1
|
Comparision of the phenol red, gravimetric, and synthesized mPEG-PR methods for correcting water flux using the single-pass intestinal perfusion method. Eur J Pharm Sci 2022; 176:106255. [DOI: 10.1016/j.ejps.2022.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
|
2
|
Hens B, Gonzalez-Alvarez I, Bermejo M. Exploring the Predictive Power of the In Situ Perfusion Technique towards Drug Absorption: Theory, Practice, and Applications. Mol Pharm 2022; 19:749-762. [DOI: 10.1021/acs.molpharmaceut.1c00861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Sandwich, Kent, CT13 9NJ, United Kingdom
| | - Isabel Gonzalez-Alvarez
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Marival Bermejo
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| |
Collapse
|
3
|
Miranda C, Ruiz-Picazo A, Pomares P, Gonzalez-Alvarez I, Bermejo M, Gonzalez-Alvarez M, Avdeef A, Cabrera-Pérez MÁ. Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics 2022; 14:182. [PMID: 35057075 PMCID: PMC8780741 DOI: 10.3390/pharmaceutics14010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10-5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.
Collapse
Affiliation(s)
- Claudia Miranda
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| | - Alejandro Ruiz-Picazo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Paula Pomares
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Isabel Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marival Bermejo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marta Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Alex Avdeef
- In-ADME Research, 1732 First Avenue # 102, New York, NY 10128, USA;
| | - Miguel-Ángel Cabrera-Pérez
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| |
Collapse
|
4
|
Optimized In Silico Modeling of Drug Absorption after Gastric Bypass: The Case of Metformin. Pharmaceutics 2021; 13:pharmaceutics13111873. [PMID: 34834288 PMCID: PMC8624529 DOI: 10.3390/pharmaceutics13111873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgery is an effective treatment for severe obesity and related comorbidities, such as type II diabetes. Gastric bypass surgery shortens the length of the intestine, possibly leading to altered drug absorption. Metformin, a first-line treatment for type II diabetes, has permeability-dependent drug absorption, which may be sensitive to intestinal anatomic changes during bypass surgery, including Roux-en-Y gastric bypass (RYGB). Previous computer simulation data indicate increased metformin absorption after RYGB. In this study, we experimentally determined the region-dependent permeability of metformin, using the rat single-pass intestinal perfusion method (SPIP), which we then implemented into GastroPlusTM to assess the contribution of our SPIP data to post-RYGB metformin absorption modeling. Previous simulations allowed a good fit with in vivo literature data on healthy and obese control subjects. However, it was revealed that for post-RYGB drug absorption predictions, simply excluding the duodenum/jejunum is insufficient, as the software underestimates the observed plasma concentrations post-RYGB. By implementing experimentally determined segmental-dependent permeabilities for metformin in the remaining segments post-surgery, GastroPlusTM proved to fit the observed plasma concentration profile, making it a useful tool for predicting drug absorption after gastric bypass. Reliable evaluation of the parameters dictating drug absorption is required for the accurate prediction of overall absorption after bariatric surgery.
Collapse
|
5
|
Caldeira TG, Saúde-Guimarães DA, González-Álvarez I, Bermejo M, de Souza J. Eremantholide C from aerial parts of Lychnophora trichocarpha, as drug candidate: fraction absorbed prediction in humans and BCS permeability class determination. Daru 2021; 29:195-203. [PMID: 33884588 PMCID: PMC8149492 DOI: 10.1007/s40199-021-00397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Lychnophora trichocarpha (Spreng.) Spreng. ex Sch.Bip has been used in folk medicine to treat pain, inflammation, rheumatism and bruises. Eremantholide C, a sesquiterpene lactone, is one of the substances responsible for the anti-inflammatory and anti-hyperuricemic effects of L. trichocarpha. OBJECTIVES Considering the potential to become a drug for the treatment of inflammation and gouty arthritis, this study evaluated the permeability of eremantholide C using in situ intestinal perfusion in rats. From the permeability data, it was possible to predict the fraction absorbed of eremantholide C in humans and elucidate its oral absorption process. METHODS In situ intestinal perfusion studies were performed in the complete small intestine of rats using different concentrations of eremantholide C: 960 μg/ml, 96 μg/ml and 9.6 μg/ml (with and without sodium azide), in order to verify the lack of dependence on the measured permeability as a function of the substance concentration in the perfusion solutions. RESULTS Eremantholide C showed Peff values, in rats, greater than 5 × 10-5 cm/s and fraction absorbed predicted for humans greater than 85%. These results indicated the high permeability for eremantholide C. Moreover, its permeation process occurs only by passive route, because there were no statistically significant differences between the Peff values for eremantholide C. CONCLUSION The high permeability, in addition to the low solubility, indicated that eremantholide C is a biologically active substance BCS class II. The pharmacological activities, low toxicity and biopharmaceutics parameters demonstrate that eremantholide C has the necessary requirements for the development of a drug product, to be administered orally, with action on inflammation, hyperuricemia and gout.
Collapse
Affiliation(s)
- Tamires Guedes Caldeira
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| | - Dênia Antunes Saúde-Guimarães
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Isabel González-Álvarez
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Marival Bermejo
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Jacqueline de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
6
|
Fine-Shamir N, Beig A, Dahan A. Adequate formulation approach for oral chemotherapy: Etoposide solubility, permeability, and overall bioavailability from cosolvent- vs. vitamin E TPGS-based delivery systems. Int J Pharm 2021; 597:120295. [PMID: 33497706 DOI: 10.1016/j.ijpharm.2021.120295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable-to-oral conversions for anticancer drugs represent an important trend. The goal of this research was to investigate the suitability of formulation approaches for anticancer oral drug delivery, aiming to reveal mechanistic insights that may guide oral chemotherapy development. TPGS vs. PEG-400 were studied as oral formulations for the anticancer drug etoposide, accounting for drug solubility, biorelevant dissolution, permeability, solubility-permeability interplay, and overall bioavailability. Increased etoposide solubility was demonstrated with both excipients. Biorelevant dissolution revealed that TPGS or PEG-400, but not aqueous suspension, allowed complete dissolution of the entire drug dose. Both TPGS and PEG-400 resulted in decreased in-vitro etoposide permeability across artificial membrane, i.e. solubility-permeability tradeoff. While PEG-400 resulted in the same solubility-permeability tradeoff also in-vivo, TPGS showed the opposite trend: the in-vivo permeability of etoposide was markedly increased in the presence of TPGS. This increased permeability was similar to the drug permeability under P-gp inhibition. Rat PK study demonstrated significantly higher etoposide bioavailability from TPGS vs. PEG-400 or suspension (AUC of 72, 41, and 26 µg·min/mL, respectively). All in all, TPGS-based delivery system allows overcoming the solubility-permeability tradeoff, increasing systemic etoposide exposure. Since poor solubility and strong efflux are common to many anticancer agents, this work can aid in the development of better oral delivery approach for chemotherapeutic drugs.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
7
|
López-Yerena A, Vallverdú-Queralt A, Mols R, Augustijns P, Lamuela-Raventós RM, Escribano-Ferrer E. Reply to "Comment on López-Yerena et al. 'Absorption and Intestinal Metabolic Profile of Oleocanthal in Rats' Pharmaceutics 2020, 12, 134". Pharmaceutics 2020; 12:E1221. [PMID: 33348608 PMCID: PMC7765908 DOI: 10.3390/pharmaceutics12121221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/28/2023] Open
Abstract
Recently, in February 2020, we published a study exploring the intestinal absorption and metabolism of oleocanthal (OLC) in rats. A single-pass intestinal perfusion technique (SPIP) was used, involving simultaneous sampling from the luminal perfusate and mesenteric blood. Later, comments on our published paper were released, requesting clarification of specific data. In this detailed reply, we hope to have addressed and clarified all the concerns of A. Kaddoumi and K. El Sayed and that the scientific community will benefit from both the study and the comments it has generated.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Raf Mols
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (R.M.); (P.A.)
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (R.M.); (P.A.)
| | - Rosa M. Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Synthesis and Evaluation of PEG-PR for Water Flux Correction in an In Situ Rat Perfusion Model. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25215123. [PMID: 33158074 PMCID: PMC7662639 DOI: 10.3390/molecules25215123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/25/2023]
Abstract
Phenol red (PR) is a widely used marker for water flux correction in studies of in situ perfusion, in which intestinal absorption usually leads to the underestimation of results. In this paper, we propose a novel marker polyethylene glycol (PEG)-PR (i.e., PR modified by PEGylation) with less permeability and evaluate its application in an in situ perfusion model in rats. PEG-PR was synthesized by the chemical conjunction of polyethylene glycol-4k/5k (PEG-4k/5k) and PR. The synthesized PEG-PR was then characterized using 1H-NMR, 13C-NMR, ultraviolet (UV), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analyses. The low permeability of PEG-PR was assessed using everted gut sac (EGS) methods. The apparent permeability coefficients (Papp, 3–8 × 10−7 cm/s) of PEG4k/5k-PR exhibited a nearly 15-fold reduction compared to that of PR. The different concentrations of PEG4k/5k-PR did not contribute to the Papp value or cumulative permeable percentage (about 0.02–0.06%). Furthermore, the larger molecular weight due to PEGylation (PEG5k-PR) enhanced the nonabsorbable effect. To evaluate the potential application of the novel marker, atenolol, ketoprofen, and metoprolol, which represent various biopharmaceutics classification system (BCS) classes, were selected as model drugs for the recirculation perfusion method. The water flux corrected by PEG4k/5k-PR reflected the accuracy due to the nonabsorbable effect, while the effective intestinal membrane permeability (Peff) of atenolol corrected by PEG4k/5k-PR showed a statistically significant increase (p < 0.05) in different intestinal segments. In conclusion, PEG-PR is a promising marker for the permeability estimation when using the in situ perfusion model in rats.
Collapse
|
9
|
Greig CJ, Zhang L, Cowles RA. Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function. Physiol Rep 2020; 7:e14278. [PMID: 31724827 PMCID: PMC6854605 DOI: 10.14814/phy2.14278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic knockout of the serotonin reuptake transporter (SERT) potentiates serotonin signaling and increases crypt‐cell proliferation, neuroplasticity, and mucosal surface area. However, it remains unknown whether these changes occur throughout the small intestine and whether they increase nutrient absorption. We hypothesized that serotonin‐mediated mucosal growth would occur throughout the intestine and would increase enterocyte mass and absorptive function. Following institutional approval, intestinal segments spanning the bowel were harvested from 10 to 12 week‐old SERT knockout (SERTKO) and wild‐type (WT) C57Bl/6 mice. Histologic sections were used to measure villus height (VH), crypt depth (CD), and crypt proliferation index (CPI). Plasma citrulline was measured colorimetrically. Glucose and peptide absorption in isolated segments of small bowel were calculated using a previously described method for quantification after luminal instillation of substrate. At baseline, morphometric (VH/CD) and proliferative (CPI) parameters varied from jejunum to ileum. Enhanced 5‐HT signaling significantly increased plasma citrulline levels and morphometric/proliferative parameters in all regions analyzed. Glucose absorption in WT mice varied throughout the small intestine, and SERTKO mice demonstrated significant increases in the middle and distal bowel. WT peptide absorption was similar throughout the small bowel, and SERTKO mice had significant increases in the proximal and distal bowel. Enhanced serotonin signaling results in increased morphometric and proliferative parameters throughout the small intestine, and results in increased enterocyte mass and intestinal absorptive function. These data further advance the concept that the serotonin system is an attractive therapeutic target for increasing functional intestinal mucosa.
Collapse
Affiliation(s)
- Chasen J Greig
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Lucy Zhang
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Robert A Cowles
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Ruiz-Picazo A, Colón-Useche S, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M, Langguth P. Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients. Eur J Pharm Biopharm 2020; 153:168-176. [PMID: 32561342 DOI: 10.1016/j.ejpb.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022]
Abstract
Dysphagia is a very common problem suffered by elderly patients. The use of thickeners during administration in these patients helps to prevent difficulties with swallowing larger solid dosage forms. However, there are several indications when the thickeners may influence disintegration and dissolution processes of solid dosage forms, potentially affecting therapeutic efficacy. In this paper the effects of a commonly used thickener on tablet disintegration, dissolution and subsequent absorption of 6 formulated drugs frequently used in elderly patients (Aspirin, Atenolol, Acenocumarol, Candesartan, Ramipril and Valsartan) in two different administration conditions (intact tablet and crushed tablet) are reported. Disintegration times were determined using a modified disintegration test device. The presence of thickener leads to a pseudoplastic behavior with clearly increased viscosity values. The thickener was also shown to significantly affect the release processes (dissolution and disintegration), but not the permeability of the studied drugs. When tablets are crushed the effect of the thickener on drug dissolution is avoided. Consequently, crushing the tablets would be a recommendation for these drugs if the use of a thickener is necessary in patients with dysphagia.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Sarin Colón-Useche
- Analysis and Control Department, University of Los Andes, Mérida 5101, Venezuela
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain.
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Ruiz-Picazo A, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M. Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Mol Pharm 2020; 17:2310-2318. [DOI: 10.1021/acs.molpharmaceut.0c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
12
|
Christfort JF, Guillot AJ, Melero A, Thamdrup LHE, Garrigues TM, Boisen A, Zór K, Nielsen LH. Cubic Microcontainers Improve In Situ Colonic Mucoadhesion and Absorption of Amoxicillin in Rats. Pharmaceutics 2020; 12:E355. [PMID: 32295139 PMCID: PMC7238233 DOI: 10.3390/pharmaceutics12040355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/02/2023] Open
Abstract
An increased interest in colonic drug delivery has led to a higher focus on the design of delivery devices targeting this part of the gastrointestinal tract. Microcontainers have previously facilitated an increase in oral bioavailability of drugs. The surface texture and shape of microcontainers have proven to influence the mucoadhesion ex vivo. In the present work, these findings were further investigated using an in situ closed-loop perfusion technique in the rat colon, which allowed for simultaneous evaluation of mucoadhesion of the microcontainers as well as drug absorption. Cylindrical, triangular and cubic microcontainers, with the same exterior surface area, were evaluated based on in vitro release, in situ mucoadhesion and in situ absorption of amoxicillin. Additionally, the mucoadhesion of empty cylindrical microcontainers with and without pillars on the top surface was investigated. From the microscopy analysis of the colon sections after the in situ study, it was evident that a significantly higher percentage of cubic microcontainers than cylindrical microcontainers adhered to the intestinal mucus. Furthermore, the absorption rate constants and blood samples indicated that amoxicillin in cubic microcontainers was absorbed more readily than when cylindrical or triangular microcontainers were dosed. This could be due to a higher degree of mucoadhesion for these particular microcontainers.
Collapse
Affiliation(s)
- Juliane Fjelrad Christfort
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Antonio José Guillot
- Department de Farmàcia I Tecnología Farmacèutica, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain; (A.J.G.); (T.M.G.)
| | - Ana Melero
- Department de Farmàcia I Tecnología Farmacèutica, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain; (A.J.G.); (T.M.G.)
| | - Lasse Højlund Eklund Thamdrup
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Teresa M. Garrigues
- Department de Farmàcia I Tecnología Farmacèutica, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain; (A.J.G.); (T.M.G.)
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Kinga Zór
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark; (L.H.E.T.); (A.B.); (K.Z.); (L.H.N.)
| |
Collapse
|
13
|
Markovic M, Zur M, Fine-Shamir N, Haimov E, González-Álvarez I, Dahan A. Segmental-Dependent Solubility and Permeability as Key Factors Guiding Controlled Release Drug Product Development. Pharmaceutics 2020; 12:E295. [PMID: 32214015 PMCID: PMC7151103 DOI: 10.3390/pharmaceutics12030295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022] Open
Abstract
The main factors influencing the absorption of orally administered drugs are solubility and permeability, which are location-dependent and may vary along the gastrointestinal tract (GIT). The purpose of this work was to investigate segmental-dependent intestinal absorption and its role in controlled-release (CR) drug product development. The solubility/dissolution and permeability of carvedilol (vs. metoprolol) were thoroughly studied, in vitro/in vivo (Octanol-buffer distribution coefficients (Log D), parallel artificial membrane permeability assay (PAMPA), rat intestinal perfusion), focusing on location-dependent effects. Carvedilol exhibits changing solubility in different conditions throughout the GIT, attributable to its zwitterionic nature. A biorelevant pH-dilution dissolution study for carvedilol immediate release (IR) vs. CR scenario elucidates that while the IR dose (25 mg) may dissolve in the GIT luminal conditions, higher doses used in CR products would precipitate if administered at once, highlighting the advantage of CR from the solubility/dissolution point of view. Likewise, segmental-dependent permeability was evident, with higher permeability of carvedilol vs. the low/high Peff marker metoprolol throughout the GIT, confirming it as a biopharmaceutical classification system (BCS) class II drug. Theoretical analysis of relevant physicochemical properties confirmed these results as well. A CR product may shift the carvedilol's solubility behavior from class II to I since only a small dose portion needs to be solubilized at a given time point. The permeability of carvedilol surpasses the threshold of metoprolol jejunal permeability throughout the entire GIT, including the colon, establishing it as a suitable candidate for CR product development. Altogether, this work may serve as an analysis model in the decision process of CR formulation development and may increase our biopharmaceutical understanding of a successful CR drug product.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Moran Zur
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ester Haimov
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Isabel González-Álvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, 03550 San Juan de Alicante, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
14
|
Caldeira TG, Ruiz-Picazo A, Lozoya-Agullo I, Saúde-Guimarães DA, González-Álvarez M, de Souza J, González-Álvarez I, Bermejo M. Determination of intestinal permeability using in situ perfusion model in rats: Challenges and advantages to BCS classification applied to digoxin. Int J Pharm 2018; 551:148-157. [PMID: 30218825 DOI: 10.1016/j.ijpharm.2018.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/30/2022]
Abstract
The purpose of this work was to describe the closed loop in situ perfusion method in rats and to compare the difficulties and advantages with other methods proposed by regulatory agencies for BCS classification and finally to illustrate its application to evaluate the permeability of digoxin at relevant clinical concentrations. Digoxin was evaluated at two concentration levels: 1.0 μg/ml (with and without sodium azide 65.0 μg/ml) and 6.0 μg/ml. These concentrations correspond to the ratio of the highest dose strength (0.25 mg) and the highest single dose administered (1.5 mg) and the 250 ml of water. In situ closed loop perfusion studies in rats were performed in the whole small intestine and also in duodenum, jejunum and ileum segments to evaluate the relevance of P-gp secretion in the overall permeability. A kinetic modelling approach involving passive permeation and efflux transport mechanism allowed the estimation of the passive diffusional component and the Michaelis-menten parameters. The estimated Km value demonstrated that at clinical luminal concentrations the efflux process is not saturated and then it could be inhibited by other drugs, excipients or food components leading to the already reported clinical drug-drug and drug-food interations. The present data confirms from a mechanistic point of view these interactions.
Collapse
Affiliation(s)
- Tamires Guedes Caldeira
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain; Laboratório de Controle de Qualidade, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alejandro Ruiz-Picazo
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Isabel Lozoya-Agullo
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Dênia Antunes Saúde-Guimarães
- Laboratório de Plantas Medicinais, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Marta González-Álvarez
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Jacqueline de Souza
- Laboratório de Controle de Qualidade, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Isabel González-Álvarez
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain.
| | - Marival Bermejo
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
15
|
Miranda C, Pérez-Rodríguez Z, Hernández-Armengol R, Quiñones-García Y, Betancourt-Purón T, Cabrera-Pérez MÁ. Biowaiver or Bioequivalence: Ambiguity in Sildenafil Citrate BCS Classification. AAPS PharmSciTech 2018. [PMID: 29532425 DOI: 10.1208/s12249-018-0982-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study is to contribute to the scientific characterization of sildenafil citrate according to the Biopharmaceutics Classification System, following the World Health Organization (WHO) guidelines for biowaivers. The solubility and intestinal permeability data of sildenafil citrate were collected from literature; however, the experimental solubility studies are inconclusive and its "high permeability" suggests an API in the borderline of BCS Class I and Class II. The pH-solubility profile was determined using the saturation shake-flask method over the pH range of 1.2-6.8 at a temperature of 37 °C in aqueous media. The intestinal permeability was determined in rat by a closed-loop in situ perfusion method (the Doluisio technique). The solubility of sildenafil citrate is pH-dependent and at pH 6.8 the dose/solubility ratio obtained does not meet the WHO criteria for "high solubility." The high permeability values obtained by in situ intestinal perfusion in rat reinforce the published permeability data for sildenafil citrate. The experimental results obtained and the data available in the literature suggest that sildenafil citrate is clearly a Class II of BCS, according to the current biopharmaceutics classification system and WHO guidance.
Collapse
|
16
|
Lozoya-Agullo I, Gonzalez-Alvarez I, Zur M, Fine-Shamir N, Cohen Y, Markovic M, Garrigues TM, Dahan A, Gonzalez-Alvarez M, Merino-Sanjuán M, Bermejo M, Avdeef A. Closed-Loop Doluisio (Colon, Small Intestine) and Single-Pass Intestinal Perfusion (Colon, Jejunum) in Rat-Biophysical Model and Predictions Based on Caco-2. Pharm Res 2017; 35:2. [PMID: 29288412 DOI: 10.1007/s11095-017-2331-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE The effective rat intestinal permeability (P eff ) was deconvolved using a biophysical model based on parameterized paracellular, aqueous boundary layer, transcellular permeabilities, and the villus-fold surface area expansion factor. METHODS Four types of rat intestinal perfusion data were considered: single-pass intestinal perfusion (SPIP) in the jejunum (n = 40), and colon (n = 15), closed-loop (Doluisio type) in the small intestine (n = 78), and colon (n = 74). Moreover, in vitro Caco-2 permeability values were used to predict rat in vivo values in the rat data studied. RESULTS Comparable number of molecules permeate via paracellular water channels as by the lipoidal transcellular route in the SPIP method, although in the closed-loop method, the paracellular route appears dominant in the colon. The aqueous boundary layer thickness in the small intestine is comparable to that found in unstirred in vitro monolayer assays; it is thinner in the colon. The mucosal surface area in anaesthetized rats is 0.96-1.4 times the smooth cylinder calculated value in the colon, and it is 3.1-3.6 times in the small intestine. The paracellular permeability of the intestine appeared to be greater in rat than human, with the colon showing more leakiness (higher P para ) than the small intestine. CONCLUSION Based on log intrinsic permeability values, the correlations between the in vitro and in vivo models ranged from r2 0.82 to 0.92. The SPIP-Doluisio method comparison indicated identical log permeability selectivity trend with negligible bias.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain.,Pharmacokinetics and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Isabel Gonzalez-Alvarez
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain
| | - Moran Zur
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Fine-Shamir
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Cohen
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Milica Markovic
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Teresa M Garrigues
- Pharmacokinetics and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marta Gonzalez-Alvarez
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain
| | | | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Alicante, Spain.
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, No.102, New York, New York, 10128, USA
| |
Collapse
|
17
|
Comparison of segmental-dependent permeability in human and in situ perfusion model in rat. Eur J Pharm Sci 2017; 107:191-196. [DOI: 10.1016/j.ejps.2017.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022]
|
18
|
Lozoya-Agullo I, Zur M, Beig A, Fine N, Cohen Y, González-Álvarez M, Merino-Sanjuán M, González-Álvarez I, Bermejo M, Dahan A. Segmental-dependent permeability throughout the small intestine following oral drug administration: Single-pass vs. Doluisio approach to in-situ rat perfusion. Int J Pharm 2016; 515:201-208. [PMID: 27667756 DOI: 10.1016/j.ijpharm.2016.09.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023]
Abstract
Intestinal drug permeability is position dependent and pertains to a specific point along the intestinal membrane, and the resulted segmental-dependent permeability phenomenon has been recognized as a critical factor in the overall absorption of drug following oral administration. The aim of this research was to compare segmental-dependent permeability data obtained from two different rat intestinal perfusion approaches: the single-pass intestinal perfusion (SPIP) model and the closed-loop (Doluisio) rat perfusion method. The rat intestinal permeability of 12 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was assessed in three small intestinal regions: the upper jejunum, mid-small intestine, and the terminal ileum, using both the SPIP and the Doluisio experimental methods. Excellent correlation was evident between the two approaches, especially in the upper jejunum (R2=0.95). Significant regional-dependent permeability was found in half of drugs studied, illustrating the importance and relevance of segmental-dependent intestinal permeability. Despite the differences between the two methods, highly comparable results were obtained by both methods, especially in the medium-high Peff range. In conclusion, the SPIP and the Doluisio method are both equally useful in obtaining crucial segmental-dependent intestinal permeability data.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Moran Zur
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Fine
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Cohen
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marta González-Álvarez
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Matilde Merino-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University-University of Valencia, Valencia, Spain
| | | | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
19
|
Abstract
Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable.
Collapse
|
20
|
Lozoya-Agullo I, Zur M, Wolk O, Beig A, González-Álvarez I, González-Álvarez M, Merino-Sanjuán M, Bermejo M, Dahan A. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: Investigation of the single-pass vs. the Doluisio experimental approaches. Int J Pharm 2015; 480:1-7. [PMID: 25595387 DOI: 10.1016/j.ijpharm.2015.01.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 02/02/2023]
Abstract
Intestinal drug permeability has been recognized as a critical determinant of the fraction dose absorbed, with direct influence on bioavailability, bioequivalence and biowaiver. The purpose of this research was to compare intestinal permeability values obtained by two different intestinal rat perfusion methods: the single-pass intestinal perfusion (SPIP) model and the Doluisio (closed-loop) rat perfusion method. A list of 15 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was constructed. We assessed the rat intestinal permeability of these 15 model drugs in both SPIP and the Doluisio methods, and evaluated the correlation between them. We then evaluated the ability of each of these methods to predict the fraction dose absorbed (Fabs) in humans, and to assign the correct BCS permeability class membership. Excellent correlation was obtained between the two experimental methods (r(2)=0.93). An excellent correlation was also shown between literature Fabs values and the predictions made by both rat perfusion techniques. Similar BCS permeability class membership was designated by literature data and by both SPIP and Doluisio methods for all compounds. In conclusion, the SPIP model and the Doluisio (closed-loop) rat perfusion method are both equally useful for obtaining intestinal permeability values that can be used for Fabs prediction and BCS classification.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain; Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Moran Zur
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omri Wolk
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Marta González-Álvarez
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Matilde Merino-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University, University of Valencia, Valencia, Spain
| | - Marival Bermejo
- Department of Engineering, Pharmacy Section, Miguel Hernandez University, Alicante, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|