1
|
Al-Assaf HA, Papadimitriou SA, Rahman A, Badhan R, Mohammed AR. Advanced Manufacturing Methods for High-Dose Inhalable Powders. Pharmaceutics 2025; 17:359. [PMID: 40143023 PMCID: PMC11946774 DOI: 10.3390/pharmaceutics17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Pulmonary drug delivery is governed by three main categories of forces: interparticle forces in the powder formulation, the dispersion forces during inhalation by the device, and deposition forces in the lungs. The interaction between fine inhalable powder particles of the active ingredient is governed by various types of forces, such as capillary forces, electrostatic forces, and van der Waals forces. The different types of inter-particle interactions influence the balance between powder dispersibility and agglomerate stability. The high level of cohesion forces arising from high surface energy of very fine powder hinders powder flowability, leading to issues of agglomeration. Therefore, there is a critical need for advanced manufacturing techniques to overcome the challenges of handling and manufacture of fine cohesive particles, particularly high-dose powders for inhalation. This review will focus on the challenges facing the formulation process of very fine inhalable powder, the various types of existing particle engineering techniques for high-dose powder inhalers, and the characterization techniques employed to analyse the powder characteristics required to meet the acceptance criteria of inhalable preparations.
Collapse
Affiliation(s)
- Haia A. Al-Assaf
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (H.A.A.-A.); (R.B.)
| | | | - Ayesha Rahman
- Dentistry, School of Health Sciences, University of Birmingham, Birmingham B5 7EG, UK;
| | - Raj Badhan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (H.A.A.-A.); (R.B.)
| | - Afzal R. Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (H.A.A.-A.); (R.B.)
| |
Collapse
|
2
|
Emami S, Hemmati Z, Yaqoubi S, Hamishehkar H, Alvani A. Nanocrystal Agglomerates of Curcumin Prepared by Electrospray Drying as an Excipient-Free Dry Powder for Inhalation. Adv Pharmacol Pharm Sci 2024; 2024:6288621. [PMID: 39281030 PMCID: PMC11398964 DOI: 10.1155/2024/6288621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Curcumin has shown beneficial effects on pulmonary diseases with chronic inflammation or abnormal inflammatory responses, including chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. Clinical applications of curcumin are limited due to its chemical instability in solution, low water solubility, poor oral bioavailability, and intestinal and liver first-pass metabolism. Pulmonary delivery of curcumin can address these challenges and provide a high concentration in lung tissues. The purpose of the current work was to prepare a novel inhalable dry powder of curcumin nanocrystals without added excipients using electrospray drying (ED) with improved dissolution and aerosolization properties. ED of curcumin was performed at 2 and 4% w/v concentrations in acetone. Physicochemical properties of the formulated powders were evaluated by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), density and powder flow measurements, and in vitro dissolution. The in vitro deposition studies were conducted using next-generation impactor (NGI) and aerosol performance and aerodynamic particle size parameters were calculated for prepared formulations. ED could produce agglomerates of nanocrystals with a size of about 500 nm at an acceptable yield of about 50%. PXRD and FTIR data revealed that prepared nanocrystals were in a stable crystalline state. The bulk and tapped density of prepared agglomerates were in the range appropriate for pulmonary delivery. Formed nanocrystals could significantly improve the dissolution rate of water-insoluble curcumin. The optimized formulation exhibited acceptable recovered dose percentage, high emitted dose percentage, optimum mean mass median aerodynamic diameter, small geometric standard deviation, and high fine-particle fraction that favors delivery of curcumin to the deep lung regions. The ED proved to be an efficient technique to prepare curcumin nanocrystals for pulmonary delivery in a single step, at a mild condition, and with no surfactant.
Collapse
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Hemmati
- Student Research Committee School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Yaqoubi
- Drug Applied Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Alvani
- Student Research Committee Faculty of Pharmacy Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Di Z, Zhou B, Zhou L, Di Y, Wang L, Di L. A Gellan Gum/Sodium Alginate-based gastric-protective hydrogel loaded with a combined herbal extract consisting of Panax notoginseng, Bletilla striata and Dendrobium officinale. Int J Biol Macromol 2023; 250:126277. [PMID: 37572808 DOI: 10.1016/j.ijbiomac.2023.126277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
One Chinese herbal combination consisting of Panax notoginseng, Bletilla striata and Dendrobium officinale (PBD) is an effective Traditional Chinese Medicine (TCM) prescription and is widely used in clinics to treat gastric ulcers due to their safety and effectiveness compared with chemical agents, such as aspirin and omeprazole. Herein, an in situ forming gel (ISFG) based on Gellan Gum (GG) and Sodium Alginate (SA) was designed to deliver extracts of PBD prescription (EPBDP). The central composite design optimized prescription dosage was 0.1 % w/v of GG and 0.5 % w/v of SA. Gels prepared with this formulation demonstrated outstanding fluidity and instantaneous gel formation. In vitro release data showed that sustained drug release occurred in the gel, and the gel was pH-sensitive. The rheological tests confirmed the formation of stable gel, which exhibited strong viscosity and elasticity. In vitro adhesion assays revealed that the gel had strong gastric mucosal adhesion, while in vivo residual rate experiments of active ingredients revealed that the gel might greatly improve the gastric retention of active ingredients. Animal studies demonstrated that the gel was effective in treating gastric ulcers. Hence, the results of the study show that EPBDP-ISFG, a highly pH-sensitive sustained-release system, is effective.
Collapse
Affiliation(s)
- Zhenning Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Bingqian Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Luyao Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Yawei Di
- East Region Military Command General Hospital, China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| |
Collapse
|
4
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Akdag Y. Nanoparticle-containing lyophilized dry powder inhaler formulations optimized using central composite design with improved aerodynamic parameters and redispersibility. Pharm Dev Technol 2023; 28:124-137. [PMID: 36602194 DOI: 10.1080/10837450.2023.2166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives: The aim of this study was to improve the aerodynamic behavior and redispersibility of a lyophilized dry powder inhaler (DPI) formulation containing nanoparticles.Methods: Paclitaxel (PTX)-human serum albumin (HSA) nanoparticles were used as a model, and DPIs containing the nanoparticles were produced by lyophilization using different carriers and carrier ratios. A central composite design was employed to optimize the formulation. L-leucine and mannitol were chosen as independent variables, and mass median aerodynamic diameter (MMAD), emitted fraction, fine particle fraction (FPF), nanoparticle size, polydispersity index (PDI), zeta potential were selected as dependent variables.Results: The water content of DPIs was less than 5% for all DPIs. The cytotoxicity of the DPIs, determined using A549 cells, was due to PTX alone. Particle sizes of 204.3 ± 1.65 nm and 94.3-1353.0 nm were obtained before and after lyophilization, respectively. The developed method resulted in a reduction in the MMAD from 8.148 µm to 5.274 µm, an increase in the FPF from 17.63% to 33.60%, and an increase in the emitted fraction from 77.68% to 97.03%. The physico-chemical characteristics of the optimized formulation were also assessed.Conclusions: In conclusion, this study demonstrates that lyophilization can be used to produce nanoparticle-containing DPI formulations with improved redispersibility and aerodynamic properties.
Collapse
Affiliation(s)
- Yagmur Akdag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Babenko M, Alany RG, Calabrese G, Kaialy W, ElShaer A. Development of drug alone and carrier-based GLP-1 dry powder inhaler formulations. Int J Pharm 2022; 617:121601. [PMID: 35181460 DOI: 10.1016/j.ijpharm.2022.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
The study aimed to develop two types of dry powder inhaler (DPI) formulations containing glucagon-like peptide-1(7-36) amide (GLP-1): carrier-free (drug alone, no excipients) and carrier-based DPI formulations for pulmonary delivery of GLP-1. This is the first study focusing on the development of excipient free GLP-1 DPI formulations for inhaled therapy in Type 2 diabetes. The aerosolisation performance of both DPI formulations was studied using a next generation impactor and a DPI device (Handihaler®) at flow rate of 30 L min-1. Carriers employed were either a 10% w/w glycine-mannitol prepared by spray freeze drying or commercial mannitol. Spray freeze dried (SFD) carrier was spherical and porous whereas commercial mannitol carrier exhibited elongated particles (non-porous). GLP-1 powder without excipients for inhalation was prepared using spray drying and characterised for morphology including size, thermal behaviour, and moisture content. Spray dried (SD) GLP-1 powders showed indented/dimpled particles in the particle size range of 1 to 5 µm (also mass median aerodynamic diameter, MMAD: <5 µm) suitable for pulmonary delivery. Across formulations investigated, carrier-free DPI formulation showed the highest fine particle fraction (FPF: 90.73% ± 1.76%, mean ± standard deviation) and the smallest MMAD (1.96 µm ± 0.07 µm), however, low GLP-1 delivered dose (32.88% ± 7.00%, total GLP-1 deposition on throat and all impactor stages). GLP-1 delivered dose was improved by the addition of SFD 10% glycine-mannitol carrier to the DPI formulation (32.88% ± 7.00% -> 45.92% ± 5.84%). The results suggest that engineered carrier-based DPI formulations could be a feasible approach to enhance the delivery efficiency of GLP-1. The feasibility of systemic pulmonary delivery of SD GLP-1 for Type 2 diabetes therapy can be further investigated in animal models.
Collapse
Affiliation(s)
- Mai Babenko
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE; School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Gianpiero Calabrese
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE
| | - Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, Universiy of Wolverhampton, Wolverhampton, WV1 1LY
| | - Amr ElShaer
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, KT1 2EE.
| |
Collapse
|
7
|
Tagami T, Goto E, Kida R, Hirose K, Noda T, Ozeki T. Lyophilized ophthalmologic patches as novel corneal drug formulations using a semi-solid extrusion 3D printer. Int J Pharm 2022; 617:121448. [PMID: 35066116 DOI: 10.1016/j.ijpharm.2022.121448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
Abstract
3D printing technology is a novel and practical approach for producing unique and complex industrial and medical objects. In the pharmaceutical field, the approval of 3D printed tablets by the US Food and Drug Administration has led to other 3D printed drug formulations and dosage forms being proposed and investigated. Here, we report novel ophthalmologic patches for controlled drug release fabricated using a semi-solid material extrusion-type 3D printer. The patch-shaped objects were 3D printed using hydrogel-based printer inks composed of hypromellose (HPMC), sugar alcohols (mannitol, xylitol), and drugs, then freeze-dried. The viscous properties of the printer inks and patches were dependent on the HPMC and sugar alcohol concentrations. Then, the physical properties, surface structure, water uptake, antimicrobial activity, and drug release profile of lyophilized patches were characterized. Lyophilized ophthalmologic patches with different dosages and patterns were fabricated as models of personalized treatments prepared in hospitals. Then, ophthalmologic patches containing multiple drugs were fabricated using commercially available eye drop formulations. The current study indicates that 3D printing is applicable to producing novel dosage forms because its high flexibility allows the preparation of patient-tailored dosages in a clinical setting.
Collapse
Affiliation(s)
- Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Eiichi Goto
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Risako Kida
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kiyomi Hirose
- Department of Hospital Pharmacy, Nagoya University Hospital, 65-banchi, Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Takehiro Noda
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
8
|
Mukhtar M, Szakonyi Z, Farkas Á, Burian K, Kókai D, Ambrus R. Freeze-dried vs spray-dried nanoplex DPIs based on chitosan and its derivatives conjugated with hyaluronic acid for tuberculosis: In vitro aerodynamic and in silico deposition profiles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Mannitol Polymorphs as Carrier in DPIs Formulations: Isolation Characterization and Performance. Pharmaceutics 2021; 13:pharmaceutics13081113. [PMID: 34452073 PMCID: PMC8401007 DOI: 10.3390/pharmaceutics13081113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
The search for best performing carriers for dry powder inhalers is getting a great deal of interest to overcome the limitations posed by lactose. The aerosolization of adhesive mixtures between a carrier and a micronized drug is strongly influenced by the carrier solid-state properties. This work aimed at crystallizing kinetically stable D-mannitol polymorphs and at investigating their aerosolization performance when used in adhesive mixtures with two model drugs (salbutamol sulphate, SS, and budesonide, BUD) using a median and median/high resistance inhaler. A further goal was to assess in vitro the cytocompatibility of the produced polymer-doped mannitol polymorphs toward two lung epithelial cell lines. Kinetically stable (up to 12 months under accelerate conditions) α, and δ mannitol forms were crystallized in the presence of 2% w/w PVA and 1% w/w PVP respectively. These solid phases were compared with the β form and lactose as references. The solid-state properties of crystallized mannitol significantly affected aerosolization behavior, with the δ form affording the worst fine particle fraction with both the hydrophilic (9.3 and 6.5%) and the lipophilic (19.6 and 32%) model drugs, while α and β forms behaved in the same manner (11–13% for SS; 53–58% for BUD) and better than lactose (8 and 13% for SS; 26 and 39% for BUD). Recrystallized mannitol, but also PVA and PVP, proved to be safe excipients toward lung cell lines. We concluded that, also for mannitol, the physicochemical properties stemming from different crystal structures represent a tool for modulating carrier-drug interaction and, in turn, aerosolization performance.
Collapse
|
10
|
Keyhan shokouh M, Faghihi H, Darabi M, Mirmoeini M, Vatanara A. Formulation and evaluation of inhalable microparticles of Rizatriptan Benzoate processed by spray freeze-drying. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
12
|
Wu HT, Li TH, Tsai HM, Chien LJ, Chuang YH. Formulation of inhalable beclomethasone dipropionate-mannitol composite particles through low-temperature supercritical assisted atomization. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Freeze-dried cake structural and physical heterogeneity in relation to freeze-drying cycle parameters. Int J Pharm 2020; 590:119891. [DOI: 10.1016/j.ijpharm.2020.119891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
|
14
|
An effective approach to modify the inhalable betamethasone powders based on morphology and surface control using a biosurfactant. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Effect of USP induction ports and modified glass sampling apparatus on aerosolization performance of lactose carrier-based fluticasone propionate dry powder inhaler. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Aloum F, Al Ayoub Y, Mohammad M, Obeed M, Paluch K, Assi K. Ex vivo and in vitro evaluation of the influence of the inhaler device and formulation on lung deposition of budesonide. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Exploring the impact of extrinsic lactose fines, a USP modified sampling device and modified centrifuge tube on the delivered dose uniformity and drug detachment performance of a fluticasone propionate dry powder inhaler. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv 2020; 17:77-96. [PMID: 31815554 PMCID: PMC6981243 DOI: 10.1080/17425247.2020.1702643] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Dry powder inhalers (DPIs) are popular for pulmonary drug delivery. Various techniques have been employed to produce inhalation drug particles and improve the delivery efficiency of DPI formulations. Physical stability of these DPI formulations is critical to ensure the delivery of a reproducible dose to the airways over the shelf-life.Areas covered: This review focuses on the impact of solid-state stability on aerosolization performance of DPI drug particles manufactured by powder production approaches and particle-engineering techniques. It also highlights the different analytical tools that can be used to characterize the physical instability originating from production and storage.Expert opinion: A majority of the DPI literature focuses on the effects of physico-chemical properties such as size, morphology, and density on aerosolization. While little has been reported on the physical stability, particularly the stability of engineered drug particles for use in DPIs. Literature data have shown that different particle-engineering methods and storage conditions may cause physical instability of dry powders for inhalation and can significantly change the aerosol performance. A systematic examination of physical instability mechanisms in DPI formulations is necessary during formulation development in order to select the optimum formulation with satisfactory stability. In addition, the use of appropriate characterization tools is critical to detect and understand physical instability during the development of DPI formulations.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - David Cipolla
- Insmed Incorporated, Bridgewater, NJ 08807-3365, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Zhao Z, Zhang X, Cui Y, Huang Y, Huang Z, Wang G, Liang R, Pan X, Tao L, Wu C. Hydroxypropyl-β-cyclodextrin as anti-hygroscopicity agent inamorphous lactose carriers for dry powder inhalers. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Zhang X, Zhao Z, Cui Y, Liu F, Huang Z, Huang Y, Zhang R, Freeman T, Lu X, Pan X, Tan W, Wu C. Effect of powder properties on the aerosolization performance of nanoporous mannitol particles as dry powder inhalation carriers. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Kadota K, Yanagawa Y, Tachikawa T, Deki Y, Uchiyama H, Shirakawa Y, Tozuka Y. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int J Pharm 2019; 555:280-290. [DOI: 10.1016/j.ijpharm.2018.11.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
22
|
Formulating Inhalable Dry Powders Using Two-Fluid and Three-Fluid Nozzle Spray Drying. Pharm Res 2018; 35:247. [DOI: 10.1007/s11095-018-2509-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
|
23
|
Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation. Int J Pharm 2018; 552:67-75. [PMID: 30244146 DOI: 10.1016/j.ijpharm.2018.09.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
Spray freeze drying is an attractive technology to produce powder formulation for inhalation. It can be used to generate large porous particles which tend to aerosolize efficiently and do not aggregate readily. It also avoids material to be exposed to elevated temperature. In this study, we reported the use of two-fluid nozzle to produce spray freeze dried powder of small interfering RNA (siRNA). The effect of atomization gas flow rate and liquid feed rate were inspected initially using herring sperm DNA (hsDNA) as nucleic acid model. The atomization gas flow rate was found to have a major impact on the aerosol properties. The higher the atomization gas flow rate, the smaller the particle size, the higher the fine particle fraction (FPF). In contrast, the liquid feed rate had very minor effect. Subsequently, spray freeze dried siRNA powder was produced at various atomization gas flow rates. The particles produced were highly porous as examined with the scanning electron microscopy, and the structural integrity of the siRNA was demonstrated with gel electrophoresis. The gene-silencing effect of the siRNA was also successfully preserved in vitro. The best performing siRNA formulation was prepared at the highest atomization gas flow rate investigated with a moderate FPF of 30%. However, this was significantly lower than that obtained with the corresponding hsDNA counterparts (FPF ∼57%). A direct comparison between the hsDNA and siRNA formulations revealed that the former exhibited a lower density, hence a smaller aerodynamic diameter despite similar geometric size.
Collapse
|
24
|
Characterization and aerosolization performance of mannitol particles produced using supercritical assisted atomization. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhao Z, Huang Z, Zhang X, Huang Y, Cui Y, Ma C, Wang G, Freeman T, Lu XY, Pan X, Wu C. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Expert Opin Drug Deliv 2018. [PMID: 29532682 DOI: 10.1080/17425247.2018.1450865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hygroscopicity of raffinose carrier for dry powder inhaler (DPI) was the main obstacle for its further application. Hygroscopicity-induced agglomeration would cause deterioration of aerosolization performance of raffinose, undermining the delivery efficiency. METHODS Cyclodextrin-raffinose binary carriers (CRBCs) were produced by spray-drying so as to surmount the above issue. Physicochemical attributes and formation mechanism of CRBCs were explored in detail. The flow property of CRBCs was examined by FT4 Powder Rheometer. Hygroscopicity of CRBCs was elucidated by dynamic vapor sorption study. Aerosolization performance was evaluated by in vitro deposition profile and in vivo pharmacokinetic profile of CRBC based DPI formulations. RESULTS The optimal formulation of CRBC (R4) was proven to possess anti-hygroscopicity and aerosolization performance enhancement properties. Concisely, the moisture uptake of R4 was c.a. 5% which was far lower than spray-dried raffinose (R0, c.a. 65%). R4 exhibited a high fine particle fraction value of 70.56 ± 0.61% and it was 3.75-fold against R0. The pulmonary and plasmatic bioavailability of R4 were significantly higher than R0 (p < 0.05). CONCLUSION CRBC with anti-hygroscopicity and aerosolization performance enhancement properties was a promising approach for pulmonary drug delivery, which could provide new possibilities to the application of hygroscopic carriers for DPI.
Collapse
Affiliation(s)
- Ziyu Zhao
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Zhengwei Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Xuejuan Zhang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China.,b Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou , P.R. China
| | - Ying Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Yingtong Cui
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Cheng Ma
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Guanlin Wang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | | | | | - Xin Pan
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| | - Chuanbin Wu
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , P.R. China
| |
Collapse
|
26
|
Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering. JOURNAL OF DRUG DELIVERY 2018; 2018:5635010. [PMID: 29568652 PMCID: PMC5820590 DOI: 10.1155/2018/5635010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier's molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier's molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed.
Collapse
|
27
|
Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J Aerosol Med Pulm Drug Deliv 2017; 31:139-154. [PMID: 29022837 DOI: 10.1089/jamp.2017.1382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Collapse
Affiliation(s)
- Ali Dabbagh
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Chai Hong Yeong
- 2 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- 3 Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universiti Teknologi MARA , Puncak Alam, Malaysia
| | - Noorsaadah Abdul Rahman
- 4 Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia .,5 Drug Design and Development Research Group (DDDRG), University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Della Bella A, Salomi E, Buttini F, Bettini R. The role of the solid state and physical properties of the carrier in adhesive mixtures for lung delivery. Expert Opin Drug Deliv 2017; 15:665-674. [DOI: 10.1080/17425247.2017.1371132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Enrico Salomi
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | |
Collapse
|
29
|
Karashima M, Sano N, Yamamoto S, Arai Y, Yamamoto K, Amano N, Ikeda Y. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur J Pharm Biopharm 2017; 115:65-72. [PMID: 28223260 DOI: 10.1016/j.ejpb.2017.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
Abstract
Micronized cocrystal powders and amorphous spray-dried formulations were prepared and evaluated in vivo and in vitro as pulmonary absorption enhancement formulations of poorly soluble itraconazole (ITZ). ITZ cocrystals with succinic acid (SA) or l-tartaric acid (TA) with a particle size diameter of <2μm were successfully micronized using the jet-milling system. The cocrystal crystalline morphologies observed using scanning electron microscopy (SEM) suggested particle shapes that differed from those of the crystalline or spray-dried amorphous ITZ. The micronized ITZ cocrystal powders showed better intrinsic dissolution rate (IDR) and pulmonary absorption profile in rats than that of the amorphous spray-dried formulation and crystalline ITZ with comparable particle sizes. Specifically, in rat pharmacokinetic studies following pulmonary administration, micronized ITZ-SA and ITZ-TA cocrystals showed area under the curve from 0 to 8h (AUC0-8h) values approximately 24- and 19-fold higher than those of the crystalline ITZ and 2.0- and 1.6-fold higher than the spray-dried ITZ amorphous values, respectively. The amorphous formulation appeared physically instable during the studies due to rapid crystallization of ITZ, which was its disadvantage compared to the crystalline formulations. Therefore, this study demonstrated that micronized cocrystals are promising formulations for enhancing the pulmonary absorption of poorly soluble compounds.
Collapse
Affiliation(s)
- Masatoshi Karashima
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan.
| | - Noriyasu Sano
- Takeda Pharmaceutical Company Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Takeda Pharmaceutical Company Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Kanagawa 251-8555, Japan
| | - Yuta Arai
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan
| | - Katsuhiko Yamamoto
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan
| | - Nobuyuki Amano
- Takeda Pharmaceutical Company Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Kanagawa 251-8555, Japan
| | - Yukihiro Ikeda
- Takeda Pharmaceutical Company Ltd., Analytical Development, Pharmaceutical Sciences, Kanagawa 251-8555, Japan
| |
Collapse
|
30
|
Kaialy W. On the effects of blending, physicochemical properties, and their interactions on the performance of carrier-based dry powders for inhalation - A review. Adv Colloid Interface Sci 2016; 235:70-89. [PMID: 27291646 DOI: 10.1016/j.cis.2016.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/04/2016] [Accepted: 05/28/2016] [Indexed: 11/25/2022]
Abstract
Blending drug and carrier powders to produce homogeneous drug-carrier adhesive mixtures is a key step in the production of dry powder inhaler (DPI) formulations. Although the blending conditions can result in different conclusions or probably change the outcome of a study entirely if being selected differently, there is a scarcity of data on the influence of blending processes on the physicochemical properties of bulk powder formulations and the follow-on effects on DPI performance. This paper provides an overview of the interactions between variables related to blending conditions (e.g. blending equipment, time, speed and sequence as well as environmental humidity) and powder physicochemical properties (e.g. size distribution, shape distribution, density, anomeric composition, electrostatic charge, surface, and bulk properties), and their effects on the performance of adhesive mixtures for inhalation in terms of drug content homogeneity, drug-carrier adhesion, and drug aerosolisation behaviour. The relevance of carrier payload, batch size and segregation was also discussed. Challenges and future directions were identified. This review therefore contributes towards a better understanding of the blending process, powder physicochemical properties, and their interlinked effects on the fundamental understanding of adhesive mixtures for inhalation. The knowledge gained is essential to ensure optimum blending and thereby controlled functionality of DPIs.
Collapse
|
31
|
Wang Z, Cuddigan JL, Gupta SK, Meenach SA. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. Int J Pharm 2016; 512:305-313. [PMID: 27568494 DOI: 10.1016/j.ijpharm.2016.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
Abstract
Tacrolimus (TAC) has exhibited promising therapeutic potential in the treatment of pulmonary arterial hypertension (PAH); however, its application is prevented by its poor solubility, instability, poor bioavailability, and negative systemic side effects. To overcome the obstacles of using TAC for the treatment of PAH, we developed nanocomposite microparticles (nCmP) for the pulmonary delivery of tacrolimus in the form of dry powder aerosols. These particles can provide targeted pulmonary delivery, improved solubility of tacrolimus, the potential of penetration through mucus barrier, and controlled drug release. In this system, tacrolimus-loaded polymeric nanoparticles (NP) were prepared via emulsion solvent evaporation and nCmP were prepared by spray drying these NP with mannitol. The NP were approximately 200nm in diameter with narrow size distribution both before loading into and after redispersion from nCmP. The NP exhibited smooth, spherical morphology and the nCmP were raisin-like spheres. High encapsulation efficacy was achieved both in the encapsulation of tacrolimus in NP and that of NP in nCmP. nCmP exhibited desirable aerosol dispersion properties, allowing them to deposit into the deep lung regions for effective drug delivery. A549 cells were used as in vitro models to demonstrate the non-cytotoxicity of TAC nCmP. Overall, the designed nCmP have the potential to aid in the delivery of tacrolimus for the treatment of PAH.
Collapse
Affiliation(s)
- Zimeng Wang
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Julie L Cuddigan
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Sweta K Gupta
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Samantha A Meenach
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA; University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Kingston, RI, 02881, USA.
| |
Collapse
|
32
|
Wang Z, Meenach SA. Synthesis and Characterization of Nanocomposite Microparticles (nCmP) for the Treatment of Cystic Fibrosis-Related Infections. Pharm Res 2016; 33:1862-72. [PMID: 27091030 PMCID: PMC4945441 DOI: 10.1007/s11095-016-1921-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Pulmonary antibiotic delivery is recommended as maintenance therapy for cystic fibrosis (CF) patients who experience chronic infections. However, abnormally thick and sticky mucus present in the respiratory tract of CF patients impairs mucus penetration and limits the efficacy of inhaled antibiotics. To overcome the obstacles of pulmonary antibiotic delivery, we have developed nanocomposite microparticles (nCmP) for the inhalation application of antibiotics in the form of dry powder aerosols. METHODS Azithromycin-loaded and rapamycin-loaded polymeric nanoparticles (NP) were prepared via nanoprecipitation and nCmP were prepared by spray drying and the physicochemical characteristics were evaluated. RESULTS The nanoparticles were 200 nm in diameter both before loading into and after redispersion from nCmP. The NP exhibited smooth, spherical morphology and the nCmP were corrugated spheres about 1 μm in diameter. Both drugs were successfully encapsulated into the NP and were released in a sustained manner. The NP were successfully loaded into nCmP with favorable encapsulation efficacy. All materials were stable at manufacturing and storage conditions and nCmP were in an amorphous state after spray drying. nCmP demonstrated desirable aerosol dispersion characteristics, allowing them to deposit into the deep lung regions for effective drug delivery. CONCLUSIONS The described nCmP have the potential to overcome mucus-limited pulmonary delivery of antibiotics.
Collapse
Affiliation(s)
- Zimeng Wang
- Department of Chemical Engineering, University of Rhode Island, 202 Crawford Hall, 16 Greenhouse Road, Kingston, RI, 02881, USA
| | - Samantha A Meenach
- Department of Chemical Engineering, University of Rhode Island, 202 Crawford Hall, 16 Greenhouse Road, Kingston, RI, 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
33
|
Miyazaki Y, Sugihara H, Nishiura A, Kadota K, Tozuka Y, Takeuchi H. Appropriate selection of an aggregation inhibitor of fine particles used for inhalation prepared by emulsion solvent diffusion. Drug Dev Ind Pharm 2016; 43:30-41. [DOI: 10.1080/03639045.2016.1201099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yuta Miyazaki
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
- Laboratory of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | | | | | - Kazunori Kadota
- Laboratory of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuichi Tozuka
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
- Laboratory of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
34
|
Peng T, Lin S, Niu B, Wang X, Huang Y, Zhang X, Li G, Pan X, Wu C. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B 2016; 6:308-18. [PMID: 27471671 PMCID: PMC4951591 DOI: 10.1016/j.apsb.2016.03.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022] Open
Abstract
Dry powder inhalers (DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance. The purpose of this review is to summarize and illuminate how these factors affect drug–carrier interaction and influence the performance of DPIs.
Collapse
Key Words
- API, active pharmaceutical ingredient
- CLF, coarse lactose fines
- Carrier
- DPI, dry powder inhaler
- Dry powder inhaler
- ED, emission dose
- ER, elongation ratio
- FLF, fine lactose fines
- FPF, fine particle fraction
- FR, flatness ratio
- Fshape, shape factor
- Fsurface, surface factor
- MFV, minimum fluidization velocity
- Morphology
- PDD, pulmonary drug delivery
- Particle size
- Performance
- RO, roundness
- Surface roughness
- dae, aerodynamic diameter
- pMDI, pressurized metered-dose inhaler
Collapse
Affiliation(s)
- Tingting Peng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shiqi Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinyi Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ge Li
- Guangzhou Neworld Pharm. Co. Ltd., Guangzhou 51006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Corresponding authors at: School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Tel.: +86 20 39943427/+86 20 39943117; fax: +86 20 39943115.School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou510006China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Research Center for Drug Delivery Systems, Guangzhou 510006, China
- Corresponding authors at: School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Tel.: +86 20 39943427/+86 20 39943117; fax: +86 20 39943115.School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou510006China
| |
Collapse
|
35
|
Kaialy W, Khan U, Mawlud S. Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol. Int J Pharm 2016; 510:73-85. [PMID: 27242312 DOI: 10.1016/j.ijpharm.2016.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Mannitol is a pharmaceutical excipient that is receiving increased popularity in solid dosage forms. The aim of this study was to provide comparative evaluation on the effect of mannitol concentration on the physicochemical, mechanical, and pharmaceutical properties of lyophilised mannitol. The results showed that the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol powders are strong functions of mannitol concentration. By decreasing mannitol concentration, the true density, bulk density, cohesivity, flowability, netcharge-to-mass ratio, and relative degree of crystallinity of LM were decreased, whereas the breakability, size distribution, and size homogeneity of lyophilised mannitol particles were increased. The mechanical properties of lyophilised mannitol tablets improved with decreasing mannitol concentration. The use of lyophilised mannitol has profoundly improved the dissolution rate of indomethacin from tablets in comparison to commercial mannitol. This improvement exhibited an increasing trend with decreasing mannitol concentration. In conclusion, mannitols lyophilised from lower concentrations are more desirable in tableting than mannitols from higher concentrations due to their better mechanical and dissolution properties.
Collapse
Affiliation(s)
- Waseem Kaialy
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK.
| | - Usman Khan
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Shadan Mawlud
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| |
Collapse
|
36
|
Kaialy W. A review of factors affecting electrostatic charging of pharmaceuticals and adhesive mixtures for inhalation. Int J Pharm 2016; 503:262-76. [DOI: 10.1016/j.ijpharm.2016.01.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 11/15/2022]
|
37
|
Boschini F, Delaval V, Traina K, Vandewalle N, Lumay G. Linking flowability and granulometry of lactose powders. Int J Pharm 2015; 494:312-20. [DOI: 10.1016/j.ijpharm.2015.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022]
|