1
|
Pitocchi R, Cicatiello P, Illiano A, Fontanarosa C, Spina F, Varese GC, Amoresano A, Piscitelli A, Giardina P. The essential role of aggregation for the emulsifying ability of a fungal CYS-rich protein. Appl Microbiol Biotechnol 2024; 108:358. [PMID: 38829381 PMCID: PMC11147851 DOI: 10.1007/s00253-024-13182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.
Collapse
Affiliation(s)
- Rossana Pitocchi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy.
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Federica Spina
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin, 10125, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, Turin, 10125, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Alessandra Piscitelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples, 80126, Italy
| |
Collapse
|
2
|
Astaxanthin-Loaded Pickering Emulsions Stabilized by Nanofibrillated Cellulose: Impact on Emulsion Characteristics, Digestion Behavior, and Bioaccessibility. Polymers (Basel) 2023; 15:polym15040901. [PMID: 36850184 PMCID: PMC9959445 DOI: 10.3390/polym15040901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Astaxanthin (AX) is one of the major bioactives that has been found to have strong antioxidant properties. However, AX tends to degrade due to its highly unsaturated structure. To overcome this problem, a Pickering O/W emulsion using nanofibrillated cellulose (NFC) as an emulsifier was investigated. NFC was used because it is renewable, biodegradable, and nontoxic. The 10 wt% O/W emulsions with 0.05 wt% AX were prepared with different concentrations of NFC (0.3-0.7 wt%). After 30 days of storage, droplet size, ζ-potential values, viscosity, encapsulation efficiency (EE), and color were determined. The results show that more stable emulsions are formed with increasing NFC concentrations, which can be attributed to the formulation of the NFC network in the aqueous phase. Notably, the stability of the 0.7 wt% NFC-stabilized emulsion was high, indicating that NFC can improve the emulsion's stability. Moreover, it was found that fat digestibility and AX bioaccessibility decreased with increasing NFC concentrations, which was due to the limitation of lipase accessibility. In contrast, the stability of AX increased with increasing NFC concentrations, which was due to the formation of an NFC layer that acted as a barrier and prevented the degradation of AX during in vitro digestion. Therefore, high concentrations of NFC are useful for functional foods delivering satiety instead of oil-soluble bioactives.
Collapse
|
3
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
4
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
6
|
Stanzione I, Pitocchi R, Pennacchio A, Cicatiello P, Piscitelli A, Giardina P. Innovative surface bio-functionalization by fungal hydrophobins and their engineered variants. Front Mol Biosci 2022; 9:959166. [PMID: 36032682 PMCID: PMC9403755 DOI: 10.3389/fmolb.2022.959166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Research on innovative surface functionalization strategies to develop materials with high added value is particularly challenging since this process is a crucial step in a wide range of fields (i.e., biomedical, biosensing, and food packaging). Up to now, the main applied derivatization methods require hazardous and poorly biocompatible reagents, harsh conditions of temperature and pressure, and are time consuming and cost effective. The discovery of biomolecules able to adhere by non-covalent bonds on several surfaces paves the way for their employment as a replacement of chemical processes. A simple, fast, and environment-friendly method of achieving modification of chemically inert surfaces is offered by hydrophobins, small amphiphilic proteins produced by filamentous fungi. Due to their structural characteristics, they form stable protein layers at interfaces, serving as anchoring points that can strongly bind molecules of interest. In addition, genetic engineering techniques allow the production of hydrophobins fused to a wide spectrum of relevant proteins, providing further benefits in term of time and ease of the process. In fact, it is possible to bio-functionalize materials by simply dip-casting, or by direct deposition, rendering them exploitable, for example, in the development of biomedical and biosensing platforms.
Collapse
|
7
|
Rimpy, Ahuja M. Fluconazole-loaded TEOS-modified nanocellulose 3D scaffolds – Fabrication, characterization and its application as vaginal drug delivery system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Abdelhamid HN, Mathew AP. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int J Mol Sci 2022; 23:5405. [PMID: 35628218 PMCID: PMC9140895 DOI: 10.3390/ijms23105405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
There are various biomaterials, but none fulfills all requirements. Cellulose biopolymers have advanced biomedicine to satisfy high market demand and circumvent many ecological concerns. This review aims to present an overview of cellulose knowledge and technical biomedical applications such as antibacterial agents, antifouling, wound healing, drug delivery, tissue engineering, and bone regeneration. It includes an extensive bibliography of recent research findings from fundamental and applied investigations. Cellulose-based materials are tailorable to obtain suitable chemical, mechanical, and physical properties required for biomedical applications. The chemical structure of cellulose allows modifications and simple conjugation with several materials, including nanoparticles, without tedious efforts. They render the applications cheap, biocompatible, biodegradable, and easy to shape and process.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden;
| |
Collapse
|
9
|
Wang B, Han Z, Song B, Yu L, Ma Z, Xu H, Qiao M. Effective drug delivery system based on hydrophobin and halloysite clay nanotubes for sustained release of doxorubicin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Vereman J, Thysens T, Van Impe J, Derdelinckx G, Van de Voorde I. Improved extraction and purification of the hydrophobin HFBI. Biotechnol J 2021; 16:e2100245. [PMID: 34423900 DOI: 10.1002/biot.202100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
Hydrophobins (HFBs) are a group of highly functional, low molecular weight proteins with the ability to self-assemble at hydrophobic-hydrophilic interfaces. The surface active, cysteine-rich proteins are found in filamentous fungi such as Trichoderma reesei. In the present study multiple extraction solvents and conditions were screened for the mycelium bound hydrophobin HFBI and the effects on the total amount of extracted proteins, HFBI recovery and HFBI gushing activity were investigated to gain a more thorough scientific insight on the extraction efficiency and selectivity. Results indicated the enhanced selectivity for HFBI extraction from the fungal biomass using 60% ethanol compared to solutions containing 1% sodium dodecyl sulphate (SDS). Complementing the higher selectivity, HFBI recovery was increased from 6.9 ± 0.6 mg HFBI (1% SDS) to 9.4 ± 0.4 mg HFBI per gram dry fungal biomass for extracts containing 60% ethanol. Furthermore, subsequent to HPLC purification, Cold Induced Phase Separation (CIPS) of acetonitrile-water systems was investigated at different pH levels. CIPS at pH 2.0 was found to effectively remove the majority of sorbicillinoid pigments from the purified HFBI fraction. The improved method resulted in a recovery of 85.4% of the extracted HFBI after final purification.
Collapse
Affiliation(s)
- Jeroen Vereman
- KU Leuven, Department of Microbial and Molecular Systems (M2S), EFBT - Lab of Enzyme, Fermentation and Brewing Technology, Ghent Technology campus, Ghent, Belgium
| | - Tim Thysens
- KU Leuven, Department of Microbial and Molecular Systems (M2S), EFBT - Lab of Enzyme, Fermentation and Brewing Technology, Ghent Technology campus, Ghent, Belgium
| | - Jan Van Impe
- KU Leuven, Department of Chemical Engineering, BioTeC - Chemical & Biochemical Process Technology & Control, Ghent Technology campus, Ghent, Belgium
| | - Guy Derdelinckx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Centre for Food and Microbial Technology, Heverlee, Belgium
| | - Ilse Van de Voorde
- KU Leuven, Department of Microbial and Molecular Systems (M2S), EFBT - Lab of Enzyme, Fermentation and Brewing Technology, Ghent Technology campus, Ghent, Belgium
| |
Collapse
|
11
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
12
|
Chang HJ, Choi H, Na S. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Colloids Surf B Biointerfaces 2020; 195:111269. [DOI: 10.1016/j.colsurfb.2020.111269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
|
13
|
Yan G, Chen B, Zeng X, Sun Y, Tang X, Lin L. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydr Polym 2020; 244:116492. [DOI: 10.1016/j.carbpol.2020.116492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
14
|
Chang HT, Heuer RA, Oleksijew AM, Coots KS, Roque CB, Nella KT, McGuire TL, Matsuoka AJ. An engineered three-dimensional stem cell niche in the inner ear by applying a nanofibrillar cellulose hydrogel with a sustained-release neurotrophic factor delivery system. Acta Biomater 2020; 108:111-127. [PMID: 32156626 PMCID: PMC7198367 DOI: 10.1016/j.actbio.2020.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
Although the application of human embryonic stem cells (hESCs) in stem cell-replacement therapy remains promising, its potential is hindered by a low cell survival rate in post-transplantation within the inner ear. Here, we aim to enhance the in vitro and in vivo survival rate and neuronal differentiation of otic neuronal progenitors (ONPs) by generating an artificial stem cell niche consisting of three-dimensional (3D) hESC-derived ONP spheroids with a nanofibrillar cellulose hydrogel and a sustained-release brain-derivative neurotrophic factor delivery system. Our results demonstrated that the transplanted hESC-derived ONP spheroids survived and neuronally differentiated into otic neuronal lineages in vitro and in vivo and also extended neurites toward the bony wall of the cochlea 90 days after the transplantation without the use of immunosuppressant medication. Our data in vitro and in vivo presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear. Using our protocol to create an artificial stem cell niche in the inner ear, it is now possible to work on integrating transplanted hESC-derived ONPs further and also to work toward achieving functional auditory neurons generated from hESCs. Our findings suggest that the provision of an artificial stem cell niche can be a future approach to stem cell-replacement therapy for inner-ear regeneration. STATEMENT OF SIGNIFICANCE: Inner ear regeneration utilizing human embryonic stem cell-derived otic neuronal progenitors (hESC-derived ONPs) has remarkable potential for treating sensorineural hearing loss. However, the local environment of the inner ear requires a suitable stem cell niche to allow hESC-derived ONP engraftment as well as neuronal differentiation. To overcome this obstacle, we utilized three-dimensional spheroid formation (direct contact), nanofibrillar cellulose hydrogel (extracellular matrix), and a neurotrophic factor delivery system to artificially create a stem cell niche in vitro and in vivo. Our in vitro and in vivo data presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear.
Collapse
Affiliation(s)
- Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA; Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
15
|
Zhang L, Han C, Liu M, Yang H, Zhang F, Liu B, Meng X. The formation, stability of DHA/EPA nanoemulsion prepared by emulsion phase inversion method and its application in apple juice. Food Res Int 2020; 133:109132. [PMID: 32466914 DOI: 10.1016/j.foodres.2020.109132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
This study prepared edible docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) nanoemulsion using EPI (emulsion phase inversion) method. The method for preparing DHA and EPA nanoemulsions is safe, convenient, low in energy consumption and can be used for food production. Factors affecting particle size and stability during preparation were investigated. Based on the optimal particle size combination, stability studies including particle size and residual rates of DHA and EPA at different temperature, pH and metal ions. The results showed that the nanoemulsion had good stability at low temperature storage, near neutral pH and in the absence of transition metal ions such as Fe3+, Cu2+, Al3+. The experiment initially studied the effect of nanoemulsion on apple juice beverage on the basic properties of juice itself. It was feasible in practical application of edible nanoemulsion.
Collapse
Affiliation(s)
- Lin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Min Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Han Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
16
|
Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D. Stem Cells Int 2019; 2019:3106929. [PMID: 31687032 PMCID: PMC6800951 DOI: 10.1155/2019/3106929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation potential. As an alternative, various 3D hydrogels have been developed which mimic the endogenous niche of MSCs. Nevertheless, imaging cells embedded within 3D hydrogels often suffers from low signal-to-noise ratios which can be at least partly attributed to the high light absorbance and light scattering of the hydrogels in the visible light spectrum. In this study, human adipose tissue-derived MSCs (ADSCs) are cultivated within an anionic nanofibrillar cellulose (aNFC) hydrogel. It is demonstrated that aNFC forms nanofibres arranged as a porous network with low light absorbance in the visible spectrum. Moreover, it is shown that aNFC is cytocompatible, allowing for MSC proliferation, maintaining cell viability and multilineage differentiation potential. Finally, aNFC is compatible with scanning electron microscopy (SEM) and light microscopy including the application of conventional dyes, fluorescent probes, indirect immunocytochemistry, and calcium imaging. Overall, the results indicate that aNFC represents a promising 3D material for the expansion of MSCs whilst allowing detailed examination of cell morphology and cellular behaviour.
Collapse
|
17
|
Pinďáková L, Kašpárková V, Bordes R. Role of protein-cellulose nanocrystal interactions in the stabilization of emulsion. J Colloid Interface Sci 2019; 557:196-206. [PMID: 31521969 DOI: 10.1016/j.jcis.2019.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 01/07/2023]
Abstract
HYPOTHESIS The interactions between two bio-based emulsifiers, namely cellulose nanocrystals (CNC) and the surface active sodium caseinate (CAS), can influence the formation and stability of oil-in-water emulsion (O/W). EXPERIMENTS After studying the interactions between CNC and CAS, in bulk, and at air-water and liquid-liquid interfaces, emulsions have been prepared through different routes of addition, at pH 7 and 3, at which CNC and CAS had repulsive and attractive interactions, respectively. The routes of addition were (1) CAS and CNC simultaneously, (2) CAS first followed by CNC in a subsequent emulsification step and (3) CNC first, followed by CAS. The emulsions were characterized by laser diffraction and optical microscopy. FINDINGS At pH 7, in the case of repulsive interactions, the surface activity of CAS was balanced by the irreversible adsorption of CNC, irrespectively of the route of emulsification. At pH 3, in the case of attractive interactions, using route (1), the aggregates CAS-CNC provided better emulsification than CNC and CAS alone. For emulsions prepared by route (2) and (3), gelling was observed which could be controlled through the order of addition. Emulsions prepared at pH 7 then adjusted to pH 3 exhibited an increase in viscosity, while the droplet size was not affected.
Collapse
Affiliation(s)
- Lucie Pinďáková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic.
| | - Věra Kašpárková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic; Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G.Masaryka 5555, 760 01 Zlín, Czech Republic.
| | - Romain Bordes
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
18
|
Yang D, Li W, Fang L, Liu C. Investigation of Controlled Release Molecular Mechanism of Oil Phase in Spilanthol Emulsion: Development and In Vitro, In Vivo Characterization. AAPS PharmSciTech 2019; 20:227. [PMID: 31222590 DOI: 10.1208/s12249-019-1454-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to develop a spilanthol emulsion and investigate the effect of oil and drug physicochemical properties on drug release and skin retention at molecular level. Formulation factors including oil, emulsifier, and humectant were investigated by in vitro skin retention/permeation study and the optimized formulation was evaluated in vitro and in vivo. In addition, the controlled release effect of oil was characterized using drug emulsion distribution study, drug release study, FT-IR, and molecular modeling. The optimized emulsion (squalane as oil phase) obtained the maximum skin retention (118.71 ± 10.30 μg/g), which significantly restored skin hydroxyproline content (23.99 ± 2.21 μg/g), compared with the positive group (14.75 ± 1.84 μg/g) and the negative group (15.55 ± 2.03 μg/g). It was caused by high drug release of squalene and good drug-skin miscibility. FT-IR and molecular modeling showed that spilanthol (SPI) interacted with squalene through Van der Waals force, which was weaker than a hydrogen bond formed with other oils, thus exhibited good drug release properties. And the released drug was stored in the skin due to good drug-skin miscibility, which was proved by miscibility calculation and molecular modeling. In conclusion, an effective emulsion was developed and the controlled release effect of oil phase was proved through drug-excipient interaction.
Collapse
|
19
|
Oliveira CM, Xavier-Jr FH, Morais ARDV, Lima IL, Silva RA, Nascimento AEG, Araújo NK, Nogueira MCDBL, Silva-Jr. AA, Pedrosa MDFF, Egito EST. Hydrophobin-stabilized nanoemulsion produced by a low-energy emulsification process: A promising carrier for nutraceuticals. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Berger BW, Sallada ND. Hydrophobins: multifunctional biosurfactants for interface engineering. J Biol Eng 2019; 13:10. [PMID: 30679947 PMCID: PMC6343262 DOI: 10.1186/s13036-018-0136-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/19/2018] [Indexed: 11/10/2022] Open
Abstract
Hydrophobins are highly surface-active proteins that have versatile potential as agents for interface engineering. Due to the large and growing number of unique hydrophobin sequences identified, there is growing potential to engineer variants for particular applications using protein engineering and other approaches. Recent applications and advancements in hydrophobin technologies and production strategies are reviewed. The application space of hydrophobins is large and growing, including hydrophobic drug solubilization and delivery, protein purification tags, tools for protein and cell immobilization, antimicrobial coatings, biosensors, biomineralization templates and emulsifying agents. While there is significant promise for their use in a wide range of applications, developing new production strategies is a key need to improve on low recombinant yields to enable their use in broader applications; further optimization of expression systems and yields remains a challenge in order to use designed hydrophobin in commercial applications.
Collapse
Affiliation(s)
- Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
- Department of Chemical Engineering, University of Virginia, 214 Chem. Eng., 102 Engineers’ Way, Charlottesville, VA 22904 USA
| | - Nathanael D. Sallada
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
| |
Collapse
|
21
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Mishra S, Kharkar PS, Pethe AM. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date). Carbohydr Polym 2018; 207:418-427. [PMID: 30600024 DOI: 10.1016/j.carbpol.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Nanocrystalline cellulose (NCC) has gained much popularity over the last decade as a preferred nanomaterial in varied applications, despite its laborious industrial production and higher cost. Its production methods have undergone a great deal of metamorphosis lately. The main emphasis has been on the environment-friendly and green processes, in addition to the sustainable and renewable feedstock. Globally, the researchers have explored biomass and waste cellulosic materials as renewable sources for NCC extraction. Newer and/or improved process alternatives, e.g., ultrasonication, enzymatic hydrolysis and mechanical treatments have been applied successfully for producing high-quality material. Detailed investigations on optimizing the overall yield from cheaper feedstock have yielded obvious benefits. This is still work in progress. The present review majorly focuses on the advances made in the NCC preparation field from biomass and waste cellulosic materials in last three years (2016 - till date). Collaborative efforts between chemical engineers and research scientists are crucial for the success of this really amazing nanomaterial.
Collapse
Affiliation(s)
- Shweta Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Anil M Pethe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
23
|
Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 2018; 8:733-755. [PMID: 30245962 PMCID: PMC6146387 DOI: 10.1016/j.apsb.2018.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/20/2018] [Accepted: 06/26/2018] [Indexed: 02/01/2023] Open
Abstract
Advancements in in silico techniques of lead molecule selection have resulted in the failure of around 70% of new chemical entities (NCEs). Some of these molecules are getting rejected at final developmental stage resulting in wastage of money and resources. Unfavourable physicochemical properties affect ADME profile of any efficacious and potent molecule, which may ultimately lead to killing of NCE at final stage. Numerous techniques are being explored including nanocrystals for solubility enhancement purposes. Nanocrystals are the most successful and the ones which had a shorter gap between invention and subsequent commercialization of the first marketed product. Several nanocrystal-based products are commercially available and there is a paradigm shift in using approach from simply being solubility enhancement technique to more novel and specific applications. Some other aspects in relation to parenteral nanosuspensions are concentrations of surfactant to be used, scalability and in vivo fate. At present, there exists a wide gap due to poor understanding of these critical factors, which we have tried to address in this review. This review will focus on parenteral nanosuspensions, covering varied aspects especially stabilizers used, GRAS (Generally Recognized as Safe) status of stabilizers, scalability challenges, issues of physical and chemical stability, solidification techniques to combat stability problems and in vivo fate.
Collapse
Key Words
- ADME, absorption distribution metabolism elimination
- ASEs, aerosols solvent extractions
- AUC, area under curve
- BBB, blood–brain barrier
- BCS, Biopharmaceutical Classification System
- BDP, beclomethasone dipropionate
- CFC, critical flocculation concentration
- CLSM, confocal laser scanning microscopy
- CMC, critical micelle concentration
- DMSO, dimethyl sulfoxide
- EDI, estimated daily intake
- EHDA, electrohydrodynamic atomization
- EPAS, evaporative precipitation in aqueous solution
- EPR, enhanced permeability and retention
- FITC, fluorescein isothiocyanate
- GRAS, Generally Recognized as Safe
- HEC, hydroxyethylcellulose
- HFBII, class II hydrophobin
- HP-PTX/NC, hyaluronic acid-paclitaxel/nanocrystal
- HPC, hydroxypropyl cellulose
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- IM, intramuscular
- IP, intraperitoneal
- IV, intravenous
- IVIVC, in vivo–in vitro correlation
- In vivo fate
- LD50, median lethal dose (50%)
- MDR, multidrug resistance effect
- NCE, new chemical entities
- Nanosuspension
- P-gp, permeation glycoprotein
- PEG, polyethylene glycol
- PTX, paclitaxel
- PVA, polyvinyl alcohol
- Parenteral
- QbD, quality by design
- SC, subcutaneous
- SEDS, solution enhanced dispersion by supercritical fluids
- SEM, scanning electron microscopy
- SFL, spray freezing into liquids
- Scalability
- Solidification
- Stabilizer
- TBA, tert-butanol
- TEM, transmission electron microscopy
- US FDA, United States Food and Drug Administration
- Vitamin E TPGS, d-α-tocopheryl polyethylene glycol 1000 succinate
Collapse
Affiliation(s)
| | | | | | - Manju Misra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
24
|
Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release. Int J Pharm 2018; 548:113-119. [PMID: 29920312 DOI: 10.1016/j.ijpharm.2018.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
Drug release from a new type of matrix material consisting of partially fibrillated microcrystalline cellulose was investigated. A mechanical treatment of novel AaltoCell™ cellulose microcrystals caused partial opening of the nanofibrillary structure of the cellulose particles and entanglement of individual particles led into formation of an elastic network of microcrystalline cellulose. The rheological properties of the stable hydrogel-like materials were characterised by shear rheometry. Model compounds metronidazole and lysozyme were successfully employed in drug release experiments carried out by delignified (bleached) and lignin-containing matrices. The viscosity as well as the lignin-content played a role in the release dynamics of the drugs. Microcrystalline AaltoCell™ was proven as high-performing material for diffusion controlled release of the chosen model compounds and can be seen as a safe and economical alternative for novel matrix materials such as nanocellulose or cellulose derivatives.
Collapse
|