1
|
Lim LM, Park JW, Hadinoto K. Benchmarking the Solubility Enhancement and Storage Stability of Amorphous Drug–Polyelectrolyte Nanoplex against Co-Amorphous Formulation of the Same Drug. Pharmaceutics 2022; 14:pharmaceutics14050979. [PMID: 35631565 PMCID: PMC9144283 DOI: 10.3390/pharmaceutics14050979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Abstract
Amorphization, typically in the form of amorphous solid dispersion (ASD), represents a well-established solubility enhancement strategy for poorly soluble drugs. Recently, two amorphous drug formulations, i.e., the amorphous drug–polyelectrolyte nanoparticle complex (nanoplex) and co-amorphous system, have emerged as promising alternatives to circumvent the issues faced by ASD (i.e., large dosage requirement, high hygroscopicity). In the present work, the nanoplex was benchmarked against the co-amorphous system in terms of the preparation efficiency, drug payload, thermal stability, dissolution rate, supersaturation generation, and accelerated storage stability. Weakly acidic curcumin (CUR) and weakly basic ciprofloxacin (CIP) were used as the model poorly soluble drugs. The CUR and CIP nanoplexes were prepared using chitosan and sodium dextran sulfate as the polyelectrolytes, respectively. The co-amorphous CUR and CIP were prepared using tannic acid and tryptophan as the co-formers, respectively. The benchmarking results showed that the amorphous drug nanoplex performed as well as, if not better than, the co-amorphous system depending on the drug in question and the aspects being compared. The present work successfully established the nanoplex as an equally viable amorphous drug formulation as the more widely studied co-amorphous system to potentially serve as an alternative to ASD.
Collapse
Affiliation(s)
- Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Jin-Won Park
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Correspondence: ; Tel.: +65-6514-8381
| |
Collapse
|
2
|
Mahmood S, Mei TS, Yee WX, Hilles AR, Alelwani W, Bannunah AM. Synthesis of Capsaicin Loaded Silver Nanoparticles Using Green Approach and Its Anti-Bacterial Activity Against Human Pathogens. J Biomed Nanotechnol 2021; 17:1612-1626. [PMID: 34544538 DOI: 10.1166/jbn.2021.3122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal's physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach. Ascorbic acid was used as a reducing agent to fabricate silver nanoparticles. The formulation parameters optimisation was conducted using Box-Behnken Design (3×3 factorial design). The loading of capsaicin was confirmed by attenuated total reflectance-fourier transform infrared spectroscopy. Energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDX-SEM) confirmed the existence of silver; net-like structure revealed in SEM and high-resolution transmission electron microscopy further confirmed the nano size of the formulation. Differential scanning calorimetry and X-ray diffraction demonstrated the capsaicin transformed into amorphous after encapsulated. An in-vitro microbial study showed that the 0.10 M formulation of AgCNPs exerted potent anti-bacterial activity, which can be considered an alternative anti-bacterial agent. It also displayed that the zone of inhibition was significantly high in gram-negative bacteria (E. coli) than gram-positive bacteria (S. aureus). Green synthesised AgCNPs showed highly significant anti-bacterial activity, which indicates that this formulation can be very promising for treating psoriasis.
Collapse
Affiliation(s)
- Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Siew Mei
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang
| | - Wong Xi Yee
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang
| | - Ayah Rebhi Hilles
- Department of Medical Science and Technology, Faculty of Health Sciences, PICOMS International University College of Medical Sciences, 68100, Kuala Lumpur, Malaysia
| | - Walla Alelwani
- University of Jeddah, Collage of Science, Department of Biochemistry, Jeddah, 21577, Saudi Arabia
| | - Azzah M Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| |
Collapse
|
3
|
Sigfridsson K, Andreasson T, Fihn BM, Kearns M, Lindblom S. Supersaturated formulations of poorly soluble weak acid drugs evaluated in rodents; a case study. Int J Pharm 2021; 606:120883. [PMID: 34271156 DOI: 10.1016/j.ijpharm.2021.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
In the present study we describe a way of working to overcome oral administration challenges in an early preclinical project. As candidate drugs were obtained, the preclinical delivery route was replaced by the intended route of the product and resources were allocated to optimize the oral absorption. Two main approaches were followed in order to formulate a selected weak acid, AZ'403, for oral administration in large scale toxicological studies and the early clinical phases. Both approaches relies on the suppression of precipitation from obtained supersaturated solutions achieved either by amorphous solid dispersions (using hydroxypropyl methylcellulose acetate succinate, HPMC-AS) or crystalline salts (sodium and potassium salts). In vivo studies in rodents were performed to evaluate oral AZ'403 absorption from amorphous and crystalline formulations, using nano- and micro crystalline particles of the neutral form, as references. The oral absorption of AZ'403 formulated using both approaches was significantly higher compared with the references. The improvements in overall exposures were 7-100 times during the investigated conditions. The pharmacokinetic profiles implied that both solid dispersions and crystalline salts of AZ'403 generated supersaturation in the small intestine in rodents and indicated that both approaches may be ways forward for subsequent late stage product development.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Theresa Andreasson
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Britt-Marie Fihn
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Inflammation, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin Kearns
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Sara Lindblom
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
4
|
Degrees of order: A comparison of nanocrystal and amorphous solids for poorly soluble drugs. Int J Pharm 2020; 586:119492. [PMID: 32505579 DOI: 10.1016/j.ijpharm.2020.119492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Poor aqueous solubility is currently a prevalent issue in the development of small molecule pharmaceuticals. Several methods are possible for improving the solubility, dissolution rate and bioavailability of Biopharmaceutics Classification System (BCS) class II and class IV drugs. Two solid state approaches, which rely on reductions in order, and can theoretically be applied to all molecules without any specific chemical prerequisites (compared with e.g. ionizable or co-former groups, or sufficient lipophilicity), are the use of the amorphous form and nanocrystals. Research involving these two approaches is relatively extensive and commercial products are now available based on these technologies. Nevertheless, their formulation remains more challenging than with conventional dosage forms. This article describes these two technologies from both theoretical and practical perspectives by briefly discussing the physicochemical backgrounds behind these approaches, as well as the resulting practical implications, both positive and negative. Case studies demonstrating the benefits and challenges of these two techniques are presented.
Collapse
|
5
|
Enhancing the stability of amorphous drug-polyelectrolyte nanoparticle complex using a secondary small-molecule drug as the stabilizer: A case study of ibuprofen-stabilized curcumin-chitosan nanoplex. Int J Pharm 2019; 575:119007. [PMID: 31893545 DOI: 10.1016/j.ijpharm.2019.119007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 01/06/2023]
Abstract
While the solubility enhancement capability of amorphous drug-polyelectrolyte nanoparticle complex (nanoplex) has been widely established, its amorphous form stability during long-term storage is often lacking for poorly-soluble drugs with high crystallization propensity, such as curcumin (CUR). Herein we presented a new stabilization strategy of amorphous CUR nanoplex using a secondary small-molecule drug - ibuprofen (IBU) - as the auxiliary stabilizer to the polyelectrolytes (i.e. chitosan). The results showed that, unlike the single-drug CUR nanoplex, the dual-drug CUR-IBU nanoplex with CUR/IBU payload ratio of 1.7 remained stable after 24-month storage. The CUR-IBU nanoplex also exhibited superior CUR solubility enhancement (4-fold higher) than the CUR nanoplex. These improvements, however, were not evident for the CUR-IBU nanoplex prepared at higher CUR/IBU payload ratio of 14 due to insufficient IBU presence. Compared to the CUR nanoplex, the CUR-IBU nanoplex exhibited smaller size with less spherical morphology (100 nm), higher zeta potential (42 versus 19 mV), lower total drug payload (73% versus 83%), and lower CUR utilization rate (53% versus 94%) due to the competition with IBU in the drug-PE complexation. These results successfully established the use of a secondary drug to not only stabilized, but also improved solubility enhancement of amorphous drug nanoplex systems.
Collapse
|
6
|
Carboxymethyl cellulose is a superior polyanion to dextran sulfate in stabilizing and enhancing the solubility of amorphous drug-polyelectrolyte nanoparticle complex. Int J Biol Macromol 2019; 139:500-508. [DOI: 10.1016/j.ijbiomac.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
|
7
|
Dong B, Lim LM, Hadinoto K. Enhancing the physical stability and supersaturation generation of amorphous drug-polyelectrolyte nanoparticle complex via incorporation of crystallization inhibitor at the nanoparticle formation step: A case of HPMC versus PVP. Eur J Pharm Sci 2019; 138:105035. [PMID: 31386892 DOI: 10.1016/j.ejps.2019.105035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023]
Abstract
Amorphous drug-polyelectrolyte nanoparticle complex (or nanoplex in short) has emerged as a highly attractive solubility enhancement strategy of poorly-soluble drugs attributed to its simple and highly efficient preparation. The existing nanoplex formulation, however, exhibits poor amorphous form stability during long-term storage for drugs with high crystallization propensity. Using ciprofloxacin (CIP) and sodium dextran sulfate (DXT) as the model drug-polyelectrolyte nanoplex, we investigated the feasibility of incorporating crystallization inhibiting agents, i.e. hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), at the nanoplex formation step to improve the physical stability of the CIP nanoplex. The effects of the HPMC or PVP additions on the nanoplex's physical characteristics (i.e. size, zeta potential, CIP payload), CIP utilization rate, dissolution rate, and supersaturation generation were also examined. The results showed that the additions of HPMC or PVP increased the CIP nanoplex size (from 300 to 500 nm) and CIP utilization rate (from 65% to 90% w/w) with minimal impacts on the CIP payload (70-80% w/w). Their additions had opposite impacts on the nanoplex's colloidal stability due to surfactant nature of PVP. Significantly, unlike the CIP-DXT and CIP-DXT-PVP nanoplexes, the CIP-DXT-HPMC nanoplex remained amorphous after three-month accelerated storage, while also exhibited superior solubility enhancement (15-30% higher).
Collapse
Affiliation(s)
- Bingxue Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
8
|
Pohlen M, Pirker L, Luštrik M, Dreu R. A redispersible dry emulsion system with simvastatin prepared via fluid bed layering as a means of dissolution enhancement of a lipophilic drug. Int J Pharm 2018; 549:325-334. [DOI: 10.1016/j.ijpharm.2018.07.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
|
9
|
Palcsó B, Zelkó R. Different types, applications and limits of enabling excipients of pharmaceutical dosage forms. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:21-39. [PMID: 30103860 DOI: 10.1016/j.ddtec.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Along with the development of novel drug delivery systems the material science is also advancing. Conventional and novel synthetic or natural excipients provide opportunities to design dosage forms of the required features including their bioavailability. Emerging trends in the design and development of drug products indicate an increasing need for the functionality-related characterization of excipients. The purpose of this review is to provide an overview of different types of excipients in relation to their application possibilities in various dosage forms with special focus on the enabling excipients. The study also summarizes the applied excipient systems of research formulations and dosage forms available on the market.
Collapse
Affiliation(s)
- Barnabás Palcsó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hogyes E. Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
10
|
Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm 2018; 542:36-46. [PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
Collapse
Affiliation(s)
- Syed Mahmood
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia Pahang, Gambang 26300, Malaysia; Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, India; Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia.
| | - Bappaditya Chatterjee
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia
| |
Collapse
|