1
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
2
|
Kumar A, Watbled B, Baussanne I, Hediger S, Demeunynck M, De Paëpe G. Optimizing chemistry at the surface of prodrug-loaded cellulose nanofibrils with MAS-DNP. Commun Chem 2023; 6:58. [PMID: 36977767 PMCID: PMC10049993 DOI: 10.1038/s42004-023-00852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Studying the surface chemistry of functionalized cellulose nanofibrils at atomic scale is an ongoing challenge, mainly because FT-IR, NMR, XPS and RAMAN spectroscopy are limited in sensitivity or resolution. Herein, we show that dynamic nuclear polarization (DNP) enhanced 13C and 15N solid-state NMR is a uniquely suited technique to optimize the drug loading on nanocellulose using aqueous heterogenous chemistry. We compare the efficiency of two conventional coupling agents (DMTMM vs EDC/NHS) to bind a complex prodrug of ciprofloxacin designed for controlled drug release. Besides quantifying the drug grafting, we also evidence the challenge to control the concurrent prodrug adsorption and to optimize washing procedures. We notably highlight the presence of an unexpected prodrug cleavage mechanism triggered by carboxylates at the surface of the cellulose nanofibrils.
Collapse
Affiliation(s)
- Akshay Kumar
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM, Grenoble, France
| | | | | | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM, Grenoble, France
| | | | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM, Grenoble, France.
| |
Collapse
|
3
|
Patpatia S, Schaedig E, Dirks A, Paasonen L, Skurnik M, Kiljunen S. Rapid hydrogel-based phage susceptibility test for pathogenic bacteria. Front Cell Infect Microbiol 2022; 12:1032052. [PMID: 36569196 PMCID: PMC9771388 DOI: 10.3389/fcimb.2022.1032052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Phage therapy is one alternative to cure infections caused by antibiotic resistant bacteria. Due to the narrow host range of phages, hundreds to thousands of phages are required to cover the diversity of bacterial pathogens. In personalized phage therapy, fast selection of the phages for individual patients is essential for successful therapy. The aims of this study were to set up a rapid hydrogel-based liquid phage susceptibility assay (PST) for the selection of phages for therapeutic use and to establish a "ready-to-screen" plate concept, where phages are readily stored in hydrogel as small droplets in microtiter plate wells. We first tested four commercially available hydrogels (GrowDex, Askina, Purilon, and Intrasite) for their suitability as phage matrices in PSTs with four phages, two of which infecting Escherichia coli and two Staphylococcus aureus. Of these four hydrogels, GrowDex was the best matrix for PST, as it did not inhibit bacterial growth, released phages quickly when mixed with bacterial culture, and maintained phage viability well. We then optimized the assay for both optical density and microscopy readers using GrowDex as matrix with 23 bacterial strains representing 10 different species and 23 phages possessing different morphologies and genome sizes. When the bacterial growth was monitored by microscopy reader, the PST was executed in just 3 hours, and there was no need for overnight culturing bacterial cells prior to the assay, whereas using optical density reader, bacteria had to be pre-cultured overnight, and the assay time was five hours. Finally, we evaluated the effect of three different chemical stabilizers (trehalose, hyaluronic acid, and gelatin) in a six-month stability assay with six model phages. These phages assay behaved very differently in respect to the chemical stabilizers, and there was not a single stabilizer suitable for all phages. However, when gelatin (0.01%) or hyaluronic acid (0.2 mg/ml) was used as stabilizer, all tested phages were still considered as positives in PST after a six-month storage in 1 ml volume. In "ready-to-screen" plates, the differences in phage stabilities were even more profound, varying from two to six months for the most and least stable phages, respectively.
Collapse
Affiliation(s)
- Sheetal Patpatia
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eric Schaedig
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Dirks
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Mikael Skurnik
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland,*Correspondence: Saija Kiljunen,
| |
Collapse
|
4
|
Maheri H, Hashemzadeh F, Shakibapour N, Kamelniya E, Malaekeh-Nikouei B, Mokaberi P, Chamani J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Som A, Rosenboom JG, Chandler A, Sheth RA, Wehrenberg-Klee E. Image-guided intratumoral immunotherapy: Developing a clinically practical technology. Adv Drug Deliv Rev 2022; 189:114505. [PMID: 36007674 PMCID: PMC10456124 DOI: 10.1016/j.addr.2022.114505] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized the contemporary oncology landscape, with durable responses possible across a range of cancer types. However, the majority of cancer patients do not respond to immunotherapy due to numerous immunosuppressive barriers. Efforts to overcome these barriers and increase systemic immunotherapy efficacy have sparked interest in the local intratumoral delivery of immune stimulants to activate the local immune response and subsequently drive systemic tumor immunity. While clinical evaluation of many therapeutic candidates is ongoing, development is hindered by a lack of imaging confirmation of local delivery, insufficient intratumoral drug distribution, and a need for repeated injections. The use of polymeric drug delivery systems, which have been widely used as platforms for both image guidance and controlled drug release, holds promise for delivery of intratumoral immunoadjuvants and the development of an in situ cancer vaccine for patients with metastatic cancer. In this review, we explore the current state of the field for intratumoral delivery and methods for optimizing controlled drug release, as well as practical considerations for drug delivery design to be optimized for clinical image guided delivery particularly by CT and ultrasound.
Collapse
Affiliation(s)
- Avik Som
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States
| | - Jan-Georg Rosenboom
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Alana Chandler
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Rahul A Sheth
- Department of Interventional Radiology, M.D. Anderson Cancer Center, United States
| | - Eric Wehrenberg-Klee
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States.
| |
Collapse
|
6
|
Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. Int J Biol Macromol 2022; 222:830-843. [PMID: 36179866 DOI: 10.1016/j.ijbiomac.2022.09.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022]
Abstract
Hydrogels designed with nanocellulose (i.e. cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial cellulose (BC)) have significant advantages as drug carriers due to their environmentally-benign features and excellent properties. Nanocellulose hydrogels have been demonstrated to sustainably deliver various kinds of drugs via different routes of administration, in which nanocellulose significantly improves the hydrogel properties and tunes the drug releasing profile. This article comprehensively summarizes the recent research progress on nanocellulose hydrogels in drug delivery. We carefully assessed the gelation methods for nanocellulose hydrogel design and highlighted the influence of nanocellulose on hydrogel properties and drug release behaviors. In particular, it is the first time to summarize the research on nanocellulose hydrogel-based drug carriers regarding specific routes of administration. This work provides a critical review of nanocellulose-based hydrogels as drug delivery vehicles, and also underlines the outlook in this field, with the objective to inspire/prompt future work, especially the practical applications of nanocellulose hydrogels in designing controlled drug delivery systems.
Collapse
|
7
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
8
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
9
|
Cao X, Li F, Zheng T, Li G, Wang W, Li Y, Chen S, Li X, Lu Y. Cellulose-based functional hydrogels derived from bamboo for product design. FRONTIERS IN PLANT SCIENCE 2022; 13:958066. [PMID: 36051293 PMCID: PMC9424926 DOI: 10.3389/fpls.2022.958066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels have outstanding research and application prospects in the field of product design. Among them, the design and preparation of cellulose-based functional hydrogels derived from bamboo have attracted increasing research interest. Cellulose-based hydrogels not only have the skeleton function of hydrogels, but also retain excellent specificity, smart structural design, precise molecular recognition ability, and superior biocompatibility. Cellulose-based hydrogels show important application prospects in various fields, such as environmental protection, biomedicine, and energy. What's more, they are potentially viable for application in food packaging and plant agriculture, such as fertilizers release and crop production. Recently, researchers have extracted cellulose from bamboo and generated a variety of cellulose-based functional hydrogels with excellent properties by various cross-linking methods. In addition, a variety of multifunctional hybrid cellulose-based hydrogels have been constructed by introducing functional components or combining them with other functional materials, thus expanding the breadth and depth of their applications. Herein, we elaborate on advances in the field of cellulose-based hydrogels and highlight their applications in food packaging and plant agriculture. Meanwhile, the existing problems and prospects are summarized. The review provides a reference for the further development of cellulose-based hydrogels.
Collapse
Affiliation(s)
- Xiaobing Cao
- School of Art and Design, Bamboo Research Institute, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fei Li
- School of Science and Technology, Huzhou College, Huzhou, China
| | - Tingting Zheng
- School of Art and Design, Bamboo Research Institute, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Guohui Li
- School of Art and Design, Bamboo Research Institute, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Wenqian Wang
- School of Art and Design, Bamboo Research Institute, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Yanjun Li
- School of Art and Design, Bamboo Research Institute, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
- School of Materials Engineering, Nanjing Forestry University, Nanjing, China
| | - Siyu Chen
- School of Art and Design, Bamboo Research Institute, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, China
| | - Xin Li
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Yi Lu
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Mishra PK, Pavelek O, Rasticova M, Mishra H, Ekielski A. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art. Front Bioeng Biotechnol 2022; 9:789603. [PMID: 35223812 PMCID: PMC8873513 DOI: 10.3389/fbioe.2021.789603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Nanocellulose is a broader term used for nano-scaled cellulosic crystal and/or fibrils of plant or animal origin. Where bacterial nanocellulose was immediately accepted in biomedicine due to its “cleaner” nature, the plant-based nanocellulose has seen several roadblocks. This manuscript assesses the technological aspects (chemistry of cellulose, nanocellulose producing methods, its purity, and biological properties including toxicity and suggested applications in final drug formulation) along with legal aspects in REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulation by the European Union, EMA (European Medicine Agency). The botanical biomass processing methods leading to the nanoscale impurity (lignin and others) on nanocellulose surface, along with surface modification with harsh acid treatments are found to be two major sources of “impurity” in botanical biomass derived nanocellulose. The status of nanocellulose under the light of REACH regulation along with EMA has been covered. The provided information can be directly used by material and biomedical scientists while developing new nanocellulose production strategies as well as formulation design for European markets.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pawan Kumar Mishra,
| | - Ondrej Pavelek
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Martina Rasticova
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University Of Life Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Raghav N, Sharma MR, Kennedy JF. Nanocellulose: A mini-review on types and use in drug delivery systems. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Saddique A, Cheong IW. Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for biomedical applications. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0926-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Modulating sustained drug release from nanocellulose hydrogel by adjusting the inner geometry of implantable capsules. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Piejko M, Walczak P, Li X, Bulte JWM, Janowski M. In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Mol Imaging Biol 2020; 21:1071-1078. [PMID: 30850968 DOI: 10.1007/s11307-019-01341-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE We studied the feasibility of labeling hydrogel scaffolds with a fluorine nanoemulsion for 19F- magnetic resonance imaging (MRI) to enable non-invasive visualization of their precise placement and potential degradation. PROCEDURE Hyaluronan-based hydrogels (activated hyaluronan, HA) with increasing concentrations of fluorine nanoemulsion (V-sense) were prepared to measure the gelation time and oscillatory stress at 1 h and 7 days after the beginning of gelation. All biomechanical measurements were conducted with an ARES 2 rheometer. Diffusion of fluorine from the hydrogel: Three hydrogels in various Vs to HA volumetric ratios (1:50, 1:10, and 1:5) were prepared in duplicate. Hydrogels were incubated at 37 °C. To induce diffusion, three hydrogels were agitated at 1000 rpm. 1H and 19F MRI scans were acquired at 1, 3, 7 days and 2 months after gel preparation on a Bruker Ascend 750 scanner. To quantify fluorine content, scans were analyzed using Voxel Tracker 2.0. Assessment of cell viability in vitro and in vivo: Luciferase-positive mouse glial-restricted progenitors (GRPs) were embedded in 0:1, 1:50, 1:10, and 1:5 Vs:HA mixtures (final cell concentration =1 × 107/ml). For the in vitro assay, mixtures were placed in 96-wells plate in triplicate and bioluminescence was measured after 1, 3, 7, 14, 21, and 28 days. For in vivo experiments, Vs/HA mixtures containing GRPs were injected subcutaneously in SCID mice and BLI was acquired at 1, 3, 7, and 14 days post-injection. RESULTS Mixing of V-sense at increasing ratios of 1:50, 1:10, and 1:5 v/v of fluorine/activated hyaluronan (HA) hydrogel gradually elongated the gelation time from 194 s for non-fluorinated controls to 304 s for 1:5 V-sense:HA hydrogels, while their elastic properties slightly decreased. There was no release of V-sense from hydrogels maintained in stationary conditions over 2 months. The addition of V-sense positively affected in vitro survival of scaffolded GRPs in a dose-dependent manner. CONCLUSIONS These results show that hydrogel fluorination does not impair its beneficial properties for scaffolded cells, which may be used to visualize scaffolded GRP transplants with 19F MRI.
Collapse
Affiliation(s)
- Marcin Piejko
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,3rd Department of General Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Xiaowei Li
- Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Mary and Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Zhang X, Morits M, Jonkergouw C, Ora A, Valle-Delgado JJ, Farooq M, Ajdary R, Huan S, Linder M, Rojas O, Sipponen MH, Österberg M. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules 2020. [PMID: 31992046 DOI: 10.1021/acs.biomac.1879b01745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ari Ora
- Department of Applied Physics, School of Science, Aalto University, FIN-02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Mika Henrikki Sipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
17
|
Zhang X, Morits M, Jonkergouw C, Ora A, Valle-Delgado JJ, Farooq M, Ajdary R, Huan S, Linder M, Rojas O, Sipponen MH, Österberg M. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules 2020; 21:1875-1885. [PMID: 31992046 PMCID: PMC7218745 DOI: 10.1021/acs.biomac.9b01745] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Morits
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Christopher Jonkergouw
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ari Ora
- Department
of Applied Physics, School of Science, Aalto
University, FIN-02150 Espoo, Finland
| | - Juan José Valle-Delgado
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Rubina Ajdary
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Siqi Huan
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Orlando Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Mika Henrikki Sipponen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
18
|
Chang HT, Heuer RA, Oleksijew AM, Coots KS, Roque CB, Nella KT, McGuire TL, Matsuoka AJ. An engineered three-dimensional stem cell niche in the inner ear by applying a nanofibrillar cellulose hydrogel with a sustained-release neurotrophic factor delivery system. Acta Biomater 2020; 108:111-127. [PMID: 32156626 PMCID: PMC7198367 DOI: 10.1016/j.actbio.2020.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
Although the application of human embryonic stem cells (hESCs) in stem cell-replacement therapy remains promising, its potential is hindered by a low cell survival rate in post-transplantation within the inner ear. Here, we aim to enhance the in vitro and in vivo survival rate and neuronal differentiation of otic neuronal progenitors (ONPs) by generating an artificial stem cell niche consisting of three-dimensional (3D) hESC-derived ONP spheroids with a nanofibrillar cellulose hydrogel and a sustained-release brain-derivative neurotrophic factor delivery system. Our results demonstrated that the transplanted hESC-derived ONP spheroids survived and neuronally differentiated into otic neuronal lineages in vitro and in vivo and also extended neurites toward the bony wall of the cochlea 90 days after the transplantation without the use of immunosuppressant medication. Our data in vitro and in vivo presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear. Using our protocol to create an artificial stem cell niche in the inner ear, it is now possible to work on integrating transplanted hESC-derived ONPs further and also to work toward achieving functional auditory neurons generated from hESCs. Our findings suggest that the provision of an artificial stem cell niche can be a future approach to stem cell-replacement therapy for inner-ear regeneration. STATEMENT OF SIGNIFICANCE: Inner ear regeneration utilizing human embryonic stem cell-derived otic neuronal progenitors (hESC-derived ONPs) has remarkable potential for treating sensorineural hearing loss. However, the local environment of the inner ear requires a suitable stem cell niche to allow hESC-derived ONP engraftment as well as neuronal differentiation. To overcome this obstacle, we utilized three-dimensional spheroid formation (direct contact), nanofibrillar cellulose hydrogel (extracellular matrix), and a neurotrophic factor delivery system to artificially create a stem cell niche in vitro and in vivo. Our in vitro and in vivo data presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear.
Collapse
Affiliation(s)
- Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA; Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
19
|
Koivuniemi R, Hakkarainen T, Kiiskinen J, Kosonen M, Vuola J, Valtonen J, Luukko K, Kavola H, Yliperttula M. Clinical Study of Nanofibrillar Cellulose Hydrogel Dressing for Skin Graft Donor Site Treatment. Adv Wound Care (New Rochelle) 2020; 9:199-210. [PMID: 32117583 PMCID: PMC7047117 DOI: 10.1089/wound.2019.0982] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: Skin graft donor site management is a concern particularly for elderly patients and patients with poor wound healing competence, and also because donor sites are a source of pain and discomfort. Although different types of dressings exist, there is no consensus regarding optimal dressing type on donor site care to promote healing, reduce pain, and improve patients' comfort. Approach: This prospective, single-center clinical trial evaluated the performance of nanofibrillar cellulose (NFC) wound dressing (FibDex® by UPM-Kymmene Corporation) for treatment of donor sites compared with a polylactide-based copolymer dressing. The study enrolled 24 patients requiring skin grafting with mean age of 49 ± 18. The primary outcome measure was wound healing time. Secondary outcomes, the epithelialization, subjective pain, the scar appearance assessed using the Patient and Observer Scar Assessment Scale (POSAS), and skin elasticity and transepidermal water loss (TEWL), were evaluated at 1 and 6 months postoperatively. Results: No statistically significant differences were observed between NFC and copolymer dressings regarding wound healing time, epithelialization, experience of pain, or TEWL. Significant differences were observed in the POSAS results for thickness and vascularity in the Observer score, in the favor of NFC over copolymer dressing. Moreover, skin elasticity was significantly improved with NFC dressing in terms of viscoelasticity and elastic modulus at 1 month postoperatively. Innovation: NFC dressing is a new, green sustainable product for wound treatment without animal or human-origin components. Conclusion: NFC dressing provides efficient wound healing at skin graft donor sites and is comparable or even preferable compared with the copolymer dressing.
Collapse
Affiliation(s)
- Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiina Hakkarainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jasmi Kiiskinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Jyrki Vuola
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Valtonen
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Heli Kavola
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Kamelnia E, Divsalar A, Darroudi M, Yaghmaei P, Sadri K. Synthesis, 99mTc-radiolabeling, and biodistribution of new cellulose nanocrystals from Dorema kopetdaghens. Int J Biol Macromol 2019; 146:299-310. [PMID: 31881307 DOI: 10.1016/j.ijbiomac.2019.12.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Cellulose nanocrystals (CNCs) are known as nano-biomaterials that can be achieved from the different sources. The designated CNCs have been successfully fabricated from the roots of Dorema kopetdaghens (Dk) plant by sulphuric acid hydrolysis method. Structural analysis has been carried out by the means of XRD, FTIR, and TGA/DTG procedures. The XRD results have indicated that the crystalline structure of CNCs had been cellulose I with the crystallinity index of 83.20% and size of 4.95 nm. The FTIR spectra have shown that the resulting samples have been related to the cellulose species. The thermal properties of CNCs have exhibited a lower thermal stability in comparison to the untreated roots. It has been indicated by the morphological analyses of FESEM, TEM, and AFM that the nanoparticles had contained a spherical shape. Also, the cytotoxicity of CNCs against A549 cell line has not exhibited any cytotoxic effects. The analysis of labeling efficiency in regards to 99mTc-CNCs has been observed to be above 98%, while the biodistribution of radioactivity has displayed a high uptake by the kidneys and blood circulation. Therefore, it is possible to transform the low-cost by-product into a beneficial substance such as CNCs that can be utilized in bioimaging applications.
Collapse
Affiliation(s)
- Elahe Kamelnia
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parichehr Yaghmaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Kayvan Sadri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Auvinen VV, Merivaara A, Kiiskinen J, Paukkonen H, Laurén P, Hakkarainen T, Koivuniemi R, Sarkanen R, Ylikomi T, Laaksonen T, Yliperttula M. Effects of nanofibrillated cellulose hydrogels on adipose tissue extract and hepatocellular carcinoma cell spheroids in freeze-drying. Cryobiology 2019; 91:137-145. [DOI: 10.1016/j.cryobiol.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
|
22
|
Kiiskinen J, Merivaara A, Hakkarainen T, Kääriäinen M, Miettinen S, Yliperttula M, Koivuniemi R. Nanofibrillar cellulose wound dressing supports the growth and characteristics of human mesenchymal stem/stromal cells without cell adhesion coatings. Stem Cell Res Ther 2019; 10:292. [PMID: 31547864 PMCID: PMC6757411 DOI: 10.1186/s13287-019-1394-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND In the field of regenerative medicine, delivery of human adipose-derived mesenchymal stem/stromal cells (hASCs) has shown great promise to promote wound healing. However, a hostile environment of the injured tissue has shown considerably to limit the survival rate of the transplanted cells, and thus, to improve the cell survival and retention towards successful cell transplantation, an optimal cell scaffold is required. The objective of this study was to evaluate the potential use of wood-derived nanofibrillar cellulose (NFC) wound dressing as a cell scaffold material for hASCs in order to develop a cell transplantation method free from animal-derived components for wound treatment. METHODS Patient-derived hASCs were cultured on NFC wound dressing without cell adhesion coatings. Cell characteristics, including cell viability, morphology, cytoskeletal structure, proliferation potency, and mesenchymal cell and differentiation marker expression, were analyzed using cell viability assays, electron microscopy, immunocytochemistry, and quantitative or reverse transcriptase PCR. Student's t test and one-way ANOVA followed by a Tukey honestly significant difference post hoc test were used to determine statistical significance. RESULTS hASCs were able to adhere to NFC dressing and maintained high cell survival without cell adhesion coatings with a cell density-dependent manner for the studied period of 2 weeks. In addition, NFC dressing did not induce any remarkable cytotoxicity towards hASCs or alter the morphology, proliferation potency, filamentous actin structure, the expression of mesenchymal vimentin and extracellular matrix (ECM) proteins collagen I and fibronectin, or the undifferentiated state of hASCs. CONCLUSIONS As a result, NFC wound dressing offers a functional cell culture platform for hASCs to be used further for in vivo wound healing studies in the future.
Collapse
Affiliation(s)
- Jasmi Kiiskinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Tiina Hakkarainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| |
Collapse
|
23
|
Oliveira EP, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Kwiatkowska J, Reis RL, Oliveira JM, Walczak P. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater 2019; 95:60-72. [PMID: 31075514 DOI: 10.1016/j.actbio.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 01/03/2023]
Abstract
Due to increasing life expectancy incidence of neurological disorders is rapidly rising, thus adding urgency to develop effective strategies for treatment. Stem cell-based therapies were considered highly promising and while progress in this field is evident, outcomes of clinical trials are rather disappointing. Suboptimal engraftment, poor cell survival and uncontrolled differentiation may be the reasons behind dismal results. Clearly, new direction is needed and we postulate that with recent progress in biomaterials and bioprinting, regenerative approaches for neurological applications may be finally successful. The use of biomaterials aids engraftment of stem cells, protects them from harmful microenvironment and importantly, it facilitates the incorporation of cell-supporting molecules. The biomaterials used in bioprinting (the bioinks) form a scaffold for embedding the cells/biomolecules of interest, but also could be exploited as a source of endogenous contrast or supplemented with contrast agents for imaging. Additionally, bioprinting enables patient-specific customization with shape/size tailored for actual needs. In stroke or traumatic brain injury for example lesions are localized and focal, and usually progress with significant loss of tissue volume creating space that could be filled with artificial tissue using bioprinting modalities. The value of imaging for bioprinting technology is advantageous on many levels including design of custom shapes scaffolds based on anatomical 3D scans, assessment of performance and integration after scaffold implantation, or to learn about the degradation over time. In this review, we focus on bioprinting technology describing different printing techniques and properties of biomaterials in the context of requirements for neurological applications. We also discuss the need for in vivo imaging of implanted materials and tissue constructs reviewing applicable imaging modalities and type of information they can provide. STATEMENT OF SIGNIFICANCE: Current stem cell-based regenerative strategies for neurological diseases are ineffective due to inaccurate engraftment, low cell viability and suboptimal differentiation. Bioprinting and embedding stem cells within biomaterials at high precision, including building complex multi-material and multi-cell type composites may bring a breakthrough in this field. We provide here comprehensive review of bioinks, bioprinting techniques applicable to application for neurological disorders. Appreciating importance of longitudinal monitoring of implanted scaffolds, we discuss advantages of various imaging modalities available and suitable for imaging biomaterials in the central nervous system. Our goal is to inspire new experimental approaches combining imaging, biomaterials/bioinks, advanced manufacturing and tissue engineering approaches, and stimulate interest in image-guided therapies based on bioprinting.
Collapse
Affiliation(s)
- Eduarda P Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | | | - Dominika Golubczyk
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Kwiatkowska
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Piotr Walczak
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland; Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
24
|
Harjumäki R, Nugroho RWN, Zhang X, Lou YR, Yliperttula M, Valle-Delgado JJ, Österberg M. Quantified forces between HepG2 hepatocarcinoma and WA07 pluripotent stem cells with natural biomaterials correlate with in vitro cell behavior. Sci Rep 2019; 9:7354. [PMID: 31089156 PMCID: PMC6517585 DOI: 10.1038/s41598-019-43669-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
In vitro cell culture or tissue models that mimic in vivo cellular response have potential in tissue engineering and regenerative medicine, and are a more economical and accurate option for drug toxicity tests than animal experimentation. The design of in vivo-like cell culture models should take into account how the cells interact with the surrounding materials and how these interactions affect the cell behavior. Cell-material interactions are furthermore important in cancer metastasis and tumor progression, so deeper understanding of them can support the development of new cancer treatments. Herein, the colloidal probe microscopy technique was used to quantify the interactions of two cell lines (human pluripotent stem cell line WA07 and human hepatocellular carcinoma cell line HepG2) with natural, xeno-free biomaterials of different chemistry, morphology, and origin. Key components of extracellular matrices -human collagens I and IV, and human recombinant laminin-521-, as well as wood-derived, cellulose nanofibrils -with evidenced potential for 3D cell culture and tissue engineering- were analysed. Both strength of adhesion and force curve profiles depended on biomaterial nature and cell characteristics. The successful growth of the cells on a particular biomaterial required cell-biomaterial adhesion energies above 0.23 nJ/m. The information obtained in this work supports the development of new materials or hybrid scaffolds with tuned cell adhesion properties for tissue engineering, and provides a better understanding of the interactions of normal and cancerous cells with biomaterials in the human body.
Collapse
Affiliation(s)
- Riina Harjumäki
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Robertus Wahyu N Nugroho
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131, Padova, Italy
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| |
Collapse
|
25
|
Yan Q, Liu L, Wang T, Wang H. A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04501-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Du H, Liu W, Zhang M, Si C, Zhang X, Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 2019; 209:130-144. [PMID: 30732792 DOI: 10.1016/j.carbpol.2019.01.020] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.
Collapse
Affiliation(s)
- Haishun Du
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA; CAS Key Laboratory of Biofuels, CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Miaomiao Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Bin Li
- CAS Key Laboratory of Biofuels, CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
27
|
op 't Veld RC, Joosten L, van den Boomen OI, Boerman OC, Kouwer P, Middelkoop E, Rowan AE, Jansen JA, Walboomers XF, Wagener FADTG. Monitoring 111In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomater Sci 2019; 7:3041-3050. [DOI: 10.1039/c9bm00661c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Applying PIC hydrogel wound dressings functionalized and labelled with 111In-DTPA to skin wounds allows monitoring of biodistribution with SPECT/CT.
Collapse
|
28
|
Dual pH-/temperature-responsive and fluorescent hydrogel for controlled drug delivery. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2016-0228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe purpose of this investigation is to develop a dual pH-/temperature-responsive and fluorescent hydrogel based on piperazine and Pluronic F127 (PF127). Firstly, polyurethane was synthesized using 1,6-hexamethylene diisocyanate, 1,4-bis(hydroxyethyl) piperazine, and PF127 by a step polymerization process. Erythrosine B (EB) is then incorporated into copolymers to offer a fluorescence property. The polyurethane-PF127-EB copolymer can spontaneously self-assemble into hydrogels with a great number of closely packed micelles, and the hydrogels also have the ability to undergo thermo-sensitive sol-gel phase transition above the critical gelation concentration. The gelation temperature can be adjusted near the physiological condition by modulating the concentration of the copolymer in an aqueous medium. The acid-titration curves indicate a good pH-responsive property, and the UV-vis and fluorescence spectra exhibit strong self-fluorescence signals for hydrogels. As a result, the hydrogels not only can serve as drug carriers but can also be utilized as fluorescence imaging probes in biomedical applications.
Collapse
|
29
|
Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 2017; 532:269-280. [DOI: 10.1016/j.ijpharm.2017.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/24/2022]
|
30
|
Laurén P, Somersalo P, Pitkänen I, Lou YR, Urtti A, Partanen J, Seppälä J, Madetoja M, Laaksonen T, Mäkitie A, Yliperttula M. Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems. PLoS One 2017; 12:e0183487. [PMID: 28829830 PMCID: PMC5567492 DOI: 10.1371/journal.pone.0183487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022] Open
Abstract
Hydrogel nanomaterials, especially those that are of non-human and non-animal origins, have great potential in biomedical and pharmaceutical sciences due to their versatility and inherent soft-tissue like properties. With the ability to simulate native tissue function, hydrogels are potentially well suited for cellular therapy applications. In this study, we have fabricated nanofibrillar cellulose-alginate (NFCA) suture coatings as biomedical devices to help overcome some of the limitations related to cellular therapy, such as low cell survivability and distribution out of target tissue. The addition of sodium alginate 8% (w/v) increased the NFCA hydrogel viscosity, storage and loss moduli by slightly under one order of magnitude, thus contributing significantly to coating strength. Confocal microscopy showed nearly 100% cell viability throughout the 2-week incubation period within and on the surface of the coating. Additionally, typical morphologies in the dual cell culture of spheroid forming HepG2 and monolayer type SK-HEP-1 were observed. Twelve out of 14 NFCA coated surgical sutures remained intact during the suturing operation with various mice and rat tissue; however, partial peeling off was observed in 2 of the coated sutures. We conclude that NFCA suture coatings could perform as cell-carrier systems for cellular based therapy and post-surgical treatment.
Collapse
Affiliation(s)
- Patrick Laurén
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Petter Somersalo
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Irina Pitkänen
- Department of Engineering Design and Production, School of Engineering, Aalto University, Espoo, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jouni Partanen
- Department of Engineering Design and Production, School of Engineering, Aalto University, Espoo, Finland
| | - Jukka Seppälä
- Department of Engineering Design and Production, School of Engineering, Aalto University, Espoo, Finland
| | | | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Gorgieva S, Girandon L, Kokol V. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:478-489. [PMID: 28183635 DOI: 10.1016/j.msec.2016.12.092] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/30/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Cellulose-nanofibrils (CNFs) enriched gelatine (GEL) scaffolds were fabricated in-situ by the combined freeze-thawing process and carbodiimide crosslinking chemistry. The original- and variously surface anionised CNFs (carboxylated/CNF-COOH/, and phosphonated with 3-AminoPropylphosphoric Acid/CNF-COOH-ApA/) were used in order to tune the scaffolds' biomimetic structure towards a more intensive mineralization process. The pore size reduction (from 208±35μm to 91±35μm) after 50% v/v of CNFs addition to GEL was identified, while separated pore-walls' alignment vs. shorter, dense and elongated pores are observed when using 80% v/v of original-CNFs vs. anionised-CNFs, all of them possessed osteoid-like compressive strength (0.025-0.40MPa) and elasticity (0.04-0.15MPa). While randomly distributed Ca2+-deficient hydroxyapatite/HAp/(Ca/P≈1.4) aggregates were identified in the case of original-CNF prevalent scaffolds after four weeks of incubation in SBF, the more uniform and intensified deposition with HAp-like (Ca/P≈1.69) structures were established using CNF-COOH-Apa. The growth of Mesenchymal Stem Cells (MSCs) was observed on all CNF-containing scaffolds, resulting in more extensive Ca2+ deposition compared to the positive control or pure GEL scaffold. Among them, the scaffold prepared with the 50% v/v CNF-COOH-ApA showed significantly increased mineralization kinetic as well as the capacity for bone-like patterning in bone tissue regeneration.
Collapse
Affiliation(s)
- Selestina Gorgieva
- University of Maribor, Institute of Engineering Materials and Design, Maribor, Slovenia
| | | | - Vanja Kokol
- University of Maribor, Institute of Engineering Materials and Design, Maribor, Slovenia.
| |
Collapse
|
32
|
Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-Lucea C, Sanz-Garcia A, Vuola J, Valtonen J, Tammela P, Mäkitie A, Luukko K, Yliperttula M, Kavola H. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 2016; 244:292-301. [DOI: 10.1016/j.jconrel.2016.07.053] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
|
33
|
Singh G, Chandoha-Lee C, Zhang W, Renneckar S, Vikesland PJ, Pruden A. Biodegradation of nanocrystalline cellulose by two environmentally-relevant consortia. WATER RESEARCH 2016; 104:137-146. [PMID: 27522024 DOI: 10.1016/j.watres.2016.07.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Nanocellulose is growing in popularity due to its versatile properties and applications. However, there is a void of knowledge regarding the environmental fate of nanocellulose and the response of environmental microbial communities that are historically adapted to non-nano cellulose forms. Given its distinction in terms of size and chemical and physical properties, nanocellulose could potentially resist biodegradation and/or pose a xenobiotic influence on microbial communities during wastewater treatment or in receiving environments. In this study, biodegradation of H2SO4 hydrolyzed nanocrystalline cellulose (HNC) was compared with that of microcrystalline cellulose using two distinct anaerobic cellulose-degrading microbial consortia initially sourced from anaerobic digester (AD) and wetland (W) inocula. Equivalent cellulose masses were dosed and monitored with time by measurement of liberated glucose. HNC biodegraded at slightly faster rate than microcrystalline cellulose (1st order decay constants: 0.62 ± 0.08 wk-1 for HNC versus 0.39 ± 0.05 wk-1 for microcrystalline cellulose for the AD consortium; 0.69 ± 0.04 wk-1for HNCversus 0.58 ± 0.05 wk-1 for microcrystalline cellulose for the W consortium). 16S rRNA (total bacteria) and cel48 (glycoside hydrolase gene family 48, indicative of cellulose-degrading potential) genes were observed to be more enriched in the HNC condition for both consortia. According to Illumina amplicon sequencing of 16S rRNA genes, the composition of the consortia underwent distinct shifts in concert with HNC versus microcrystalline cellulose degradation. This study demonstrates that the biodegradation of cellulose is not inhibited in the nano-size range, particularly in the crystalline form, though the microbes and pathways involved likely differ.
Collapse
Affiliation(s)
- Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Wei Zhang
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24060, USA; Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Scott Renneckar
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
34
|
Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydr Polym 2015; 134:673-9. [DOI: 10.1016/j.carbpol.2015.08.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
|