1
|
Niederquell A, Stoyanov E, Kuentz M. Physiological Buffer Effects in Drug Supersaturation - A Mechanistic Study of Hydroxypropyl Cellulose as Precipitation Inhibitor. J Pharm Sci 2023; 112:1897-1907. [PMID: 36813134 DOI: 10.1016/j.xphs.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Phosphate buffer is predominantly used instead of the more physiological bicarbonate buffer, as the latter requires a technical solution of adequate gas mixing. Recent pioneering work on how bicarbonate buffer affected drug supersaturation revealed interesting effects that call for more mechanistic understanding. Therefore, this study used hydroxypropyl cellulose as a model precipitation inhibitor and real-time desupersaturation testing was conducted with the drugs bifonazole, ezetimibe, tolfenamic acid and triclabendazole. Specific buffer effects for the different compounds were noted and overall, statistical significance was found for the precipitation induction time (p = 0.0088). Interestingly, molecular dynamics simulation revealed a conformational effect of the polymer in the presence of the different buffer types. Subsequent molecular docking trials suggested a stronger interaction energy of drug and polymer in the presence of phosphate compared to bicarbonate buffer (p =0.0010). In conclusion, a better mechanistic understanding of how different buffers affect drug-polymer interactions regarding drug supersaturation was achieved. Further mechanisms may account for the overall buffer effects and additional research on drug supersaturation is certainly needed, but it can already be concluded that bicarbonate buffering should be used more often for in vitro testing in drug development.
Collapse
Affiliation(s)
- Andreas Niederquell
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Edmont Stoyanov
- Nisso Chemical Europe, Berliner Allee 42, 40212, Düsseldorf, Germany
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland.
| |
Collapse
|
3
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Karkossa F, Klein S. Individualized in vitro and in silico methods for predicting in vivo performance of enteric-coated tablets containing a narrow therapeutic index drug. Eur J Pharm Biopharm 2018; 135:13-24. [PMID: 30529296 DOI: 10.1016/j.ejpb.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022]
Abstract
The efficacy of narrow therapeutic index (NTI) drugs is closely related to their plasma concentration-time profile. Particularly for these compounds interindividual variability of gastrointestinal (GI) parameters relevant to in vivo drug release may result in fluctuations of the plasma concentration. The present study focused on assessing the influence of individual GI pH- and transit profiles on drug release of enteric valproate tablet formulations by means of individualized in vitro dissolution experiments. After initial experiments simulating GI passages in average healthy adults, a novel in vitro dissolution model was used to simulate individual GI pH- and transit profiles with physiologically relevant dissolution media. Based on the dissolution profiles obtained in these experiments, individual in silico plasma profiles were generated and compared to fasted in vivo data applying a mean Euclidean distance approach. Simulated individual gastric residence time was identified as crucial parameter determining the onset of absorption, whereas the shape of the plasma profile is mainly influenced by individual valproate pharmacokinetics. The novel in vitro and in silico methods used in this study are promising tools for estimating in vivo drug release and plasma concentration in individual subjects and thus may contribute to a prospective risk assessment for NTI formulations.
Collapse
Affiliation(s)
- Frank Karkossa
- University of Greifswald, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
| | - Sandra Klein
- University of Greifswald, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| |
Collapse
|
6
|
Al-Gousous J, Sun KX, McNamara DP, Hens B, Salehi N, Langguth P, Bermejo M, Amidon GE, Amidon GL. Mass Transport Analysis of the Enhanced Buffer Capacity of the Bicarbonate-CO 2 Buffer in a Phase-Heterogenous System: Physiological and Pharmaceutical Significance. Mol Pharm 2018; 15:5291-5301. [PMID: 30362350 DOI: 10.1021/acs.molpharmaceut.8b00783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bicarbonate buffer capacity is usually considered in a phase-homogeneous system, at equilibrium, with no CO2 transfer between the liquid buffer phase and another phase. However, typically, an in vitro bicarbonate buffer-based system is a phase-heterogeneous system, as it entails continuously sparging (bubbling) the dissolution medium with CO2 in a gas mixture, at constant ratio, to maintain a constant partial pressure of CO2 (g) and CO2(aq) molarity at a prescribed value, with CO2 diffusing freely between the gas and the aqueous phases. The human gastrointestinal tract is also a phase-heterogeneous system, with CO2 diffusing across the mucosal membrane into the mesenteric arterial blood, which serves as a sink for CO2 from the intestinal lumen. In this report, a mass transport analysis of the apparent buffer capacity of a phase-heterogeneous bicarbonate-CO2 system is developed. It is shown that, most significantly, a phase-heterogeneous bicarbonate-CO2 system can have a much higher buffer capacity than a phase-homogeneous system such that the buffer capacity is dependent on the bicarbonate concentration. It is double that of a phase-homogeneous system at the pH = p Ka for a monoprotic buffer at the same concentration. This buffer capacity enhancement increases hyperbolically with pH above the p Ka, thus providing a much stronger buffering to keep the pH in the physiologically neutral range. The buffer capacity will be dependent on the bicarbonate molarity (which in vivo will depend on the bicarbonate secretion rate) and not the pH of the luminal fluid. Further, there is no conjugate acid accumulation as a result of bicarbonate neutralization, since the resulting carbonic acid (H2CO3) rapidly dehydrates producing CO2 and H2O. The mass transport analysis developed in this report is further supported by in vitro experimental results. This enhanced bicarbonate buffer capacity in a phase-heterogeneous system is of physiological significance as well as significant for the dissolution and absorption of ionizable drugs.
Collapse
Affiliation(s)
- Jozef Al-Gousous
- University of Michigan , College of Pharmacy, Department of Pharmaceutical Sciences , 428 Church Street, Room 4002 , Ann Arbor , Michigan 48109 , United States
| | - Kathy X Sun
- University of Michigan , College of Pharmacy, Department of Pharmaceutical Sciences , 428 Church Street, Room 4002 , Ann Arbor , Michigan 48109 , United States
| | - Daniel P McNamara
- Drug Product Science and Technology , Bristol-Myers Squibb , 1 Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Bart Hens
- University of Michigan , College of Pharmacy, Department of Pharmaceutical Sciences , 428 Church Street, Room 4002 , Ann Arbor , Michigan 48109 , United States
| | - Niloufar Salehi
- University of Michigan , College of Pharmacy, Department of Pharmaceutical Sciences , 428 Church Street, Room 4002 , Ann Arbor , Michigan 48109 , United States
| | - Peter Langguth
- Johannes Gutenberg Universität Mainz, Fachbereich Chemie Pharmazie und Geowissenschaften , Department of Biopharmaceutics and Pharmaceutical Technology , D-55099 Mainz , Germany
| | - Marival Bermejo
- Universidad Miguel Hernández , Ingenieria: Area Farmacia , Ctra. Alicante-Valencia N 332 , 03550 Sant Joan d'Alacant , Spain
| | - Gregory E Amidon
- University of Michigan , College of Pharmacy, Department of Pharmaceutical Sciences , 428 Church Street, Room 4002 , Ann Arbor , Michigan 48109 , United States
| | - Gordon L Amidon
- University of Michigan , College of Pharmacy, Department of Pharmaceutical Sciences , 428 Church Street, Room 4002 , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
7
|
Felicijan T, Pišlar M, Vene K, Bogataj M. The Influence of Simulated Fasted Gastrointestinal pH Profiles on Diclofenac Sodium Dissolution in a Glass-Bead Flow-Through System. AAPS PharmSciTech 2018; 19:2875-2884. [PMID: 30151730 DOI: 10.1208/s12249-018-1140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 01/06/2023] Open
Abstract
High inter- and intra-individual variability in the pH of fluids in the human gastrointestinal (GI) tract has been described in the literature. The aim of this study was to assess the influence of physiological variability in fasted pH profiles of media along the GI tract on diclofenac sodium (DF-Na) dissolution from matrix tablets. Four individual in vivo fasted pH profiles were selected from the literature that differed in pH values and transit times from the stomach to the proximal colon. Using a glass-bead device flow-through dissolution system, these pH profiles were simulated in vitro using a specific media sequence and considering simulated intestinal buffer capacities corresponding to in vivo literature data. Dissolution experiments were then performed in the same system with media sequence following individual pH profiles. In dissolution experiments, where influences of simulated gastric emptying time (GET), gastric pH value, small intestinal transit time, and colonic pH were studied; high influence of gastric pH value and GET on DF-Na dissolution was observed. The effect of variability in pH profiles in the range of individual in vivo data on DF-Na dissolution was also clearly observed in experiments, where dissolution studies were performed following three simulated in vivo individual pH profiles. The differences in DF-Na release between three individual pH profiles were substantial; they also reflected in simulated plasma concentration profiles and can be attributed to pH dependent diclofenac solubility.
Collapse
|