1
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Xu B, Zhang Q, Chen D, Zhang M, Zhang R, Zhao W, Qiu Y, Xu K, Xiao J, Niu J, Shi Y, Li N, Fang Q. OCP002, a Mixed Agonist of Opioid and Cannabinoid Receptors, Produces Potent Antinociception With Minimized Side Effects. Anesth Analg 2023; 136:373-386. [PMID: 36638515 DOI: 10.1213/ane.0000000000006266] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increasing attention has been attracted to the development of bifunctional compounds to minimize the side effects of opioid analgesics. Pharmacological studies have verified the functional interaction between opioid and cannabinoid systems in pain management, suggesting that coactivation of the opioid and cannabinoid receptors may provide synergistic analgesia with fewer adverse reactions. Herein, we developed and characterized a novel bifunctional compound containing the pharmacophores of the mu-opioid receptor agonist DALDA and the cannabinoid peptide VD-Hpα-NH2, named OCP002. METHODS The opioid and cannabinoid agonistic activities of OCP002 were investigated in calcium mobilization and western blotting assays, respectively. Moreover, the central and peripheral antinociceptive effects of OCP002 were evaluated in mouse preclinical models of tail-flick test, carrageenan-induced inflammatory pain, and acetic acid-induced visceral pain, respectively. Furthermore, the potential opioid and cannabinoid side effects of OCP002 were systematically investigated in mice after intracerebroventricular (ICV) and subcutaneous (SC) administrations. RESULTS OCP002 functioned as a mixed agonist toward mu-opioid, kappa-opioid, and cannabinoid CB1 receptors in vitro. ICV and SC injections of OCP002 produced dose-dependent antinociception in mouse models of nociceptive (the median effective dose [ED50] values with 95% confidence interval [CI] are 0.14 [0.12-0.15] nmol and 0.32 [0.29-0.35] μmol/kg for ICV and SC injections, respectively), inflammatory (mechanical stimulation: ED50 values [95% CI] are 0.76 [0.64-0.90] nmol and 1.23 [1.10-1.38] μmol/kg for ICV and SC injections, respectively; thermal stimulation: ED50 values [95% CI] are 0.13 [0.10-0.17] nmol and 0.23 [0.08-0.40] μmol/kg for ICV and SC injections, respectively), and visceral pain (ED50 values [95% CI] are 0.0069 [0.0050-0.0092] nmol and 1.47 [1.13-1.86] μmol/kg for ICV and SC injections, respectively) via opioid and cannabinoid receptors. Encouragingly, OCP002 cannot cross the blood-brain barrier and exerted nontolerance-forming analgesia over 6-day treatment at both supraspinal and peripheral levels. Consistent with these behavioral results, repeated OCP002 administration did not elicit microglial hypertrophy and proliferation, the typical features of opioid-induced tolerance, in the spinal cord. Furthermore, at the effective analgesic doses, SC OCP002 exhibited minimized opioid and cannabinoid side effects on motor performance, body temperature, gastric motility, physical and psychological dependence, as well as sedation in mice. CONCLUSIONS This study demonstrates that OCP002 produces potent and nontolerance-forming antinociception in mice with reduced opioid- and cannabinoid-related side effects, which strengthen the candidacy of bifunctional drugs targeting opioid/cannabinoid receptors for translational-medical development to replace or assist the traditional opioid analgesics.
Collapse
Affiliation(s)
- Biao Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Dan Chen
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Run Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- School of Medicine' Shanghai Jiao Tong University' Shanghai, China
| | - Kangtai Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yonghang Shi
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Ning Li
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Quan Fang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Chimeric Structures in Mental Illnesses-"Magic" Molecules Specified for Complex Disorders. Int J Mol Sci 2022; 23:ijms23073739. [PMID: 35409098 PMCID: PMC8998808 DOI: 10.3390/ijms23073739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mental health problems cover a wide spectrum of diseases, including mild to moderate anxiety, depression, alcohol/drug use disorders, as well as bipolar disorder and schizophrenia. Pharmacological treatment seems to be one of the most effective opportunities to recover function efficiently and satisfactorily. However, such disorders are complex as several target points are involved. This results in a necessity to combine different types of drugs to obtain the necessary therapeutic goals. There is a need to develop safer and more effective drugs. Considering that mental illnesses share multifactorial processes, the paradigm of one treatment with multiple modes of action rather than single-target strategies would be more effective for successful therapies. Therefore, hybrid molecules that combine two pharmacophores in one entity show promise, as they possess the desired therapeutic index with a small off-target risk. This review aims to provide information on chimeric structures designed for mental disorder therapy (i.e., schizophrenia and depression), and new types of drug candidates currently being tested. In addition, a discussion on some benefits and limitations of multifunctional, bivalent drug candidates is also given.
Collapse
|
4
|
Frączek K, Ferraiolo M, Hermans E, Bujalska-Zadrozny M, Kasarello K, Erdei A, Kulik K, Kowalczyk A, Wojciechowski P, Sulejczak D, Sosnowski P, Granica S, Benyhe S, Kaczynska K, Nagraba L, Stolarczyk A, Cudnoch-Jedrzejewska A, Kleczkowska P. Novel opioid-neurotensin-based hybrid peptide with spinal long-lasting antinociceptive activity and a propensity to delay tolerance development. Acta Pharm Sin B 2020; 10:1440-1452. [PMID: 32963942 PMCID: PMC7488486 DOI: 10.1016/j.apsb.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
The behavioral responses exerted by spinal administration of the opioid-neurotensin hybrid peptide, PK23, were studied in adult male rats. The antinociceptive effect upon exposure to a thermal stimulus, as well as tolerance development, was assessed in an acute pain model. The PK23 chimera at a dose of 10 nmol/rat produced a potent pain-relieving effect, especially after its intrathecal administration. Compared with intrathecal morphine, this novel compound was found to possess a favourable side effect profile characterized by a reduced scratch reflex, delayed development of analgesic tolerance or an absence of motor impairments when given in the same manner, though some animals died following barrel rotation as a result of its i.c.v. administration (in particular at doses higher than 10 nmol/rat). Nonetheless, these results suggest the potential use of hybrid compounds encompassing both opioid and neurotensin structural fragments in pain management. This highlights the enormous potential of synthetic neurotensin analogues as promising future analgesics.
Collapse
|
5
|
Matalińska J, Lipiński PFJ, Kotlarz A, Kosson P, Muchowska A, Dyniewicz J. Evaluation of Receptor Affinity, Analgesic Activity and Cytotoxicity of a Hybrid Peptide, AWL3020. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10051-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractIn the present contribution we report design, synthesis and evaluation of receptor affinity, analgesic activity and cytotoxicity of a hybrid peptide, AWL3020. The peptide includes two pharmacophores, one of δ-opioid receptor (δOR) agonists and one of neurokinin-1 receptor (NK1R) antagonists. The design was motivated by the desire to obtain a compound with strong analgesic action and potential additional antiproliferative action. The compound displays high δOR affinity (IC50 = 29.5 nM). On the other hand, it has only poor affinity for the NK1R (IC50 = 70.28 μM). The substance shows good analgesic action which is however weaker than that of morphine. Regarding the effect on proliferation, the compound exhibits no pro-proliferative action in the assayed range. In higher concentrations, it has also cytotoxic activity. This effect is however not selective. The strongest effect of AWL3020 was found for melanoma MeW164 cell line (EC50 = 46.27 μM in reduction of cell numbers after a few days of incubation; EC50 = 37.78 μM in MTT assay).
Collapse
|
6
|
Wtorek K, Adamska-Bartłomiejczyk A, Piekielna-Ciesielska J, Ferrari F, Ruzza C, Kluczyk A, Piasecka-Zelga J, Calo’ G, Janecka A. Synthesis and Pharmacological Evaluation of Hybrids Targeting Opioid and Neurokinin Receptors. Molecules 2019; 24:molecules24244460. [PMID: 31817441 PMCID: PMC6943619 DOI: 10.3390/molecules24244460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Morphine, which acts through opioid receptors, is one of the most efficient analgesics for the alleviation of severe pain. However, its usefulness is limited by serious side effects, including analgesic tolerance, constipation, and dependence liability. The growing awareness that multifunctional ligands which simultaneously activate two or more targets may produce a more desirable drug profile than selectively targeted compounds has created an opportunity for a new approach to developing more effective medications. Here, in order to better understand the role of the neurokinin system in opioid-induced antinociception, we report the synthesis, structure–activity relationship, and pharmacological characterization of a series of hybrids combining opioid pharmacophores with either substance P (SP) fragments or neurokinin receptor (NK1) antagonist fragments. On the bases of the in vitro biological activities of the hybrids, two analogs, opioid agonist/NK1 antagonist Tyr-[d-Lys-Phe-Phe-Asp]-Asn-d-Trp-Phe-d-Trp-Leu-Nle-NH2 (2) and opioid agonist/NK1 agonist Tyr-[d-Lys-Phe-Phe-Asp]-Gln-Phe-Phe-Gly-Leu-Met-NH2 (4), were selected for in vivo tests. In the writhing test, both hybrids showed significant an antinociceptive effect in mice, while neither of them triggered the development of tolerance, nor did they produce constipation. No statistically significant differences in in vivo activity profiles were observed between opioid/NK1 agonist and opioid/NK1 antagonist hybrids.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Joanna Piasecka-Zelga
- Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Head of Research Laboratory for Medicine and Veterinary Products, 91-348 Lodz, Poland;
| | - Girolamo Calo’
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
- Correspondence:
| |
Collapse
|
7
|
Abstract
Hybrid compounds (also known as chimeras, designed multiple ligands, bivalent compounds) are chemical units where two active components, usually possessing affinity and selectivity for distinct molecular targets, are combined as a single chemical entity. The rationale for using a chimeric approach is well documented as such novel drugs are characterized by their enhanced enzymatic stability and biological activity. This allows their use at lower concentrations, increasing their safety profile, particularly when considering undesirable side effects. In the group of synthetic bivalent compounds, drugs combining pharmacophores having affinities toward opioid and neurokinin-1 receptors have been extensively studied as potential analgesic drugs. Indeed, substance P is known as a major endogenous modulator of nociception both in the peripheral and central nervous systems. Hence, synthetic peptide fragments showing either agonism or antagonism at neurokinin 1 receptor were both assigned with analgesic properties. However, even though preclinical studies designated neurokinin-1 receptor antagonists as promising analgesics, early clinical studies revealed a lack of efficacy in human. Nevertheless, their molecular combination with enkephalin/endomorphin fragments has been considered as a valuable approach to design putatively promising ligands for the treatment of pain. This paper is aimed at summarizing a 20-year journey to the development of potent analgesic hybrid compounds involving an opioid pharmacophore and devoid of unwanted side effects. Additionally, the legitimacy of considering neurokinin-1 receptor ligands in the design of chimeric drugs is discussed.
Collapse
|
8
|
Gadais C, Ballet S. The Neurokinins: Peptidomimetic Ligand Design and Therapeutic Applications. Curr Med Chem 2018; 27:1515-1561. [PMID: 30209994 DOI: 10.2174/0929867325666180913095918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The neurokinins are indisputably essential neurotransmitters in numerous pathoand physiological events. Being widely distributed in the Central Nervous System (CNS) and peripheral tissues, their discovery rapidly promoted them to drugs targets. As a necessity for molecular tools to understand the biological role of this class, endogenous peptides and their receptors prompted the scientific community to design ligands displaying either agonist and antagonist activity at the three main neurokinin receptors, called NK1, NK2 and NK3. Several strategies were implemented for this purpose. With a preference to small non-peptidic ligands, many research groups invested efforts in synthesizing and evaluating a wide range of scaffolds, but only the NK1 antagonist Aprepitant (EMENDT) and its prodrug Fosaprepitant (IVEMENDT) have been approved by the Food Drug Administration (FDA) for the treatment of Chemotherapy-Induced and Post-Operative Nausea and Vomiting (CINV and PONV, respectively). While non-peptidic drugs showed limitations, especially in side effect control, peptidic and pseudopeptidic compounds progressively regained attention. Various strategies were implemented to modulate affinity, selectivity and activity of the newly designed ligands. Replacement of canonical amino acids, incorporation of conformational constraints, and fusion with non-peptidic moieties gave rise to families of ligands displaying individual or dual NK1, NK2 and NK3 antagonism, that ultimately were combined with non-neurokinin ligands (such as opioids) to target enhanced biological impact.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
9
|
Erdei AI, Borbély A, Magyar A, Taricska N, Perczel A, Zsíros O, Garab G, Szűcs E, Ötvös F, Zádor F, Balogh M, Al-Khrasani M, Benyhe S. Biochemical and pharmacological characterization of three opioid-nociceptin hybrid peptide ligands reveals substantially differing modes of their actions. Peptides 2018; 99:205-216. [PMID: 29038035 DOI: 10.1016/j.peptides.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
In an attempt to design opioid-nociceptin hybrid peptides, three novel bivalent ligands, H-YGGFGGGRYYRIK-NH2, H-YGGFRYYRIK-NH2 and Ac-RYYRIKGGGYGGFL-OH were synthesized and studied by biochemical, pharmacological, biophysical and molecular modelling tools. These chimeric molecules consist of YGGF sequence, a crucial motif in the N-terminus of natural opioid peptides, and Ac-RYYRIK-NH2, which was isolated from a combinatorial peptide library as an antagonist or partial agonist that inhibits the biological activity of the endogenously occurring heptadecapeptide nociceptin. Solution structures for the peptides were studied by analysing their circular dichroism spectra. Receptor binding affinities were measured by equilibrium competition experiments using four highly selective radioligands. G-protein activating properties of the multitarget peptides were estimated in [35S]GTPγS binding tests. The three compounds were also measured in electrically stimulated mouse vas deferens (MVD) bioassay. H-YGGFGGGRYYRIK-NH2 (BA55), carrying N-terminal opioid and C-terminal nociceptin-like sequences interconnected with GGG tripeptide spacer displayed a tendency of having either unordered or β-sheet structures, was moderately potent in MVD and possessed a NOP/KOP receptor preference. A similar peptide without spacer H-YGGFRYYRIK-NH2 (BA62) exhibited the weakest effect in MVD, more α-helical periodicity was present in its structure and it exhibited the most efficacious agonist actions in the G-protein stimulation assays. The third hybrid peptide Ac-RYYRIKGGGYGGFL-OH (BA61) unexpectedly displayed opioid receptor affinities, because the opioid message motif is hidden within the C-terminus. The designed chimeric peptide ligands presented in this study accommodate well into a group of multitarget opioid compounds that include opioid-non-opioid peptide dimer analogues, dual non-peptide dimers and mixed peptide- non-peptide bifunctional ligands.
Collapse
Affiliation(s)
- Anna I Erdei
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary; MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Ottó Zsíros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|