed in cancer cells. Aberrations in Aurora B are highly correlated with tumorigenesis and cancer development, so many studies have focused on the development of Aurora B kinase inhibitors. Based on one of our previous high-throughput screening studies, we identified lead compound S6, a small-molecule benzofuran derivative that binds Aurora B and inhibits its kinase activity in vitro. S6 also displayed high selectivity for Aurora B inhibition. The cytotoxicity of S6 was assessed against a panel of 21 cancer cell lines. The cervical cancer cell line HeLa, liver cancer cell line HepG2 and colon cancer cell line SW620 were the most sensitive to S6 treatment. We found that S6 decreased the proliferation and colony formation of these three cell lines and elevated their percentages of cells in the G2/M phase of the cell cycle. S6 also inhibited phospho-histone H3 on Ser 10, a natural biomarker of endogenous Aurora B activity. The growth suppression of liver cancer QGY-7401 xenograft tumors was observed in nude mice after S6 administration, and this effect was accompanied by the in vivo inhibition of phospho-histone H3 (Ser 10). Taken together, we conclude that targeting Aurora B with compound S6 may be a novel strategy for cancer treatment, and additional studies are warranted.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Hengrui Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China; Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Haoxing Zhang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA; College of Life Sciences, Southwest University, Chongqing, PR China
| | - Qingyu Lang
- Abbott Shanghai R&D Center, Shanghai, PR China
| | - Lisha Tang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
27
|
Kim YS, Kim SH, Shin J, Harikishore A, Lim JK, Jung Y, Lyu HN, Baek NI, Choi KY, Yoon HS, Kim KT. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1. PLoS One 2014; 9:e109655. [PMID: 25310002 PMCID: PMC4195671 DOI: 10.1371/journal.pone.0109655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/02/2014] [Indexed: 12/02/2022] Open
Abstract
Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Ye Seul Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jong-Kwan Lim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ha-Na Lyu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Nam-In Baek
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, Republic of Korea
| | - Kwan Yong Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Zhu XP, Liu ZL, Peng AF, Zhou YF, Long XH, Luo QF, Huang SH, Shu Y. Inhibition of Aurora-B suppresses osteosarcoma cell migration and invasion. Exp Ther Med 2014; 7:560-564. [PMID: 24520245 PMCID: PMC3919923 DOI: 10.3892/etm.2014.1491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/08/2014] [Indexed: 12/26/2022] Open
Abstract
Previous studies have suggested that Aurora-B may be involved in cancer metastasis. However, its role has been poorly evaluated in osteosarcoma (OS). The aim of this study was to investigate the correlation between Aurora-B expression and metastasis in human OS. The human OS cell line, U2-OS, and OS biopsy specimens were used in the study. The expression of Aurora-B protein was examined using immunohistochemistry and western blotting in OS tissues and U2-OS cells, respectively. AZD1152-hydroxyquinazoline-pyrazol-anilide, an inhibitor of Aurora-B, was used to inhibit Aurora-B expression in U2-OS cells. The effect of Aurora-B inhibition on U2-OS cell proliferation, invasion and migration was assessed using MTT, colony formation, wound healing and Transwell assays. The results showed that positive expression of the Aurora-B protein was observed in the nucleus, and that Aurora-B expression levels in the cases with pulmonary metastases were significantly higher than in those without metastasis. In vitro, the proliferation, invasion and migration of U2-OS cells were suppressed by the inhibition of Aurora-B. These results suggest that Aurora-B may be involved in OS metastasis, and may be a promising target in the treatment of OS metastasis.
Collapse
Affiliation(s)
- Xiao Ping Zhu
- Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yun Fei Zhou
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Feng Luo
- Department of Pathology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi 330029, P.R. China
| | - Shan Hu Huang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Shu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Ogunbayo OA, Michelangeli F. Related flavonoids cause cooperative inhibition of the sarcoplasmic reticulum Ca²⁺ ATPase by multimode mechanisms. FEBS J 2013; 281:766-77. [PMID: 24238016 DOI: 10.1111/febs.12621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
Abstract
Flavonoids are group of plant-derived hydroxylated polycyclic molecules found in fruit and vegetables. They are known to bio-accumulate within humans and are considered to have beneficial health effects, including cancer chemoprotection. One mechanism proposed to explain this is that they are able to induce apoptosis in cancer cells by inhibiting a variety of kinases and also the Ca²⁺ ATPase. An investigation was undertaken with respect to the mechanism of inhibition for three flavonoids: quercetin, galangin and 3,6 dihydroxyflavone (3,6-DHF). Each inhibited the Ca²⁺ ATPase with K(i) values of 8.7, 10.3 and 5.4 μM, respectively, showing cooperative inhibition with n ~ 2. Given their similar structures, the flavonoids showed several differences in their mechanisms of inhibition. All three flavonoids stabilized the ATPase in the E₁ conformation and reduced [³²P]-ATP binding. However, both galangin and 3,6-DHF increased the affinity of Ca²⁺ for the ATPase by decreasing the Ca²⁺-dissociation rate constant, whereas quercetin had little effect. Ca²⁺-induced changes in tryptophan fluorescence levels were reduced in the presence of 3,6-DHF and galangin (but not with quercetin), indicating that Ca²⁺-associated changes within the transmembrane helices are altered. Both galangin and quercetin reduced the rates of ATP-dependent phosphorylation and dephosphorylation, whereas 3,6-DHF did not. Modelling studies suggest that flavonoids could potentially bind to two sites: one directly where nucleotides bind within ATP binding site and the other at a site close by. We hypothesize that interactions of these two neighbouring sites may account for both the cooperative inhibition and the multimode mechanisms of action seen with related flavonoids.
Collapse
Affiliation(s)
- Oluseye A Ogunbayo
- School of Biosciences, University of Birmingham, UK; Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, UK
| | | |
Collapse
|
30
|
Huang MH, Tai HM, Wang BS, Chang LW. Inhibitory effects of water extract of Flos Inulae on mutation and tyrosinase. Food Chem 2013; 139:1015-20. [DOI: 10.1016/j.foodchem.2013.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
31
|
Krifa M, Alhosin M, Muller CD, Gies JP, Chekir-Ghedira L, Ghedira K, Mély Y, Bronner C, Mousli M. Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation. J Exp Clin Cancer Res 2013; 32:30. [PMID: 23688286 PMCID: PMC3695779 DOI: 10.1186/1756-9966-32-30] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/17/2013] [Indexed: 12/23/2022] Open
Abstract
Several reports have described the potential effects of natural compounds as anti-cancer agents in vitro as well as in vivo. The aim of this study was to evaluate the anti-cancer effect of Limoniastrum guyonianum aqueous gall extract (G extract) and luteolin in the human cervical cancer HeLa cell line, and, if so, to clarify the underlying mechanism. Our results show that G extract and luteolin inhibited cell proliferation and induced G2/M cell cycle arrest in a concentration and time-dependent manner. Both natural products induced programmed cell death as confirmed by the presence of hypodiploid G0/G1 cells. These effects are associated with an up-regulation of the expression of the tumor suppressor gene p16INK4A and a down-regulation of the expression of the anti-apoptotic actor UHRF1 and its main partner DNMT1. Moreover, G extract- and luteolin-induced UHRF1 and DNMT1 down-regulation is accompanied with a global DNA hypomethylation in HeLa cell line. Altogether our results show that G extract mediates its growth inhibitory effects on human cervical cancer HeLa cell line likely via the activation of a p16INK4A-dependent cell cycle checkpoint signalling pathway orchestrated by UHRF1 and DNMT1 down-regulation.
Collapse
Affiliation(s)
- Mounira Krifa
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03. Faculté de Pharmacie de Monastir, Rue Avicenne 5000, Monastir, Tunisie
| | - Mahmoud Alhosin
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| | - Christian D Muller
- UMR CNRS 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Jean-Pierre Gies
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| | - Leila Chekir-Ghedira
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03. Faculté de Pharmacie de Monastir, Rue Avicenne 5000, Monastir, Tunisie
| | - Kamel Ghedira
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03. Faculté de Pharmacie de Monastir, Rue Avicenne 5000, Monastir, Tunisie
| | - Yves Mély
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Parc d’innovation, 1 rue Laurent Fries, Illkirch, Cedex 67404, France
| | - Marc Mousli
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| |
Collapse
|
32
|
Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem 2013; 141:1553-61. [PMID: 23790951 DOI: 10.1016/j.foodchem.2013.04.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
Luteolin is a flavonoid that has been identified in many plant tissues and exhibits chemopreventive or chemosensitising properties against human breast cancer. However, the oncogenic molecules in human breast cancer cells that are inhibited by luteolin treatment have not been identified. This study found that the level of cyclin E2 (CCNE2) mRNA was higher in tumour cells (4.89-fold, (∗)P=0.005) than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257). Further, relatively high levels of CCNE2 protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells. These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5μM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitised the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemosensitiser to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients.
Collapse
|
33
|
Current world literature. Curr Opin Lipidol 2013; 24:86-94. [PMID: 23298962 DOI: 10.1097/mol.0b013e32835cb4f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Sun DAQ, Wang Y, Liu DG. Overexpression of hnRNPC2 induces multinucleation by repression of Aurora B in hepatocellular carcinoma cells. Oncol Lett 2013; 5:1243-1249. [PMID: 23599772 PMCID: PMC3629224 DOI: 10.3892/ol.2013.1167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/26/2012] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous ribonuclear protein C2 (hnRNPC2), an RNA binding protein, is a component of hnRNPC which is upregulated in many tumors. Multinucleation exists in many tumors and is positively correlated with tumor grade. To uncover the correlation between hnRNPC2 and multi-nucleation in hepatocellular carcinoma SMMC-7721 cells, we constructed a pEGFP-hnRNPC2 vector and transfected it into cancer cells. Our results revealed that overexpression of hnRNPC2 induced multinucleation in SMMC-7721 cells. Tracking tests indicated that the induced multinucleated cells were unable to recover to mononuclear cells and finally died as a result of defects in cell division. Furthermore, Aurora B, which was localized at the midbody and plays a role in cytokinesis, was repressed in hnRNPC2-overexpressing cells, whose knockdown by RNA interference also induced multinucleation in SMMC-7721 cells. Quantitative polymerase chain reaction (qPCR) and mRNA-protein co-immunoprecipitation results revealed that Aurora B mRNA did not decrease in hnRNPC2-overexpressing cells, instead it bound more hnRNPC2 and less eIF4E, an mRNA cap binding protein and translational initiation factor. Moreover, hnRNPC2 bound more eIF4E in hnRNPC2-overexpressing cells. These results indicate that hnRNPC2 repressed Aurora B binding with eIF4F, which must bind with Aurora B mRNA in order to initiate its translation. This induced multinucleation in hepatocellular carcinoma cells. In addition, hnRNPC2 accelerated hepatocellular carcinoma cell proliferation. Collectively, these data suggest that hnRNPC2 may be a potential target for hepatocellular carcinoma cell diagnosis and treatment.
Collapse
Affiliation(s)
- DA-Quan Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | | | | |
Collapse
|
35
|
Joshi AJ, Gadhwal MK, Joshi UJ, D’Mello P, Sinha R, Govil G. Synthesis of B-ring substituted flavones and evaluation of their antitumor and antioxidant activities. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0423-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Yuan L, Wang J, Xiao H, Wu W, Wang Y, Liu X. MAPK signaling pathways regulate mitochondrial-mediated apoptosis induced by isoorientin in human hepatoblastoma cancer cells. Food Chem Toxicol 2012; 53:62-8. [PMID: 23220614 DOI: 10.1016/j.fct.2012.11.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022]
Abstract
Isoorientin (ISO) (CAS RN: 4261-42-1) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum. ISO is able to induce apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cells, however, the effects of ISO on MAPK signaling pathways remain unknown. The present study investigated the effects of ISO on this pathway, and the roles of MAPK kinases on mitochondrial-mediated apoptosis in HepG2 cells. The results showed that ISO induced cell death in a dose- and time-dependent manner, and induction apoptosis is main cause for ISO-induced cytotoxicity in HepG2 cells. ISO significantly inhibited the levels of ERK1/2 kinase and increased the expression of JNK and p38 kinases. Furthermore, U0126 (an ERK1/2 inhibitor) significantly enhanced the ISO-induced the Bax/Bcl-2 ratio, the release of cytochrome c to the cytosol fraction, and the levels of cleaved caspase-3. While SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) markedly prevented the expression of these proteins induced by ISO. Furthermore, the ROS inhibitor (NAC) notably promoted the inhibited effect of ISO on the ERK1/2 kinase. NAC also suppressed the p-JNK and p-p38, but failed to reverse the effects of ISO. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells through inactivating ERK1/2 kinase and activating JNK and p38 kinases, and ROS stimulated by ISO is able to activate the MAPK singaling pathway as the upstream signaling molecules. Initiating event of the mitochondrial-mediated apoptosis induced by ISO is MAPK signals.
Collapse
Affiliation(s)
- Li Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | | | | | | | | | | |
Collapse
|
37
|
Caputo F, Vegliante R, Ghibelli L. Redox modulation of the DNA damage response. Biochem Pharmacol 2012; 84:1292-306. [PMID: 22846600 DOI: 10.1016/j.bcp.2012.07.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 01/09/2023]
Abstract
Lesions to DNA trigger the DNA-damage response (DDR), a complex, multi-branched cell-intrinsic process targeted to DNA repair, or elimination of the damaged cells by apoptosis. DDR aims at reducing permanence of mutated cells, decreasing the risk of tumor development: the more stringent the response, the lower the likelihood that sub-lethally damaged, unrepaired cells survive and proliferate. Accordingly, leakage often occurs in tumor cells with compromised DDR, accumulating mutations and accelerating tumor progression. Oxidations mediate DNA damage upon different insults such as UV, X and γ radiation, pollutants, poisons, or endogenous disequilibria, producing different types of lesions that trigger DDR, which can be alleviated by antioxidants. But reactive oxygen species (ROS), and the enzymes involved in their production or scavenging, also participate in DDR signaling, modulating the activity of key enzymes, and regulating the stringency of DDR. Accordingly, antioxidant enzymes such as superoxide dismutase play intimate and complex roles in tumor development, exceeding the basal roles of preventing the initial DNA damage. Likewise, it is emerging that dietary antioxidants help controlling tumor onset and progression by preventing DNA damage and by acting on cell cycle checkpoints, opening a novel and promising frontier to anticancer therapy.
Collapse
Affiliation(s)
- Fanny Caputo
- Dipartimento di Scienze e Tecnologie Chimiche, Universita' di Roma Tor Vergata, Roma, Italy
| | | | | |
Collapse
|