1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Khagar P, Wankhade AV, Sabarathinam S. Synthesis of quercetin-iron (Fe) complex and its in silico and in vitro confirmation towards antibacterial activity. Future Med Chem 2023; 15:1743-1756. [PMID: 37814818 DOI: 10.4155/fmc-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: In this study quercetin-iron complex (QFC) was synthesized, and the structural characterizations such as x-ray diffraction, field emission-scanning electron microscopy, energy-dispersive x-ray and Brunner-Emmitt-Teller adsorption-desorption isotherm analysis revealed the crystallinity state, surface morphology and nature of the adsorbing surface with surface area value. Methodology: Functional characterizations such as UV-visible spectrometric and Fourier transform infrared analysis collectively indicated the chemical changes that appeared after complex formation in terms of characteristic change in the spectrum and band position, respectively. Results: The in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus has shown a dose-dependent decrease in colony count and achieved significant removal at 15 mg/ml concentration of QFC. Conclusion: The molecular docking study supports the therapeutic application of QFC.
Collapse
Affiliation(s)
- Prerna Khagar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010 (MS), India
| | - Atul V Wankhade
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010 (MS), India
| | - Sarvesh Sabarathinam
- Drug Testing Laboratory (DTL), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| |
Collapse
|
3
|
Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. Int J Mol Sci 2023; 24:ijms24043293. [PMID: 36834702 PMCID: PMC9959398 DOI: 10.3390/ijms24043293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
This paper reviews recent studies investigating chitosan nanoparticles as drug delivery systems for quercetin. The therapeutic properties of quercetin include antioxidant, antibacterial and anti-cancer potential, but its therapeutic value is limited by its hydrophobic nature, low bioavailability and fast metabolism. Quercetin may also act synergistically with other stronger drugs for specific disease states. The encapsulation of quercetin in nanoparticles may increase its therapeutic value. Chitosan nanoparticles are a popular candidate in preliminary research, but the complex nature of chitosan makes standardisation difficult. Recent studies have used in-vitro, and in-vivo experiments to study the delivery of quercetin alone or in combination with another active pharmaceutical ingredient encapsulated in chitosan nanoparticles. These studies were compared with the administration of non-encapsulated quercetin formulation. Results suggest that encapsulated nanoparticle formulations are better. In-vivo or animal models simulated the type of disease required to be treated. The types of diseases were breast, lung, liver and colon cancers, mechanical and UVB-induced skin damage, cataracts and general oxidative stress. The reviewed studies included various routes of administration: oral, intravenous and transdermal routes. Although toxicity tests were often included, it is believed that the toxicity of loaded nanoparticles needs to be further researched, especially when not orally administered.
Collapse
|
4
|
Chen B, Li X, Wu L, Zhou D, Song Y, Zhang L, Wu Q, He Q, Wang G, Liu X, Hu H, Zhou W. Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-catenin/ZEB1 Signaling Pathway. Front Pharmacol 2022; 13:963614. [PMID: 36386155 PMCID: PMC9663482 DOI: 10.3389/fphar.2022.963614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/19/2022] [Indexed: 07/20/2023] Open
Abstract
High invasiveness is a biological and clinical characteristic of glioblastoma and predicts poor prognosis of patients. Quercetin, a natural flavonoid compound, exhibits anticancer activity. However, we have a limited understanding of the possible underlying mechanism of quercetin in glioblastoma. In this study, we investigated the anticancer effect of quercetin in human glioblastoma cells. Our results showed that quercetin markedly suppressed the viability of glioblastoma cells in vitro and in vivo, and significantly inhibited glioblastoma cell migration and invasion. Moreover, quercetin reversed EMT-like mesenchymal phenotype and reduced the expression levels of EMT-related markers. Furthermore, we found that quercetin suppressed GSK-3β/β-catenin/ZEB1 signaling in glioblastoma. Taken together, our results demonstrate that quercetin inhibited migration and invasion of human glioma cells by suppressing GSK3β/β-catenin/ZEB1 signaling. Our study provides evidence that quercetin is a promising therapeutic natural compound to treat glioblastoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hui Hu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Tamtaji OR, Razavi ZS, Razzaghi N, Aschner M, Barati E, Mirzaei H. Quercetin and Glioma: Which signaling pathways are involved? Curr Mol Pharmacol 2022; 15:962-968. [DOI: 10.2174/1874467215666220211094136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Gliomas are the most common brain tumors. These tumors commonly exhibit continuous growth without invading surrounding brain tissues. Dominant remedial approaches suffer limited therapy and survival rates. Although some progress has been made in conventional glioma treatments, these breakthroughs have not yet proven sufficient for treating this malignancy. The remedial options are limited given gliomas' aggressive metastasis and drug resistance. Quercetin, a flavonoid, is an anti-oxidative, anti-allergic, antiviral, anti-inflammatory, and anticancer compound. Multiple lines of evidence have shown that Quercetin has anti-tumor effects, documenting this natural compound exerts its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, metastasis, and autophagy. Herein, we summarize various cellular and molecular pathways that are affected by Quercetin in gliomas.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Nazanin Razzaghi
- Laboratory Sciences Research Centre, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Erfaneh Barati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
6
|
do Nascimento RP, dos Santos BL, Amparo JAO, Soares JRP, da Silva KC, Santana MR, Almeida ÁMAN, da Silva VDA, Costa MDFD, Ulrich H, Moura-Neto V, Lopes GPDF, Costa SL. Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14010116. [PMID: 35057010 PMCID: PMC8778519 DOI: 10.3390/pharmaceutics14010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas (GBMs) are tumors that have a high ability to migrate, invade and proliferate in the healthy tissue, what greatly impairs their treatment. These characteristics are associated with the complex microenvironment, formed by the perivascular niche, which is also composed of several stromal cells including astrocytes, microglia, fibroblasts, pericytes and endothelial cells, supporting tumor progression. Further microglia and macrophages associated with GBMs infiltrate the tumor. These innate immune cells are meant to participate in tumor surveillance and eradication, but they become compromised by GBM cells and exploited in the process. In this review we discuss the context of the GBM microenvironment together with the actions of flavonoids, which have attracted scientific attention due to their pharmacological properties as possible anti-tumor agents. Flavonoids act on a variety of signaling pathways, counteracting the invasion process. Luteolin and rutin inhibit NFκB activation, reducing IL-6 production. Fisetin promotes tumor apoptosis, while inhibiting ADAM expression, reducing invasion. Naringenin reduces tumor invasion by down-regulating metalloproteinases expression. Apigenin and rutin induce apoptosis in C6 cells increasing TNFα, while decreasing IL-10 production, denoting a shift from the immunosuppressive Th2 to the Th1 profile. Overall, flavonoids should be further exploited for glioma therapy.
Collapse
Affiliation(s)
- Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- Academic College of Nurse, Department of Health, Federal University of Vale do São Francisco, Petrolina 56304-205, Pernambuco, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Monique Reis Santana
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (H.U.); (S.L.C.)
| | - Vivaldo Moura-Neto
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
- Paulo Niemeyer State Institute of the Brain, Rio de Janeiro 20230-024, Rio de Janeiro, Brazil
| | - Giselle Pinto de Faria Lopes
- Department of Marine Biotechnology, Admiral Paulo Moreira Institute for Sea Studies (IEAPM), Arraial do Cabo 28930-000, Rio de Janeiro, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Correspondence: (H.U.); (S.L.C.)
| |
Collapse
|
7
|
Heydari Nasrabadi M, Parsivand M, Mohammadi N, Asghari Moghaddam N. Comparison of Elaeagnus angustifolia L. extract and quercetin on mouse model of knee osteoarthritis. J Ayurveda Integr Med 2021; 13:100529. [PMID: 34862093 PMCID: PMC8728052 DOI: 10.1016/j.jaim.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis (OA) is the most commonly observed arthritic disease causing severe pain and impairing patient's quality of life. This study aimed to investigate and compare the effect of Elaeagnus angustifolia extract and quercetin on the mouse model of knee osteoarthritis (OA). Sixty Balb-C mice were used to establish the monosodium iodoacetate (MIA) model of OA. Then, they were randomized into untreated OA group (normal nutrition), E. angustifolia extract-treated group (32 mg/kg by gavage), quercetin-treated group (20 mg/kg by gavage) and ibuprofen- treated group (20 mg/kg). Fifteen mice with no MIA treatment were considered as the normal controls. The mice were treated for 28 days. The histopathological analysis was performed on knee joints. Expression levels of matrix metalloproteinase 3 and 13 (MMP-1 and MMP-13) in serum were assessed in addition. Histopathological study indicated that in the quercetin-treated group, the thickness of femur and tibia were significantly increased (P < 0.05). Among groups treated by E. angustifolia extract, quercetin and ibuprofen, the concentration of MMP-3 was 5.47 ± 1.75 ng/ml, 4.38 ± 1.78 ng/ml and 4.86 ± 1.40 ng/ml, respectively. The level of MMP-13 in sera was 3.32 ± 1.64 ng/ml, 2.67 ± 1.73 ng/ml and 5.31 ± 1.68 ng/ml in the same order (P < 0.05). The results of this study suggest that the quercetin was useful in the reduction of symptoms of OA and raised the improvement of damaged cartilage. Hence, it can be a beneficial medical supplement in OA treatment. Besides, E. angustifolia extract and quercetin significantly reduced the serum MMP-3 and MMP-13 concentrations. It could be one of the mechanisms through that E. angustifolia plays a role in remission of OA.
Collapse
Affiliation(s)
| | - Malahat Parsivand
- Department of Biology, Parand Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
8
|
da Silva SVS, Barboza OM, Souza JT, Soares ÉN, dos Santos CC, Pacheco LV, Santos IP, Magalhães TBDS, Soares MBP, Guimarães ET, Meira CS, Costa SL, da Silva VDA, de Santana LLB, de Freitas Santos Júnior A. Structural Design, Synthesis and Antioxidant, Antileishmania, Anti-Inflammatory and Anticancer Activities of a Novel Quercetin Acetylated Derivative. Molecules 2021; 26:molecules26226923. [PMID: 34834016 PMCID: PMC8623808 DOI: 10.3390/molecules26226923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/01/2023] Open
Abstract
Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, 1H and 13C NMR spectra. The antioxidant potential was evaluated against the radical ABTS•+. The anti-inflammatory potential was evaluated by measuring the pro-inflammatory cytokine tumor necrosis factor (TNF) and the production of nitric oxide (NO) in peritoneal macrophages from BALB/c mice. Cytotoxicity tests were performed using the AlamarBlue method in cancer cells HepG2 (human hepatocarcinoma), HL-60 (promyelocytic leukemia) and MCR-5 (healthy human lung fibroblasts) as well as the MTT method for C6 cell cultures (rat glioma). Q and Q5 showed antioxidant activity of 29% and 18%, respectively, which is justified by the replacement of hydroxyls by acetyl groups. Q and Q5 showed concentration-dependent reductions in NO and TNF production (p < 0.05); Q and Q5 showed higher activity at concentrations > 40µM when compared to dexamethasone (20 µM). For the HL-60 lineage, Q5 demonstrated selectivity, inducing death in cancer cells, when compared to the healthy cell line MRC-5 (IC50 > 80 µM). Finally, the cytotoxic superiority of Q5 was verified (IC50 = 11 µM), which, at 50 µM for 24 h, induced changes in the morphology of C6 glioma cells characterized by a round body shape (not yet reported in the literature). The analogue Q5 had potential biological effects and may be promising for further investigations against other cell cultures, particularly neural ones.
Collapse
Affiliation(s)
- Saul Vislei Simões da Silva
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Orlando Maia Barboza
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Jéssica Teles Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Luciano Vasconcellos Pacheco
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
| | | | - Tatiana Barbosa dos Santos Magalhães
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Elisalva Teixeira Guimarães
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
| | - Cássio Santana Meira
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil; (I.P.S.); (M.B.P.S.)
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (J.T.S.); (É.N.S.); (C.C.d.S.); (S.L.C.); (V.D.A.d.S.)
| | - Lourenço Luís Botelho de Santana
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil; (S.V.S.d.S.); (O.M.B.); (L.V.P.); (T.B.d.S.M.); (E.T.G.); (C.S.M.); (L.L.B.d.S.)
- Correspondence: or ; Tel.: +55-71-3117-5313
| |
Collapse
|
9
|
La Cognata V, Golini E, Iemmolo R, Balletta S, Morello G, De Rosa C, Villari A, Marinelli S, Vacca V, Bonaventura G, Dell'Albani P, Aronica E, Mammano F, Mandillo S, Cavallaro S. CXCR2 increases in ALS cortical neurons and its inhibition prevents motor neuron degeneration in vitro and improves neuromuscular function in SOD1G93A mice. Neurobiol Dis 2021; 160:105538. [PMID: 34743985 DOI: 10.1016/j.nbd.2021.105538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease characterized by depletion of motor neurons (MNs), for which effective medical treatments are still required. Previous transcriptomic analysis revealed the up-regulation of C-X-C motif chemokine receptor 2 (CXCR2)-mRNA in a subset of sporadic ALS patients and SOD1G93A mice. Here, we confirmed the increase of CXCR2 in human ALS cortex, and showed that CXCR2 is mainly localized in cell bodies and axons of cortical neurons. We also investigated the effects of reparixin, an allosteric inhibitor of CXCR2, in degenerating human iPSC-derived MNs and SOD1G93A mice. In vitro, reparixin rescued MNs from apoptotic cell death, preserving neuronal morphology, mitochondrial membrane potential and cytoplasmic membrane integrity, whereas in vivo it improved neuromuscular function of SOD1G93A mice. Altogether, these data suggest a role for CXCR2 in ALS pathology and support its pharmacological inhibition as a candidate therapeutic strategy against ALS at least in a specific subgroup of patients.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Rosario Iemmolo
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Sara Balletta
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Carla De Rosa
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Valentina Vacca
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Paola Dell'Albani
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, the Netherlands.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy; Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, CT, Italy.
| |
Collapse
|
10
|
Islam BU, Suhail M, Khan MK, Zughaibi TA, Alserihi RF, Zaidi SK, Tabrez S. Polyphenols as anticancer agents: Toxicological concern to healthy cells. Phytother Res 2021; 35:6063-6079. [PMID: 34679214 DOI: 10.1002/ptr.7216] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Polyphenols are a group of diverse chemical compounds present in a wide range of plants. Various biological properties such as antiallergic, antiviral, antibacterial, anticarcinogenic, antiinflammatory, antithrombotic, vasodilatory, and hepatoprotective effect of different polyphenols have been reported in the scientific literature. The major classes of polyphenols are flavonoids, stilbenoids, lignans, and polyphenolic acids. Flavonoids are a large class of food constituents comprising flavones, isoflavanones, flavanones, flavonols, catechins, and anthocyanins sub-classes. Even with seemingly broad biological activities, their use is minimal clinically. Among the other concurrent problems such as limited bioavailability, rapid metabolism, untargeted delivery, the toxicity associated with these polyphenols has been a topic of concern lately. These polyphenols have been reported to result in different forms of toxicity that include organ toxicity, genotoxicity, mutagenicity, cytotoxicity, etc. In the present article, we have tried to unravel the toxicological aspect of these polyphenols to healthy cells. Further high-quality studies are needed to establish the clinical efficacy and toxicology concern leading to further exploration of these polyphenols.
Collapse
Affiliation(s)
- Badar Ul Islam
- Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Kaleem Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Scherbakov AM, Stasevich OV, Salnikova DI, Andreeva OE, Mikhaevich EI. Antiestrogenic and antiproliferative potency of secoisolariciresinol diglucoside derivatives on MCF-7 breast cancer cells. Nat Prod Res 2020; 35:6099-6105. [PMID: 33025821 DOI: 10.1080/14786419.2020.1826479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Secoisolariciresinol diglucoside (SDG) is isolated from Linum usitatissimum seeds. The antiproliferative effects of SDG (1) and its derivatives secoisolariciresinol (2) and secoisolariciresinol-4', 4″-diacetate (3) have been evaluated on MCF-7 breast cancer cells and normal breast epithelial line MCF-10A. Lignan 1 has not shown cytotoxic effects on MCF-7 cells, while derivatives 2 and 3 have inhibited cell growth with IC50 values of 25 and 11 µM, respectively. Estrogen receptor alpha is a key growth driver in MCF-7 cells. Compound 1 did not affect the activity of ERα, while derivatives 2 and 3 showed significant antiestrogenic effects. Compounds 2 and 3 caused apoptosis in the MCF-7 line, determined by the cleavage of PARP. SDG derivative 3 enhanced the effect of doxorubicin. SDG derivatives can be considered as promising agents that exhibit a combined antiestrogen and proapoptotic effect in hormone-dependent breast cancer cells.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia
| | - Olga V Stasevich
- Department of Physical-Chemical Methods for Products Certification, Belarusian State Technological University, Minsk, Belarus
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga E Andreeva
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia
| | - Ekaterina I Mikhaevich
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
12
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
13
|
Grasso R, Dell'Albani P, Carbone C, Spatuzza M, Bonfanti R, Sposito G, Puglisi G, Musumeci F, Scordino A, Campisi A. Synergic pro-apoptotic effects of Ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and Delayed Luminescence studies. Sci Rep 2020; 10:4680. [PMID: 32170186 PMCID: PMC7070080 DOI: 10.1038/s41598-020-61670-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Herein, we assessed the effect of Ferulic Acid (FA), a natural antioxidant with anti-cancer effect, on the human glioblastoma cells through molecular and Delayed Luminescence (DL) studies. DL, a phenomenon of ultra-week emission of optical photons, was used to monitor mitochondrial assessment. The effect of FA loaded in nanostructured lipid carriers (NLCs) was also assessed. To validate NLCs as a drug delivery system for glioblastoma treatment, particular attention was focused on their effect. We found that free FA induced a significant decrease in c-Myc and Bcl-2 expression levels accompanied by the apoptotic pathway activation. Blank NLCs, even if they did not induce cytotoxicity and caspase-3 cleavage, decreased Bcl-2, ERK1/2, c-Myc expression levels activating PARP-1 cleavage. The changes in DL intensity and kinetics highlighted a possible effect of nanoparticle matrix on mitochondria, through the involvement of the NADH pool and ROS production that, in turn, activates ERK1/2 pathways. All the effects on protein expression levels and on the activation of apoptotic pathway appeared more evident when the cells were exposed to FA loaded in NLCs. We demonstrated that the observed effects are due to a synergic pro-apoptotic influence exerted by FA, whose bio-availability increases in the glioblastoma cells, and NLCs formulation.
Collapse
Affiliation(s)
- Rosaria Grasso
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy. .,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy.
| | - Paola Dell'Albani
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, Laboratory of Drug Delivery Technology, University of Catania, 95123, Catania, Italy
| | - Michela Spatuzza
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), 94018, Troina, Italy
| | - Roberta Bonfanti
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95126, Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giovanni Puglisi
- Department of Drug Sciences, Laboratory of Drug Delivery Technology, University of Catania, 95123, Catania, Italy
| | - Francesco Musumeci
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, 95123, Catania, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
14
|
Lin LH, Chen CW, Zhu YQ. Synthesis and cytotoxicity of quercetin/hyaluronic acid containing ether block segment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Lupo G, Cambria MT, Olivieri M, Rocco C, Caporarello N, Longo A, Zanghì G, Salmeri M, Foti MC, Anfuso CD. Anti-angiogenic effect of quercetin and its 8-methyl pentamethyl ether derivative in human microvascular endothelial cells. J Cell Mol Med 2019; 23:6565-6577. [PMID: 31369203 PMCID: PMC6787496 DOI: 10.1111/jcmm.14455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis is involved in many pathological states such as progression of tumours, retinopathy of prematurity and diabetic retinopathy. The latter is a more complex diabetic complication in which neurodegeneration plays a significant role and a leading cause of blindness. The vascular endothelial growth factor (VEGF) is a powerful pro‐angiogenic factor that acts through three tyrosine kinase receptors (VEGFR‐1, VEGFR‐2 and VEGFR‐3). In this work we studied the anti‐angiogenic effect of quercetin (Q) and some of its derivates in human microvascular endothelial cells, as a blood retinal barrier model, after stimulation with VEGF‐A. We found that a permethylated form of Q, namely 8MQPM, more than the simple Q, is a potent inhibitor of angiogenesis both in vitro and ex vivo. Our results showed that these compounds inhibited cell viability and migration and disrupted the formation of microvessels in rabbit aortic ring. The addition of Q and more significantly 8MQPM caused recoveries or completely re‐establish the transendothelial electrical resistance (TEER) to the control values and suppressed the activation of VEGFR2 downstream signalling molecules such as AKT, extracellular signal‐regulated kinase, and c‐Jun N‐terminal kinase. Taken together, these data suggest that 8MQPM might have an important role in the contrast of angiogenesis‐related diseases.
Collapse
Affiliation(s)
- Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Maria Teresa Cambria
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Melania Olivieri
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Concetta Rocco
- Institute of Biomolecular Chemistry of CNR, Catania, Italy
| | - Nunzia Caporarello
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Anna Longo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Guido Zanghì
- Department of Surgery (CHIR), School of Medicine, University of Catania, Catania, Italy
| | - Mario Salmeri
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| | - Mario C Foti
- Institute of Biomolecular Chemistry of CNR, Catania, Italy
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (Biometec), School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem 2018; 279:260-271. [PMID: 30611489 DOI: 10.1016/j.foodchem.2018.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/04/2023]
Abstract
In the present work, three Spanish local varieties of Prunus avium (L.), as well as two foreign varieties were studied. The content of total phenols, flavonoids, anthocyanins, glucose and fructose of methanolic extracts from ripe fruits of each variety were analysed. A phytochemical profile of these cultivars was performed by UHPLC-qTOF-MS. The employed chromatographic method allowed a clear and rapid separation of the three main phenolic compound groups present in the extracts: hydroxycinnamic acids, anthocyanins and flavonoids. In addition, the extracts DPPH radical scavenging ability, as well as their capacity to affect xanthine/xanthine oxidase system, were determined. Finally, variations in ROS intracellular concentrations in HepG2 cell line cultures treated with cherry extracts were measured through DCFH-DA assay. All extracts showed a significant inhibitory effect on the xanthine/xanthine oxidase system. Differences between in vitro and in cell culture results evidence the interaction among the phenolic compounds of the extract.
Collapse
|