1
|
Fine-Shamir N, Dahan A. Ethanol-based solubility-enabling oral drug formulation development: Accounting for the solubility-permeability interplay. Int J Pharm 2024; 653:123893. [PMID: 38346600 DOI: 10.1016/j.ijpharm.2024.123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
The aim of the current work was to investigate the key factors that govern the success/failure of an ethanol-based solubility-enabling oral drug formulation, including the effects of the ethanol on the solubility of the drug, the permeability across the intestinal membrane, the drug's dissolution in the aqueous milieu of the gastrointestinal tract (GIT), and the resulting solubility-permeability interplay. The concentration-dependent effects of ethanol-based vehicles on the solubility, the in-vitro Caco-2 permeability, the in-vivo rat permeability, and the biorelevant dissolution of the BCS class II antiepileptic drug carbamazepine were studied, and a predictive model describing the solubility-permeability relationship was developed. Significant concentration-dependent solubility increase of CBZ was obtained with increasing ethanol levels, that was accompanied by permeability decrease, both in Caco-2 and in rat perfusion studies, demonstrating a tradeoff between the increased solubility afforded by the ethanol and a concomitant permeability decrease. When ethanol absorption was accounted for, an excellent agreement was achieved between the predicted permeability and the experimental data. Biorelevant dissolution studies revealed that minimal ethanol levels of 30 % and 50 % were needed to fully dissolve 1 and 5 mg CBZ dose respectively, with no drug precipitation.In conclusion, key factors to be accounted for when developing ethanol-based formulation include the drug's solubility, permeability, the solubility-permeability interplay, and the drug dose intended to be delivered. Only the minimal amount of ethanol sufficient to solubilize the drug dose throughout the GIT should be used, and not more than that, to avoid unnecessarily permeability loss, and to maximize overall drug absorption.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
2
|
Day AW, Kumamoto CA. Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS One 2024; 19:e0298724. [PMID: 38377103 PMCID: PMC10878505 DOI: 10.1371/journal.pone.0298724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Day AW, Kumamoto CA. Selection of Ethanol Tolerant Strains of Candida albicans by Repeated Ethanol Exposure Results in Strains with Reduced Susceptibility to Fluconazole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557677. [PMID: 37745460 PMCID: PMC10515905 DOI: 10.1101/2023.09.13.557677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| |
Collapse
|
4
|
Chemotherapeutics Combined with Luminal Irritants: Effects on Small-Intestinal Mannitol Permeability and Villus Length in Rats. Int J Mol Sci 2022; 23:ijms23031021. [PMID: 35162944 PMCID: PMC8834916 DOI: 10.3390/ijms23031021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.
Collapse
|
5
|
Casey K, Lopes EW, Niccum B, Burke K, Ananthakrishnan AN, Lochhead P, Richter JM, Chan AT, Khalili H. Alcohol consumption and risk of inflammatory bowel disease among three prospective US cohorts. Aliment Pharmacol Ther 2022; 55:225-233. [PMID: 34881819 DOI: 10.1111/apt.16731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS There are limited data on alcohol dose and types and risk of Crohn's Disease (CD) and Ulcerative Colitis (UC). We therefore sought to comprehensively examine the association between alcohol consumption and risk of CD and UC. METHODS We conducted a prospective cohort study of 237,835 participants from the Nurses' Health Study, Nurses' Health Study II, and Health Professional Follow-Up Study. Alcohol consumption was obtained through questionnaires submitted every four years; additional covariates were obtained at two or four-year intervals. Cases were confirmed independently by two physicians through medical record review. We used Cox proportional hazards regression to estimate age and multivariable-adjusted hazards ratios and 95% confidence intervals. RESULTS Across 5,170,474 person-years of follow-up, 370 cases of CD and 486 cases of UC were documented. Increased consumption of alcohol intake was not associated with CD (Ptrend = 0.455) or UC (Ptrend = 0.745). Compared to non-users, the MV-adjusted HRs for 15.0 + g/day of alcohol intake group were 0.84 (95% CI 0.56, 1.24) for CD and 1.08 (95% CI 0.77, 1.51) for UC. In analyses of alcohol subtypes, we observed that only moderate consumption of beer (>1-4 servings/week) was marginally associated with reduced risk of CD, while consumption of >4 servings/week of liquor was associated with an increased risk of UC. CONCLUSION This prospective study did not identify a relationship between overall alcohol consumption and risk of CD or UC. Our suggestive associations between alcohol types and risk of CD and UC deserve additional investigation.
Collapse
Affiliation(s)
- Kevin Casey
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emily W Lopes
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Blake Niccum
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kristin Burke
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N Ananthakrishnan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Lochhead
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Richter
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Sadighi A, Leggio L, Akhlaghi F. Development of a Physiologically Based Pharmacokinetic Model for Prediction of Ethanol Concentration-Time Profile in Different Organs. Alcohol Alcohol 2021; 56:401-414. [PMID: 33316031 DOI: 10.1093/alcalc/agaa129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 11/15/2022] Open
Abstract
AIMS A physiologically based pharmacokinetic (PBPK) modeling approach was used to simulate the concentration-time profile of ethanol (EtOH) in stomach, duodenum, plasma and other tissues upon consumption of beer and whiskey under fasted and fed conditions. METHODS A full PBPK model was developed for EtOH using the advanced dissolution, absorption and metabolism (ADAM) model fully integrated into the Simcyp Simulator® 15 (Simcyp Ltd., Sheffield, UK). The prediction performance of the developed model was verified and the EtOH concentration-time profile in different organs was predicted. RESULTS Simcyp simulation showed ≤ 2-fold difference in values of EtOH area under the concentration-time curve (AUC) in stomach and duodenum as compared to the observed values. Moreover, the simulated EtOH maximum concentration (Cmax), time to reach Cmax (Tmax) and AUC in plasma were comparable to the observed values. We showed that liver is exposed to the highest EtOH concentration, faster than other organs (Cmax = 839.50 mg/L and Tmax = 0.53 h), while brain exposure of EtOH (AUC = 1139.43 mg·h/L) is the highest among all other organs. Sensitivity analyses (SAs) showed direct proportion of EtOH rate and extent of absorption with administered EtOH dose and inverse relationship with gastric emptying time (GE) and steady-state volume of distribution (Vss). CONCLUSIONS The current PBPK model approach might help with designing in vitro experiments in the area of alcohol organ damage or alcohol-drug interaction studies.
Collapse
Affiliation(s)
- Armin Sadighi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, 10 Center Drive (10CRC/15330), Bethesda, MD 20892, USA.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224, USA.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, 121 South Main Street, Providence, RI 02912, USA.,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, Georgetown University Medical Center, 4000 Reservoir Road, Washington D.C., DC 20007, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
7
|
Yuan J, Che S, Zhang L, Ruan Z. Reparative Effects of Ethanol-Induced Intestinal Barrier Injury by Flavonoid Luteolin via MAPK/NF-κB/MLCK and Nrf2 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4101-4110. [PMID: 33749262 DOI: 10.1021/acs.jafc.1c00199] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Luteolin, a dietary flavonoid, has gained increasing interest as an intestinal protectant. This study aimed to evaluate the reparative effect of luteolin against ethanol-induced intestinal barrier damage in a Caco-2 cell monolayer model and the potential mechanisms. Luteolin attenuated ethanol-induced intestinal barrier injury, by increasing transepithelial monolayer resistance (TEER, 27.75 ± 14.75% of the ethanol group, p < 0.01), reducing Lucifer yellow flux (13.21 ± 1.23% of ethanol group, p < 0.01), and upregulating the expression of tight junction (TJ) proteins zonulin occludin-1 (ZO-1), occludin, and claudin-1 (37.963 ± 8.62%, 17.69 ± 7.35%, and 29.40 ± 8.08% of the ethanol group, respectively, p < 0.01). Further mechanistic studies showed that luteolin suppressed myosin light chain 2 (MLC) phosphorylation, myosin light chain kinase (MLCK) activation, nuclear factor kappa-B (NF-κB) nuclear translocation, and mitogen-activated-protein-kinase (MAPK) phosphorylation. Moreover, luteolin also acted as antioxidants indirectly by upregulating antioxidant-responsive-element (ARE) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation to relieve ethanol-induced oxidative damage and TJ dysfunction. The results of the study indicate that luteolin may play an effective role in relieving intestinal barrier damage, and this effect is at least partially due to its indirect antioxidant capacity.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
8
|
Berardi A, Bisharat L, Quodbach J, Abdel Rahim S, Perinelli DR, Cespi M. Advancing the understanding of the tablet disintegration phenomenon - An update on recent studies. Int J Pharm 2021; 598:120390. [PMID: 33607196 DOI: 10.1016/j.ijpharm.2021.120390] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Disintegration is the de-aggregation of particles within tablets upon exposure to aqueous fluids. Being an essential step in the bioavailability cascade, disintegration is a fundamental quality attribute of immediate release tablets. Although the disintegration phenomenon has been studied for over six decades, some gaps of knowledge and research questions still exist. Three reviews, published in 2015, 2016 and 2017, have discussed the literature relative to tablet disintegration and summarised the understanding of this topic. Yet, since then more studies have been published, adding to the established body of knowledge. This article guides a step forward towards the comprehension of disintegration by reviewing, concisely, the most recent scientific updates on this topic. Initially, we revisit the mechanisms of disintegration with relation to the three most used superdisintegrants, namely sodium starch glycolate, croscarmellose sodium and crospovidone. Then, the influence of formulation, storage, manufacturing and media conditions on disintegration is analysed. This is followed by an excursus on novel disintegrants. Finally, we highlight unanswered research questions and envision future research venues in the field.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | - Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Germany
| | - Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Diego R Perinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| |
Collapse
|
9
|
A new polymer-excipient for ethanol-resistant, sustained-release oral dosage forms. Drug Deliv Transl Res 2021; 11:2239-2251. [PMID: 33469893 DOI: 10.1007/s13346-020-00892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
The use of alcoholic beverages can cause uncontrolled release of drugs from sustained-release solid oral dosage forms and pose severe risks to patient health. The aim of this work was to design a new polymeric excipient with ethanol resistance inherent to the polymer. Polymers were systematically designed, manufactured via emulsion polymerization, and fully characterized. Glass transition temperatures between 10 and 18 °C and minimum film forming temperatures between 10 and 25 °C were chosen because these parameters are ideal for aqueous film-coating processing. Three model drug formulations were made with the new polymer excipients and tested in the presence and absence of ethanol. The concept of an alcohol resistance factor based on Weibull regression analysis was introduced. In vitro results confirmed the hypothesized structure-function relationship between comonomer composition and ethanol resistance. That is, nonionic hydrophilic functional groups interacted more strongly with the ethanolic solvent, as compared with cationic hydrophilic comonomer that interacted more strongly with the surrounding water molecules. The alcohol resistance factor varied between - 44 ± 2% (slower drug release in presence of ethanol) and + 34 ± 0% (faster drug release in presence of ethanol) depending on the comonomer ratio. The main advantages of these new excipients compared with ethanol-resistant excipient blends include ease of use, plasticizers are not necessary, and shorter coating times.
Collapse
|
10
|
Elgaied-Lamouchi D, Descamps N, Lefèvre P, Mackin-Mohamour AR, Neut C, Siepmann F, Siepmann J, Muschert S. Robustness of Controlled Release Tablets Based on a Cross-linked Pregelatinized Potato Starch Matrix. AAPS PharmSciTech 2020; 21:148. [PMID: 32436061 DOI: 10.1208/s12249-020-01674-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate the potential of a cross-linked pregelatinized potato starch (PREGEFLO® PI10) as matrix former for controlled release tablets. Different types of tablets loaded with diprophylline, diltiazem HCl or theophylline were prepared by direct compression of binary drug/polymer blends. The drug content was varied from 20 to 50%. Two hydroxypropyl methylcellulose grades (HPMC K100LV and K100M) were studied as alternative matrix formers. Drug release was measured in a variety of release media using different types of experimental set-ups. This includes 0.1 N HCl, phosphate buffer pH 6.8 and water, optionally containing different amounts of NaCl, sucrose, ethanol or pancreatin, fasted state simulated gastric fluid, fed state simulated gastric fluid, fasted state simulated intestinal fluid, fed state simulated intestinal fluid as well as media simulating the conditions in the colon of healthy subjects and patients suffering from Crohn's disease. The USP apparatuses I/II/III were used under a range of operating conditions and optionally coupled with the simulation of additional mechanical stress. Importantly, the drug release kinetics was not substantially affected by the investigated environmental conditions from tablets based on the cross-linked pregelatinized potato starch, similar to HPMC tablets. However, in contrast to the latter, the starch-based tablets roughly kept their shape upon exposure to the release media (they "only" increased in size) during the observation period, and the water penetration into the systems was much less pronounced. Thus, the investigated cross-linked pregelatinized potato starch offers an interesting potential as matrix former in controlled release tablets.
Collapse
|
11
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
12
|
Oliveira AP, Souza LKM, Araújo TSL, Araújo SD, Nogueira KM, Sousa FBM, Silva RO, Pacífico DM, Martins CS, Brito GADC, Souza MHLP, Medeiros JVR. Lactobacillus reuteri DSM 17938 Protects against Gastric Damage Induced by Ethanol Administration in Mice: Role of TRPV1/Substance P Axis. Nutrients 2019; 11:nu11010208. [PMID: 30669695 PMCID: PMC6356937 DOI: 10.3390/nu11010208] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the effect of Lactobacillus reuteri DSM 17938 (DSM) on ethanol-induced gastric injury, and if its possible mechanism of action is related to inhibiting the transient receptor potential vanilloid type 1 (TRPV1). We evaluated the effect of supplementing 10⁸ CFU•g body wt-1•day-1 of DSM on ethanol-induced gastric injury. DSM significantly reduced the ulcer area (1.940 ± 1.121 mm²) with 3 days of pretreatment. The effects of DSM supplementation were reversed by Resiniferatoxin (RTX), TRPV1 agonist (3 nmol/kg p.o.). Substance P (SP) (1 μmol/L per 20 g) plus 50% ethanol resulted in hemorrhagic lesions, and DSM supplementation did not reverse the lesion area induced by administering SP. TRPV1 staining intensity was lower, SP, malondialdehyde (MDA) and nitrite levels were reduced, and restored normal levels of antioxidant parameters (glutathione and superoxide dismutase) in the gastric mucosa in mice treated with DSM. In conclusion, DSM exhibited gastroprotective activity through decreased expression of TRPV1 receptor and decreasing SP levels, with a consequent reduction of oxidative stress.
Collapse
Affiliation(s)
- Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Luan K M Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Thiago S L Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Simone de Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Kerolayne M Nogueira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Francisca Beatriz M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| | - Renan O Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60430-270, Fortaleza, Ceará, Brazil.
| | - Dvison M Pacífico
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, CEP 60430-170, Fortaleza-CE, Brazil.
| | - Conceição S Martins
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, CEP 60430-170, Fortaleza-CE, Brazil.
| | - Gerly Anne de C Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, CEP 60430-170, Fortaleza-CE, Brazil.
| | - Marcellus H L P Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60430-270, Fortaleza, Ceará, Brazil.
| | - Jand Venes R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Av. São Sebastião, nº 2819, CEP 64202-02, Parnaíba, PI, Brazil.
| |
Collapse
|
13
|
Bisharat L, AlKhatib HS, Muhaissen S, Quodbach J, Blaibleh A, Cespi M, Berardi A. The influence of ethanol on superdisintegrants and on tablets disintegration. Eur J Pharm Sci 2019; 129:140-147. [PMID: 30630089 DOI: 10.1016/j.ejps.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 01/06/2019] [Indexed: 11/18/2022]
Abstract
Disintegration of immediate release tablets originates from the volume expansion of disintegrants within the formulation. Here, we study the impact of ethanol on the disintegrant expansion and on tablets disintegration. The three most commonly used superdisintegrants, namely sodium starch glycolate (SSG), crospovidone (PVPP) and croscarmellose sodium (CCS) were investigated alone and incorporated in dicalcium phosphate and in drug-containing tablets. High (i.e. 40%), but not moderate (i.e. 10%), aqueous ethanol concentrations reduce the size expansion of the three disintegrants compared to water. This "ethanol effect" is the greatest for SSG, followed by CCS and then PVPP. Moreover, the presence of ethanol in the media can significantly influence the disintegration time of drug-containing tablets via affecting both the disintegrant action itself and the drug solubility. For example, the disintegration time of theophylline tablets containing SSG is 8.1-fold greater in 40% aqueous ethanol compared to water. Overall, this study brought to light the existence of a potentially significant interference of alcohol with the disintegration phenomenon, suggesting that the concomitant administration of tablets and intake of alcoholic beverages may affect, in some cases, tablets disintegration. More studies are now needed to verify the importance of the "ethanol effect" on disintegration of commercial dosage forms. Our findings also suggest that PVPP is the disintegrant that is the least affected by alcohol.
Collapse
Affiliation(s)
- Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hatim S AlKhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Suha Muhaissen
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Germany
| | - Anaheed Blaibleh
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| |
Collapse
|
14
|
Keemink J, Sjögren E, Holm R, Bergström CAS. Does the Intake of Ethanol Affect Oral Absorption of Poorly Soluble Drugs? J Pharm Sci 2018; 108:1765-1771. [PMID: 30562491 DOI: 10.1016/j.xphs.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/25/2022]
Abstract
The presence of ethanol in gastrointestinal (GI) fluids may increase the solubility of poorly water-soluble drugs. This suggests that intake of ethanol with such compounds could result in increased drug absorption in the stomach and duodenum because of the greater concentration gradient present. To test this hypothesis, in vitro dissolution of 2 poorly soluble compounds (indomethacin and felodipine) was studied in simulated GI rat fluids in the presence or absence of ethanol. Results were used to predict plasma exposure of the compounds using the software PK-Sim. Finally, in vivo plasma exposure in rats was investigated after oral dosing followed by immediate administration of water or ethanol. Despite increased solubility in GI fluids in the presence of ethanol, simulations predicted a negligible effect on absorption. This was confirmed in the rat study where oral intake of indomethacin or felodipine with ethanol did not increase in vivo plasma exposure. A possible explanation for the lack of an effect may be that dilution, absorption, and transfer of ethanol upon arrival in the stomach resulted in intragastric and intraduodenal ethanol concentrations that did not reach the levels required to affect local solubility.
Collapse
Affiliation(s)
- Janneke Keemink
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden.
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden; Pharmeteus, Dag Hammarskjölds Väg 52B, 752 37 Uppsala, Sweden
| | - René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | |
Collapse
|
15
|
Bai S, Li P, Liu J, Cui C, Li Q, Bi K. A UFLC-MS/MS method for the simultaneous determination of eight bioactive constituents from red wine and dealcoholized red wine in rat plasma: Application to a comparative pharmacokinetic study. Biomed Chromatogr 2018; 33:e4437. [PMID: 30421785 DOI: 10.1002/bmc.4437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/20/2018] [Accepted: 11/07/2018] [Indexed: 11/07/2022]
Abstract
To explore whether alcohol has an effect on the pharmacokinetic behavior of phenolic acids, the main bioactive constituents in red wine, a highly sensitive and simple ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometry (UFLC-MS/MS) method was developed for simultaneous quantitation of eight phenolic acids in plasma samples. Plasma samples were extracted by liquid-liquid extraction and the chromatographic separation was achieved on a Zorbax SB-C18 column within 7.0 min. Results of the validated method revealed that all of the calibration curves displayed good linear regression (r > 0.99). The intra- and inter-day precisions of the analytes were <14.0% and accuracies ranged from -8.5 to 7.3%. The extraction recoveries of the analytes were from 71.2 to 110.2% and the matrix effects ranged from 86.2 to 105.5%. The stability of these compounds under various conditions satisfied the requirements of biological sample measurement. The method was successfully applied to a comparative pharmacokinetic study of phenolic acids in rat plasma. For gallic acid and gentisic acid, the parameters AUC0-t and AUC0-∞ increased remarkably (p < 0.05) after oral administration of red wine, which suggested that alcohol might enhance their absorption. This is the first report to compare the pharmacokinetic behavior of phenolic acids in red wine and dealcoholized red wine.
Collapse
Affiliation(s)
- Shuang Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Pei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Can Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
16
|
Chopyk DM, Kumar P, Raeman R, Liu Y, Smith T, Anania FA. Dysregulation of junctional adhesion molecule-A contributes to ethanol-induced barrier disruption in intestinal epithelial cell monolayers. Physiol Rep 2018; 5. [PMID: 29208693 PMCID: PMC5727288 DOI: 10.14814/phy2.13541] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption promotes loss of intestinal barrier function. However, mechanisms by which ethanol affects the tight junction (TJ), the cellular structure responsible for maintaining the gut epithelial barrier, are not well understood. Three classes of transmembrane proteins comprise TJs: occludin, claudins, and junctional adhesion molecules (JAMs). It has recently been postulated that JAM‐A (F11R), the most abundant JAM expressed in intestinal epithelium, regulates “leak” pathway flux, a paracellular route for the nonselective permeation of large solutes. Since transluminal flux of many gut‐derived antigens occurs through this pathway, we investigated the role of JAM‐A in ethanol‐induced disruption of the intestinal epithelial barrier. Using Caco‐2 and SK‐CO15 monolayers, we found that ethanol induced a dose‐ and time‐dependent decrease in JAM‐A protein expression to about 70% of baseline levels. Alcohol also reduced Ras‐related protein 2 (Rap2) activity, and enhanced myosin light chain kinase (MLCK) activity, changes consistent with impaired JAM‐A signaling. Stable overexpression and shRNA‐mediated knockdown of JAM‐A were employed to investigate the role of JAM‐A in paracellular‐mediated flux following alcohol exposure. The paracellular flux of 40‐kDa fluorescein isothiocynate (FITC)‐dextran following ethanol treatment was decreased by the overexpression of JAM‐A; conversely, flux was enhanced by JAM‐A knockdown. Thus, we conclude that ethanol‐mediated control of JAM‐A expression and function contributes to mechanisms by which this chemical induces intestinal epithelial leakiness.
Collapse
Affiliation(s)
- Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Reben Raeman
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
17
|
Jeerapan I, Ciui B, Martin I, Cristea C, Sandulescu R, Wang J. Fully edible biofuel cells. J Mater Chem B 2018; 6:3571-3578. [DOI: 10.1039/c8tb00497h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article describes the first example of edible energy harvesting biofuel cells, based solely on highly biocompatible and ingestible food materials.
Collapse
Affiliation(s)
- Itthipon Jeerapan
- Department of NanoEngineering
- University of California
- San Diego La Jolla
- USA
| | - Bianca Ciui
- Department of NanoEngineering
- University of California
- San Diego La Jolla
- USA
- Analytical Chemistry Department
| | - Ian Martin
- Department of NanoEngineering
- University of California
- San Diego La Jolla
- USA
| | | | | | - Joseph Wang
- Department of NanoEngineering
- University of California
- San Diego La Jolla
- USA
| |
Collapse
|
18
|
Grimm M, Scholz E, Koziolek M, Kühn JP, Weitschies W. Gastric Water Emptying under Fed State Clinical Trial Conditions Is as Fast as under Fasted Conditions. Mol Pharm 2017; 14:4262-4271. [DOI: 10.1021/acs.molpharmaceut.7b00623] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Grimm
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Elisabeth Scholz
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Mirko Koziolek
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Jens-Peter Kühn
- Institute
of Radiology and Neuroradiology, University Medicine Greifswald, D-17475 Greifswald, Germany
- Department
of Radiology, University Medicine Dresden, D-01304 Dresden, Germany
| | - Werner Weitschies
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
19
|
Rubbens J, Riethorst D, Brouwers J, Wolfs K, Adams E, Tack J, Augustijns P. Gastric and Duodenal Ethanol Concentrations after Intake of Alcoholic Beverages in Postprandial Conditions. Mol Pharm 2017; 14:4202-4208. [DOI: 10.1021/acs.molpharmaceut.7b00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jari Rubbens
- Drug Delivery & Disposition, KU Leuven, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Danny Riethorst
- Drug Delivery & Disposition, KU Leuven, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery & Disposition, KU Leuven, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Kris Wolfs
- Pharmaceutical Analysis, KU Leuven, Gasthuisberg O&N2, Herestraat 49 Box 923, 3000 Leuven, Belgium
| | - Erwin Adams
- Pharmaceutical Analysis, KU Leuven, Gasthuisberg O&N2, Herestraat 49 Box 923, 3000 Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Gasthuisberg O&N1, Herestraat 49 Box 701, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery & Disposition, KU Leuven, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| |
Collapse
|
20
|
Glynn A, Igra AM, Sand S, Ilbäck NG, Hellenäs KE, Rosén J, Aspenström-Fagerlund B. Are additive effects of dietary surfactants on intestinal tight junction integrity an overlooked human health risk? - A mixture study on Caco-2 monolayers. Food Chem Toxicol 2017; 106:314-323. [PMID: 28576466 DOI: 10.1016/j.fct.2017.05.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Surfactants may cause dysfunction of intestinal tight junctions (TJs), which is a common feature of intestinal autoimmune diseases. Effects of dietary surfactants on TJ integrity, measured as trans-epithelial resistance (TEER), were studied in Caco-2 cell monolayers. Cytotoxicity was assessed as apical LDH leakage. Monolayers were apically exposed for 60 min to the dietary surfactants solanine and chaconine (SC, potato glycoalkaloids, 0-0.25 mM), perfluorooctane sulfonic acid (PFOS, industrial contaminant, 0-0.8 mM), and sucrose monolaurate (SML, food emulsifier E 473, 0-2.0 mM) separately and as a mixture. Dose-response modelling of TEER EC50 showed that SC were 2.7- and 12-fold more potent than PFOS and SML, respectively. The mixture was composed of 1 molar unit SC, 2.7 units PFOS and 12 units SML ("SC TEER equivalent" proportions 1:1:1). Mixture exposure (0-0.05 mM SC equivalents) dose-response modelling suggested additive action on TJ integrity. Increasing SC and SML concentrations caused increased LDH leakage, but PFOS decreased LDH leakage at intermediate exposure concentrations. In the mixture PFOS appeared to protect from extensive SC- and SML-induced LDH leakage. Complex mixtures of surfactants in food may act additively on intestinal TJ integrity, which should be considered in risk assessment of emulsifier authorisation for use in food production.
Collapse
Affiliation(s)
- Anders Glynn
- Swedish National Food Agency, PO Box 622, SE-751 26 Uppsala, Sweden.
| | | | - Salomon Sand
- Swedish National Food Agency, PO Box 622, SE-751 26 Uppsala, Sweden
| | | | | | - Johan Rosén
- Swedish National Food Agency, PO Box 622, SE-751 26 Uppsala, Sweden
| | | |
Collapse
|
21
|
Hens B, Van Den Abeele J, Rubbens J, Keirsebilck M, Roelens J, Schreurs C, Verheyen K, Casteels M, Laekeman G, Augustijns P. Evaluation of real-life dosing of oral medicines with respect to fluid and food intake in a Dutch-speaking population. J Clin Pharm Ther 2017; 42:467-474. [DOI: 10.1111/jcpt.12535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Affiliation(s)
- B. Hens
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
- College of Pharmacy; University of Michigan; Ann Arbor MI USA
| | | | - J. Rubbens
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - M. Keirsebilck
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - J. Roelens
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - C. Schreurs
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - K. Verheyen
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| | - M. Casteels
- Clinical Pharmacology and Pharmacotherapy; KU Leuven, O&N2; Leuven Belgium
| | - G. Laekeman
- Clinical Pharmacology and Pharmacotherapy; KU Leuven, O&N2; Leuven Belgium
| | - P. Augustijns
- Drug Delivery and Disposition; KU Leuven, O&N2; Leuven Belgium
| |
Collapse
|
22
|
Berben P, Mols R, Brouwers J, Tack J, Augustijns P. Gastrointestinal behavior of itraconazole in humans - Part 2: The effect of intraluminal dilution on the performance of a cyclodextrin-based solution. Int J Pharm 2017; 526:235-243. [PMID: 28450167 DOI: 10.1016/j.ijpharm.2017.04.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 11/16/2022]
Abstract
Hydroxypropyl-β-cyclodextrin (HP-β-CD) is known to enable absorption of the lipophilic drug itraconazole. Since the interaction between HP-β-CD and itraconazole is characterized by a non-lineair, AP-type phase-solubility diagram, the present study aimed to investigate the influence of intraluminal dilution (water intake) on the behavior and performance of an orally administered cyclodextrin-based solution of itraconazole. Subsequently, the in vivo behavior was simulated by combining in vitro dilution with permeation assessment. After the administration of a Sporanox® solution to healthy volunteers with or without a glass of water, gastrointestinal and systemic concentrations of itraconazole were simultaneously monitored. Independently of the intake of water, no gastric precipitation of itraconazole was observed. After transfer to the duodenum, precipitation occurred and was more pronounced in the condition with water, resulting in a 7.6-fold reduction in duodenal AUC0-3h compared to the condition without water. Nevertheless, plasma concentration-time profiles did not demonstrate any significant differences in AUC0-8h, Cmax and tmax. Application of freshly aspirated intestinal fluids on Caco-2 cells clearly confirmed that higher intestinal itraconazole concentrations after intake of Sporanox® without water do not generate a substantially increased itraconazole uptake. A two-stage in vitro dilution test was combined with a permeation compartment to capture this solubility-permeability interplay. In conclusion, this work demonstrates that variations in intraluminal dilution may have a drastic impact on the gastrointestinal behavior of lipophilic drugs in the presence of cyclodextrins. In the case of an AP-type interaction with cyclodextrins, the trade-off between solubility and permeability may be affected.
Collapse
Affiliation(s)
- Philippe Berben
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Al-Gousous J, Tsume Y, Fu M, Salem II, Langguth P. Unpredictable Performance of pH-Dependent Coatings Accentuates the Need for Improved Predictive in Vitro Test Systems. Mol Pharm 2017; 14:4209-4219. [PMID: 28199791 DOI: 10.1021/acs.molpharmaceut.6b00877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
First introduced in the second half of the 19th century, enteric coatings are commonly used to protect acid-labile drugs, reduce the risk of gastric side effects due to irritating drugs, or for local drug delivery to the lower gastrointestinal (GI) tract. The currently available enteric-coatings are based on pH-sensitive weakly acidic polymers. Despite the long history of their use, the causes behind their performance often being unpredictable have not been properly investigated with most of the attention being focused only on the gastric emptying. However, little attention has been given to the postgastric emptying disintegration and dissolution of these dosage forms. This lack of attention has contributed to the difficulty in predicting the in vivo behavior of these dosage forms and to cases of bioavailability problems with some enteric-coated products. Therefore, increased attention needs to be given to this issue.
Collapse
Affiliation(s)
- Jozef Al-Gousous
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz , Staudinger Weg 5, 55099 Mainz, Germany
| | - Yasuhiro Tsume
- Department of Pharmaceutical Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Maoqi Fu
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz , Staudinger Weg 5, 55099 Mainz, Germany
| | - Isam I Salem
- International Pharmaceutical Research Center , 1 Queen Rania Street, Amman 11196, Jordan
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz , Staudinger Weg 5, 55099 Mainz, Germany
| |
Collapse
|
24
|
Van Den Abeele J, Rubbens J, Brouwers J, Augustijns P. The dynamic gastric environment and its impact on drug and formulation behaviour. Eur J Pharm Sci 2017; 96:207-231. [DOI: 10.1016/j.ejps.2016.08.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
|
25
|
Mercuri A, Pagliari M, Baxevanis F, Fares R, Fotaki N. Understanding and predicting the impact of critical dissolution variables for nifedipine immediate release capsules by multivariate data analysis. Int J Pharm 2016; 518:41-49. [PMID: 28011342 DOI: 10.1016/j.ijpharm.2016.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
In this study the selection of in vivo predictive in vitro dissolution experimental set-ups using a multivariate analysis approach, in line with the Quality by Design (QbD) principles, is explored. The dissolution variables selected using a design of experiments (DoE) were the dissolution apparatus [USP1 apparatus (basket) and USP2 apparatus (paddle)], the rotational speed of the basket/or paddle, the operator conditions (dissolution apparatus brand and operator), the volume, the pH, and the ethanol content of the dissolution medium. The dissolution profiles of two nifedipine capsules (poorly soluble compound), under conditions mimicking the intake of the capsules with i. water, ii. orange juice and iii. an alcoholic drink (orange juice and ethanol) were analysed using multiple linear regression (MLR). Optimised dissolution set-ups, generated based on the mathematical model obtained via MLR, were used to build predicted in vitro-in vivo correlations (IVIVC). IVIVC could be achieved using physiologically relevant in vitro conditions mimicking the intake of the capsules with an alcoholic drink (orange juice and ethanol). The multivariate analysis revealed that the concentration of ethanol used in the in vitro dissolution experiments (47% v/v) can be lowered to less than 20% v/v, reflecting recently found physiological conditions.
Collapse
Affiliation(s)
- A Mercuri
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - M Pagliari
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - F Baxevanis
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - R Fares
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - N Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.
| |
Collapse
|
26
|
A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices. Int J Pharm 2016; 513:602-611. [DOI: 10.1016/j.ijpharm.2016.09.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/01/2023]
|