1
|
Orzel D, Ravald H, Dillon A, Rantala J, Wiedmer SK, Russo G. Immobilised artificial membrane liquid chromatography vs liposome electrokinetic capillary chromatography: Suitability in drug/bio membrane partitioning studies and effectiveness in the assessment of the passage of drugs through the respiratory mucosa. J Chromatogr A 2024; 1734:465286. [PMID: 39191185 DOI: 10.1016/j.chroma.2024.465286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
This study pioneers a comparison of the application of biomimetic techniques, immobilised artificial membrane liquid chromatography (IAM LC) and liposome electrokinetic capillary chromatography (LEKC), for the prediction of pulmonary drug permeability. The pulmonary absorption profiles of 26 structurally unrelated drug-like molecules were evaluated using their IAM hydrophobicity index (CHI IAM) measured in IAM LC, and the logarithm of distribution constants (log KLEKC) derived from the LEKC experiments. Lipophilicity (phospholipids) parameters obtained from IAM LC and most LEKC analyses were linearly related to the n-octanol/water partitioning coefficients of the neutral forms (i.e., log Po/w values) to a moderate extent. However, the relationship with distribution coefficients at the experimental pH (7.4) (i.e., log D7.4) were weaker overall for IAM LC data and sigmoidal for some liposome compositions (phosphatidyl choline (PC): phosphatidyl inositol (PI) 85:15 mol% and 90:10 mol%) and concentrations (4 mM) in LEKC. This suggests that phospholipid partitioning supports both hydrophobic and electrostatic interactions occurring between ionised drugs and charged phospholipid moieties. The latter interactions are original when compared to those taking place in the more established n-octanol/water partitioning systems. A stronger correlation (R2 > 0.65) was identified between the LEKC retention parameters, and the experimental apparent lung permeability (i.e., log Papp values) as opposed to the values obtained by IAM LC. Therefore, LEKC offers unprecedented advantages over IAM LC in simulating cell membrane partitioning processes in the pulmonary delivery of drugs. Although LEKC has the advantage of more effectively simulating the electrostatic and hydrophobic forces in drug/pulmonary membrane interactions in vitro, the technique is unsuitable for analysing highly hydrophilic neutral or anionic compounds at the experimental pH. Conversely, IAM LC is useful for analysing compounds spanning a wider range of lipophilicity. Its simpler and more robust implementation, and propensity for high-throughput automation make it a favourable choice for researchers in drug development and pharmacological studies.
Collapse
Affiliation(s)
- Dorota Orzel
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, United Kingdom
| | - Henri Ravald
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55 00014, Finland
| | - Amy Dillon
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, United Kingdom
| | - Julia Rantala
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55 00014, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55 00014, Finland.
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, United Kingdom.
| |
Collapse
|
2
|
Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery. Expert Opin Drug Discov 2024; 19:1087-1098. [PMID: 38957047 DOI: 10.1080/17460441.2024.2374409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements. AREAS COVERED Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented. EXPERT OPINION IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Baghersad MH, Habibi A, Dehdashti Nejad A. Novel uncharged triazole salicylaldoxime derivatives as potential acetylcholinesterase reactivators: comprehensive computational study, synthesis and in vitro evaluation. RSC Adv 2023; 13:28527-28541. [PMID: 37780731 PMCID: PMC10534079 DOI: 10.1039/d3ra05658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
The present study aims to design and synthesise novel uncharged aldoximes and explore their reactivation abilities, structures, descriptors, and mechanisms of action, as well as assessing the interactions and stabilities in the active site of paraoxon-inhibited acetylcholinesterase enzyme using computational studies and in vitro assay. The comprehensive computational studies including quantum chemical, molecular dynamics simulations and molecular docking were conducted on paraoxon-inhibited human acetylcholinesterase to investigate the reactivation ability of the novel aldoximes and compare them with pralidoxime as a reactivator model molecule.
Collapse
Affiliation(s)
- Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
| | - Azizollah Habibi
- Faculty of Chemistry, Kharazmi University No. 43, P. Code 15719-14911, Mofatteh Street, Enghelab Ave. Tehran Iran
| | - Arash Dehdashti Nejad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Vallianatou T, Tsopelas F, Tsantili-Kakoulidou A. Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data. Molecules 2022; 27:molecules27123668. [PMID: 35744794 PMCID: PMC9227077 DOI: 10.3390/molecules27123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The development of high-throughput approaches for the valid estimation of brain disposition is of great importance in the early drug screening of drug candidates. However, the complexity of brain tissue, which is protected by a unique vasculature formation called the blood−brain barrier (BBB), complicates the development of robust in silico models. In addition, most computational approaches focus only on brain permeability data without considering the crucial factors of plasma and tissue binding. In the present study, we combined experimental data obtained by HPLC using three biomimetic columns, i.e., immobilized artificial membranes, human serum albumin, and α1-acid glycoprotein, with molecular descriptors to model brain disposition of drugs. Kp,uu,brain, as the ratio between the unbound drug concentration in the brain interstitial fluid to the corresponding plasma concentration, brain permeability, the unbound fraction in the brain, and the brain unbound volume of distribution, was collected from literature. Given the complexity of the investigated biological processes, the extracted models displayed high statistical quality (R2 > 0.6), while in the case of the brain fraction unbound, the models showed excellent performance (R2 > 0.9). All models were thoroughly validated, and their applicability domain was estimated. Our approach highlighted the importance of phospholipid, as well as tissue and protein, binding in balance with BBB permeability in brain disposition and suggests biomimetic chromatography as a rapid and simple technique to construct models with experimental evidence for the early evaluation of CNS drug candidates.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Correspondence: (T.V.); (A.T.-K.)
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece;
| | - Anna Tsantili-Kakoulidou
- Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
- Correspondence: (T.V.); (A.T.-K.)
| |
Collapse
|
5
|
Kosinska GP, Ognichenko LM, Shyrykalova AO, Burdina YF, Artemenko AG, Kuz’min VE. Influence of Chemical Structure of Molecules on Blood–Brain Barrier Permeability on the Pampa Model. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Grumetto L, Russo G. cΔlog k w IAM: can we afford estimation of small molecules' blood-brain barrier passage based upon in silico phospholipophilicity? ADMET AND DMPK 2021; 9:267-281. [PMID: 35300371 PMCID: PMC8920103 DOI: 10.5599/admet.1034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/27/2021] [Indexed: 11/18/2022] Open
Abstract
56 compounds, whose log BB values were known from the scientific literature, were considered and their phospholipophilicity values were calculated in silico. These values, along with either experimentally determined or calculated lipophilicity values, were used to extract cΔ/Δ'log k w IAM parameters. cΔ/Δ'log k w IAM values were found inversely related to data of blood-brain barrier passage, especially in the < -0.20 log BB range and on the IAM.PC.DD2 phase (r2 = 0.79). In multiple linear regression, satisfactory statistic models (r2 (n-1) = 0.76), based on cΔ/Δ'log k w IAM.MG along with other in silico calculated descriptors, were achieved. This method brings the potential to be applied, along with other methodologies, to filter out solutes whose BBB permeation is foreseen to be substandard, thus allowing pharmaceutical companies/research institutes to focus on candidates that are more likely to concentrate in the brain.
Collapse
Affiliation(s)
- Lucia Grumetto
- Pharm-Analysis & Bio-Pharm Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131, Naples, Italy
| | - Giacomo Russo
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN Edinburgh, United Kingdom
| |
Collapse
|
7
|
Figueroa-Villar JD, Petronilho EC, Kuca K, Franca TCC. Review about Structure and Evaluation of Reactivators of Acetylcholinesterase Inhibited with Neurotoxic Organophosphorus Compounds. Curr Med Chem 2021; 28:1422-1442. [PMID: 32334495 DOI: 10.2174/0929867327666200425213215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurotoxic chemical warfare agents can be classified as some of the most dangerous chemicals for humanity. The most effective of those agents are the Organophosphates (OPs) capable of restricting the enzyme Acetylcholinesterase (AChE), which in turn, controls the nerve impulse transmission. When AChE is inhibited by OPs, its reactivation can be usually performed through cationic oximes. However, until today, it has not been developed one universal defense agent, with complete effective reactivation activity for AChE inhibited by any of the many types of existing neurotoxic OPs. For this reason, before treating people intoxicated by an OP, it is necessary to determine the neurotoxic compound that was used for contamination, in order to select the most effective oxime. Unfortunately, this task usually requires a relatively long time, raising the possibility of death. Cationic oximes also display a limited capacity of permeating the Blood-Brain Barrier (BBB). This fact compromises their capacity to reactivating AChE inside the nervous system. METHODS We performed a comprehensive search on the data about OPs available on the scientific literature today in order to cover all the main drawbacks still faced in the research for the development of effective antidotes against those compounds. RESULTS Therefore, this review about neurotoxic OPs and the reactivation of AChE, provides insights for the new agents' development. The most expected defense agent is a molecule without toxicity and effective to reactivate AChE inhibited by all neurotoxic OPs. CONCLUSION To develop these new agents, the application of diverse scientific areas of research, especially theoretical procedures as computational science (computer simulation, docking and dynamics), organic synthesis, spectroscopic methodologies, biology, biochemical and biophysical information, medicinal chemistry, pharmacology and toxicology, is necessary.
Collapse
Affiliation(s)
- José Daniel Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Elaine C Petronilho
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| |
Collapse
|
8
|
Into the first biomimetic sphingomyelin stationary phase: Suitability in drugs’ biopharmaceutic profiling and block relevance analysis of selectivity. Eur J Pharm Sci 2021; 156:105585. [DOI: 10.1016/j.ejps.2020.105585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
|
9
|
Comprehensive two-dimensional liquid chromatography as a biomimetic screening platform for pharmacokinetic profiling of compound libraries in early drug development. Anal Chim Acta 2020; 1142:157-168. [PMID: 33280693 DOI: 10.1016/j.aca.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022]
Abstract
A comprehensive two-dimensional liquid chromatography-based biomimetic platform (LCxLC) has been developed and validated for drug diffusion studies. Human serum albumin (HSA) and immobilized artificial membrane (IAM) were thereby used in the first (1D) and second (2D) separation dimension, respectively. While the former was meant to emulate the blood, the latter was instead intended to mimic the intestinal mucosa epithelium. Therefore, the experimental conditions, i.e. pH, temperature and buffer composition, were modulated to reflect faithfully in vivo conditions. 30 compounds, whose effective intestinal permeability (Peff) assayed in situ on humans by a validated technique was known from the literature, were used as model drugs. A good and orthogonal separation was achieved for the whole dataset, although for a better distribution of the most polar compounds in the elution window a segmented gradient elution program had to be employed. Interestingly, the passively uptaken compounds having the most favourable Peff populated a specific area of the 2D plots, implying that the affinity for HSA and IAM has to lie in specific ranges in order for a compound to be satisfactorily absorbed from the intestinal lumen. Although these results should be regarded as preliminary, this work paves an entirely new and unprecedented way to profile pharmaceutically relevant compounds for their in vivo absorption and distribution potential.
Collapse
|
10
|
Ciura K, Fedorowicz J, Žuvela P, Lovrić M, Kapica H, Baranowski P, Sawicki W, Wong MW, Sączewski J. Affinity of Antifungal Isoxazolo[3,4- b]pyridine-3(1 H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography. Molecules 2020; 25:E4835. [PMID: 33092252 PMCID: PMC7587931 DOI: 10.3390/molecules25204835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023] Open
Abstract
Currently, rapid evaluation of the physicochemical parameters of drug candidates, such as lipophilicity, is in high demand owing to it enabling the approximation of the processes of absorption, distribution, metabolism, and elimination. Although the lipophilicity of drug candidates is determined using the shake flash method (n-octanol/water system) or reversed phase liquid chromatography (RP-LC), more biosimilar alternatives to classical lipophilicity measurement are currently available. One of the alternatives is immobilized artificial membrane (IAM) chromatography. The present study is a continuation of our research focused on physiochemical characterization of biologically active derivatives of isoxazolo[3,4-b]pyridine-3(1H)-ones. The main goal of this study was to assess the affinity of isoxazolones to phospholipids using IAM chromatography and compare it with the lipophilicity parameters established by reversed phase chromatography. Quantitative structure-retention relationship (QSRR) modeling of IAM retention using differential evolution coupled with partial least squares (DE-PLS) regression was performed. The results indicate that in the studied group of structurally related isoxazolone derivatives, discrepancies occur between the retention under IAM and RP-LC conditions. Although some correlation between these two chromatographic methods can be found, lipophilicity does not fully explain the affinities of the investigated molecules to phospholipids. QSRR analysis also shows common factors that contribute to retention under IAM and RP-LC conditions. In this context, the significant influences of WHIM and GETAWAY descriptors in all the obtained models should be highlighted.
Collapse
Affiliation(s)
- Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (H.K.); (P.B.); (W.S.)
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Petar Žuvela
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (P.Ž.); (M.W.W.)
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13, AT-8010 Graz, Austria;
| | - Hanna Kapica
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (H.K.); (P.B.); (W.S.)
| | - Paweł Baranowski
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (H.K.); (P.B.); (W.S.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (H.K.); (P.B.); (W.S.)
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (P.Ž.); (M.W.W.)
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
11
|
Affinity of Fluoroquinolone–Safirinium Dye Hybrids to Phospholipids Estimated by IAM-HPLC. Processes (Basel) 2020. [DOI: 10.3390/pr8091148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nowadays, fluoroquinolones (FQs) constitute one of the most important classes of antibiotics. FQs are used to treat infections caused by Gram-positive and Gram-negative species. A set of fluoroquinolone–Safirinium dye hybrids has been synthesized in our laboratory as potential new dual-action antibacterial agents. In the present study we have evaluated how such a modification influences the affinity of FQs to phospholipids. The immobilized artificial membrane (IAM) high-performance liquid chromatography (IAM-HPLC) was used as a tool for the determination of phospholipids partitioning. The obtained results indicate that the fluoroquinolone–Safirinium dye hybrids, especially the SafiriniumP conjugates, display significantly lower affinity to phospholipids than the parent FQs. Despite the fact that the hybrid structures comprise a quaternary nitrogen atom and hence are permanently charged, the attractive electrostatic interactions between the solutes and negatively charged phospholipids do not occur or occur at a lesser extent than in the case of the unmodified FQs. Since affinity of FQs to phospholipids involves molecular mechanism, which is not entirely determined by lipophilicity, assessment of phospholipid partitioning should be considered at the early stage of the development of new FQ antibiotics.
Collapse
|
12
|
Tsantili-Kakoulidou A. How can we better realize the potential of immobilized artificial membrane chromatography in drug discovery and development? Expert Opin Drug Discov 2020; 15:273-276. [DOI: 10.1080/17460441.2020.1718101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Iwakuma Y, Okamoto H, Hamaguchi R, Kuroda Y. The Limited Contribution of the Analyte Partition to the Water-Rich Layer in Immobilized Artificial Membrane Chromatography with an Acetonitrile-Rich Binary Mobile Phase. Chromatographia 2019. [DOI: 10.1007/s10337-019-03750-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Grumetto L, Barbato F, Russo G. Scrutinizing the interactions between bisphenol analogues and plasma proteins: Insights from biomimetic liquid chromatography, molecular docking simulations and in silico predictions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:148-154. [PMID: 30903934 DOI: 10.1016/j.etap.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The interactions between human serum albumin (HSA) and α1- acid glycoprotein (AGP), the main plasma proteins binding drugs/xenobiotics, and some endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and some of its structural analogues, bisphenol S (BPS), bisphenol F (BPF), bisphenol E (BPE), bisphenol B (BPB), bisphenol AF (BPAF), bisphenol A diglycidyl ether (BADGE) and bisphenol M (BPM), were characterized by biomimetic liquid chromatography (LC). The interactions between bisphenols (BPs) and either HSA or AGP protein was found to be non-specific and essentially lipophilicity-driven. To get more information on the binding of BPs and plasma proteins, in silico predictions and molecular docking simulations were exploited, and the results achieved in silico were compared to those observed in vitro. BPM was the one exhibiting the highest affinity on both plasma proteins according to these data. Our findings clarified the binding of these EDCs to plasma proteins and offered insights into the biodistribution and bioaccumulation processes underlying their toxicity.
Collapse
Affiliation(s)
- Lucia Grumetto
- Pharm-Analysis & Bio-Pharm Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131, Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136, Rome, Italy
| | - Francesco Barbato
- Pharm-Analysis & Bio-Pharm Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131, Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136, Rome, Italy
| | - Giacomo Russo
- Pharm-Analysis & Bio-Pharm Laboratory, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131, Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136, Rome, Italy.
| |
Collapse
|
15
|
Sala B, Giménez J, de Stephanis R, Barceló D, Eljarrat E. First determination of high levels of organophosphorus flame retardants and plasticizers in dolphins from Southern European waters. ENVIRONMENTAL RESEARCH 2019; 172:289-295. [PMID: 30822562 DOI: 10.1016/j.envres.2019.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
This study evaluates for the first time organophosphorus flame retardant (OPFR) occurrence in the Alboran Sea delphinids (Spain). OPFRs were detected in all the individuals with concentration levels up to 24.7 µg/g lw. Twelve out of sixteen tested analytes were detected, being TBOEP which presented the highest detection frequency, and IDPP which presented the highest levels of concentration. OPFR distribution in different tissues (blubber, brain, kidney, muscle and liver) was evaluated. The pattern distribution showed the highest contribution for blubber (mean value of 68%) and the lowest contribution for liver (mean value of 2%). Seven OPFRs were detected in brain samples showing their capacity to surpass the blood-brain barrier and reach the brain. Moreover, high affinity for the brain tissue was observed. This is extremely important due to the neurotoxic effects of several compounds such as TCEP and TNBP. OPFR levels were compared with previously published PBDE concentrations, and no significant differences were observed. Taking into account the lower use and lower bioaccumulation and biomagnification capacities of OPFRs, this could indicate an additional OPFR source of pollution in addition to their use as FRs.
Collapse
Affiliation(s)
- B Sala
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J Giménez
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta 27-49, 08003 Barcelona, Spain
| | - R de Stephanis
- Conservation, Information and Research on Cetaceans (CIRCE), Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cádiz, Spain
| | - D Barceló
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003 Girona, Spain
| | - E Eljarrat
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
16
|
Russo G, Barbato F, Grumetto L, Philippe L, Lynen F, Goetz GH. Entry of therapeutics into the brain: Influence of exposed polarity calculated in silico and measured in vitro by supercritical fluid chromatography. Int J Pharm 2019; 560:294-305. [DOI: 10.1016/j.ijpharm.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
|
17
|
pH-dependent surface electrostatic effects in retention on immobilized artificial membrane chromatography: Determination of the intrinsic phospholipid-water sorption coefficients of diverse analytes. J Chromatogr A 2018; 1570:172-182. [DOI: 10.1016/j.chroma.2018.07.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 11/18/2022]
|
18
|
Russo G, Grumetto L, Szucs R, Barbato F, Lynen F. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry. Eur J Pharm Biopharm 2018; 127:72-84. [PMID: 29427629 DOI: 10.1016/j.ejpb.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/29/2023]
Abstract
The Blood-Brain Barrier (BBB) plays an essential role in protecting the brain tissues against possible injurious substances. In the present work, 79 neutral, basic, acidic and amphoteric structurally unrelated analytes were considered and their chromatographic retention coefficients on immobilized artificial membrane (IAM) stationary phase were determined employing a mass spectrometry (MS)-compatible buffer based on ammonium acetate. Their BBB passage predictive strength was evaluated and the statistical models based on IAM indexes and in silico physico-chemical descriptors showed solid statistics (r2 (n - 1) = 0.78). The predictive strength of the indexes achieved by the MS-compatible method was comparable to that achieved by employing the more "biomimetic" Dulbecco's phosphate buffered saline, even if some differences in the elution order were observed. The method was transferred to the MS, employing a diode-array-detection coupled to an electrospray ionization source and a time-of-flight analyzer. This setup allowed the simultaneous analysis of up to eight analytes, yielding a remarkable acceleration of the analysis time.
Collapse
Affiliation(s)
- Giacomo Russo
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, B-9000 Gent, Belgium; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Roman Szucs
- Pfizer Global R&D, Sandwich CT13 9NJ, Kent, United Kingdom
| | - Francesco Barbato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, B-9000 Gent, Belgium.
| |
Collapse
|
19
|
Tsopelas F, Tsagkrasouli M, Poursanidis P, Pitsaki M, Vasios G, Danias P, Panderi I, Tsantili-Kakoulidou A, Giaginis C. Retention behavior of flavonoids on immobilized artificial membrane chromatography and correlation with cell-based permeability. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering; National Technical University of Athens; Athens Greece
| | - Maria Tsagkrasouli
- Department of Pharmaceutical Chemistry, School of Pharmacy; National and Kapodistrian University of Athens; Athens Greece
- Department of Food Science and Nutrition, School of Environment; University of the Aegean; Lemnos Greece
| | - Pavlos Poursanidis
- Department of Food Science and Nutrition, School of Environment; University of the Aegean; Lemnos Greece
| | - Maria Pitsaki
- Department of Food Science and Nutrition, School of Environment; University of the Aegean; Lemnos Greece
| | - George Vasios
- Department of Food Science and Nutrition, School of Environment; University of the Aegean; Lemnos Greece
| | - Panagiotis Danias
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering; National Technical University of Athens; Athens Greece
| | - Irene Panderi
- Department of Pharmaceutical Chemistry, School of Pharmacy; National and Kapodistrian University of Athens; Athens Greece
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy; National and Kapodistrian University of Athens; Athens Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment; University of the Aegean; Lemnos Greece
| |
Collapse
|
20
|
Tsopelas F, Giaginis C, Tsantili-Kakoulidou A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov 2017. [PMID: 28644732 DOI: 10.1080/17460441.2017.1344210] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Lipophilicity, expressed as the octanol-water partition coefficient, constitutes the most important property in drug action, influencing both pharmacokinetic and pharmacodynamics processes as well as drug toxicity. On the other hand, biomimetic properties defined as the retention outcome on HPLC columns containing a biological relevant agent, provide a considerable advance for rapid experimental - based estimation of ADME properties in early drug discovery stages. Areas covered: This review highlights the paramount importance of lipophilicity in almost all aspects of drug action and safety. It outlines problems brought about by high lipophilicity and provides an overview of the drug-like metrics which incorporate lower limits or ranges of logP. The fundamental factors governing lipophilicity are compared to those involved in phospholipophilicity, assessed by Immobilized Artificial Membrane Chromatography (IAM). Finally, the contribution of biomimetic properties to assess plasma protein binding is evaluated. Expert opinion: Lipophilicity and biomimetic properties have important distinct and overlapping roles in supporting the drug discovery process. Lipophilicity is unique in early drug design for library screening and for the identification of the most promising compounds to start with, while biomimetic properties are useful for the experimentally-based evaluation of ADME properties for the synthesized novel compounds, supporting the prioritization of drug candidates and guiding further synthesis.
Collapse
Affiliation(s)
- Fotios Tsopelas
- a Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering , National Technical University of Athens , Athens , Greece
| | - Constantinos Giaginis
- b Department of Food Science and Nutrition , School of Environment, University of the Aegean , Myrina , Lemnos , Greece
| | - Anna Tsantili-Kakoulidou
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
21
|
Tsopelas F, Stergiopoulos C, Tsakanika LA, Ochsenkühn-Petropoulou M, Tsantili-Kakoulidou A. The use of immobilized artificial membrane chromatography to predict bioconcentration of pharmaceutical compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:150-157. [PMID: 28130991 DOI: 10.1016/j.ecoenv.2017.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 05/27/2023]
Abstract
The potential of immobilized artificial membrane chromatography (IAM) to predict bioconcentration factors (BCF) of pharmaceutical compounds in aquatic organisms was studied. For this purpose, retention factors extrapolated to pure aqueous phase, logkw(IAM), of 27 drugs were measured on an IAM stationary phase, IAM.PC.MG type. The data were combined with retention factors on two IAM columns, IAM.PC.MG and IAM.PC.DD2 types, reported previously by our research group and correlated with logBCF values predicted by Estimation Program Interface (EPI Suite) Software. Linear models were established upon exclusion of ionic or highly hydrophilic nonionic drugs, for which a constant value of logBCF equal to 0.50 was arbitrarily assigned by EPI Suite Software. As additional physicochemical parameter BioWin5 proved to be statistically significant, expressing the decrease of bioaccumulation potential as a result of biodegradation in the aquatic environment. The constructed IAM model was successfully validated by application to a set of pharmaceuticals, whose experimental BCF values are available. Better predictions compared to EPI Suite Software were achieved for the dataset under study. Since bioconcentration process involves electrostatic interactions, IAM retention may be a better measure for BCF values, especially for ionic species, compared to octanol-water partition coefficients widely implemented in environmental sciences. The developed approach can be considered as a novel tool for the prediction of bioconcentration of pharmaceutical compounds in aquatic organisms in order to minimize further experimental assays in the future.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece.
| | - Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Lamprini-Areti Tsakanika
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Maria Ochsenkühn-Petropoulou
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 157 80 Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, 157 71 Athens, Greece
| |
Collapse
|
22
|
Russo G, Grumetto L, Szucs R, Barbato F, Lynen F. Determination of in Vitro and in Silico Indexes for the Modeling of Blood–Brain Barrier Partitioning of Drugs via Micellar and Immobilized Artificial Membrane Liquid Chromatography. J Med Chem 2017; 60:3739-3754. [DOI: 10.1021/acs.jmedchem.6b01811] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giacomo Russo
- Separation
Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, B-9000 Gent, Belgium
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Lucia Grumetto
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Roman Szucs
- Pfizer Global R&D, Sandwich CT13 9NJ, Kent, United Kingdom
| | - Francesco Barbato
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Frederic Lynen
- Separation
Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, B-9000 Gent, Belgium
| |
Collapse
|
23
|
Russo G, Grumetto L, Barbato F, Vistoli G, Pedretti A. Prediction and mechanism elucidation of analyte retention on phospholipid stationary phases (IAM-HPLC) by in silico calculated physico-chemical descriptors. Eur J Pharm Sci 2017; 99:173-184. [DOI: 10.1016/j.ejps.2016.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 11/26/2022]
|
24
|
Grumetto L, Russo G, Barbato F. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood–Brain Barrier Permeation of Drugs. Mol Pharm 2016; 13:2808-16. [DOI: 10.1021/acs.molpharmaceut.6b00397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucia Grumetto
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Giacomo Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Francesco Barbato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| |
Collapse
|
25
|
Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery. Expert Opin Drug Discov 2016; 11:473-88. [DOI: 10.1517/17460441.2016.1160886] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fotios Tsopelas
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Zografou, Athens, Greece
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Theodosia Vallianatou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Zografou, Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Zografou, Athens, Greece
| |
Collapse
|
26
|
Grumetto L, Russo G, Barbato F. Polar interactions drug/phospholipids estimated by IAM-HPLC vs cultured cell line passage data: Their relationships and comparison of their effectiveness in predicting drug human intestinal absorption. Int J Pharm 2016; 500:275-90. [PMID: 26780120 DOI: 10.1016/j.ijpharm.2016.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
The relationships between data of passage through Caco-2 cultured cell lines (log Papp), taken from the literature, for 38 structurally unrelated compounds and both n-octanol lipophilicity parameters (log P(N) and log D(7.4)) and phospholipid affinity indexes were investigated. Phospholipid affinity(log k W(IAM)) was experimentally determined by HPLC on two different phospholipid stationary phases and the polar/electrostatic interaction component drug/phospholipids (Δ log k W(IAM)) was calculated according to a method we previously proposed. Log Papp moderately related to lipophilicity values measured at pH 7.4 (log D(7.4)), according to a parabolic pattern, but poorly related with log k W(IAM). Furthermore, a significant inverse linear relationship with Δ l og k W(IAM) values was only observed for the analytes with m.w. >300 Da, for which paracellular diffusion can be considered a minor transport route in vivo. Indeed, it has been reported that Caco-2 passage data also encode secondary passage mechanisms, which participate in a different extent to the jejunal absorption in vivo and cannot be directly equated to the corresponding human in situ log Peff values, unless a normalization is performed. In an attempt to elucidate this issue, 47 structurally unrelated compounds whose cultured cell line passage data were corrected for the effects of the aqueous boundary layer and paracellular permeability, so as to express transcellular intrinsic permeability, log P 0(Caco-2/MDCK), were also considered. Highly significant inverse linear relationships were observed between log P 0(Caco-2/MDCK) and Δlog k W(IAM) values from both IAM.PC.MG (r(2)=0.765) and IAM.PC.DD2 (r(2)=0.806) stationary phases whereas the relationships with either lipophilicity in n-octanol or log k W(IAM) values were very poor. The results of the present study, in complete agreement with those of our recent study on the relationships between jejunal absorption data measured in situ and Δ log k W(IAM) values, confirm the soundness of Δ log k W(IAM) parameters in the prediction of the intestinal absorption of drugs. From a mechanistic point of view, they suggest that the polar/electrostatic forces between drugs and phospholipids play a major role in the passage through biomembranes.
Collapse
Affiliation(s)
- Lucia Grumetto
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49 I-80131 Naples, Italy
| | - Giacomo Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49 I-80131 Naples, Italy
| | - Francesco Barbato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano, 49 I-80131 Naples, Italy.
| |
Collapse
|
27
|
Barón E, Hauler C, Gallistl C, Giménez J, Gauffier P, Castillo JJ, Fernández-Maldonado C, de Stephanis R, Vetter W, Eljarrat E, Barceló D. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9073-83. [PMID: 26148182 DOI: 10.1021/acs.est.5b02736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.
Collapse
Affiliation(s)
- E Barón
- †Institute of Environmental Assessment and Water Research Studies (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - C Hauler
- ‡University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - C Gallistl
- ‡University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - J Giménez
- §Department of Conservation Biology, Estación Biológica de Doñana-Consejo Superior de Investigaciones Científicas (EBD-CSIC), Americo Vespucio s/n, Isla Cartuja, 42092, Seville, Spain
| | - P Gauffier
- ∥Conservation, Information, and Research on Cetaceans (CIRCE), Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cádiz, Spain
| | - J J Castillo
- ⊥Centro de Recuperación de Especies Marinas Amenazadas (CREMA), Aula del Mar de Málaga, Pacífico 80, 29004 Málaga, Spain
| | - C Fernández-Maldonado
- #Agencia de Medio Ambiente y Agua de Andalucía, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Johan Gütemberg, 1, Isla de la Cartuja, 41092, Seville, Spain
| | - R de Stephanis
- ∥Conservation, Information, and Research on Cetaceans (CIRCE), Cabeza de Manzaneda 3, Algeciras-Pelayo, 11390 Cádiz, Spain
| | - W Vetter
- ‡University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - E Eljarrat
- †Institute of Environmental Assessment and Water Research Studies (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- †Institute of Environmental Assessment and Water Research Studies (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
28
|
Grumetto L, Russo G, Barbato F. Relationships between human intestinal absorption and polar interactions drug/phospholipids estimated by IAM–HPLC. Int J Pharm 2015; 489:186-94. [DOI: 10.1016/j.ijpharm.2015.04.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
|
29
|
Phosphatidylcholine covalently linked to a methacrylate-based monolith as a biomimetic stationary phase for capillary liquid chromatography. J Chromatogr A 2015; 1402:27-35. [PMID: 26024990 DOI: 10.1016/j.chroma.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
In this study a strategy to immobilize phospholipids onto a polymer-based stationary phase is described. Methacrylate-based monoliths in capillary format (150×0.1mm) were modified by soybean phosphatidylcholine through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide coupling to obtain stationary phases suitable to mimic cell surface membranes. The covalent coupling reaction involves the phosphate group in phospholipids; therefore, the described methodology is suitable for all types of phospholipids. Immobilization of soy bean phosphatidylcholine on the monolith was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry of the fatty alcohol profile, generated upon reductive cleavage of the fatty acyl side chains of the phospholipid on the monolith surface with lithium aluminium hydride. The prepared stationary phases were evaluated through studies on the retention of low-molar mass model analytes including neutral, acidic, and basic compounds. Liquid chromatographic studies confirmed predominant hydrophobic interactions between the analytes and the synthesized stationary phase; however, electrostatic interactions contributed to the retention as well. The synthesized columns showed high stability even with fully aqueous mobile phases such as Dulbecco's phosphate-buffered saline solution.
Collapse
|
30
|
Insight into the retention mechanism on immobilized artificial membrane chromatography using two stationary phases. J Chromatogr A 2015; 1396:25-33. [PMID: 25911385 DOI: 10.1016/j.chroma.2015.03.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022]
Abstract
The retention behavior of sixty structurally diverse drugs on two immobilized artificial membrane (IAM) columns, IAM.PC.MG and IAM.PC.DD2 types, at two pH values, 7.4 and 5.5, was established. Extrapolated to pure aqueous phase retention factors, logkw(IAM), were determined and the role of acetonitrile as organic modifier was explored, considering the relationships with the slopes, S, of the extrapolation procedure. Good interrelations between retention factors on the two IAM stationary phases were observed, although logkw(IAM.PC.DD2) values are generally higher than logkw(IAM.PC.MG). In order to investigate the underlying retention mechanism, relationships between IAM retention factors and lipophilicity, expressed as logP or logD at pH 7.4 were established. Electrostatic interactions were considered by introducing the positively and negatively charged molecular fractions as additional parameters in the logkw(IAM)/logD relationships. The positive contribution of these fractions supported the involvement of the electrostatic interactions in the retention mechanism. Special attention was given to the retention behavior of zwitterionic compounds and for compounds with special structural characteristics.
Collapse
|