1
|
Centkowska K, Szadkowska M, Basztura M, Sznitowska M. Homogeneity and mechanical properties of orodispersible films loaded with pellets. Eur J Pharm Biopharm 2024:114537. [PMID: 39437982 DOI: 10.1016/j.ejpb.2024.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Orodispersiblefilms(ODFs) have served as an emerging platform for the delivery of drugs in a convenient way. The production of ODFs with incorporated pellets may still be a challenging process due to problems to obtain proper homogeneity and deteriorating mechanical properties of the films with incorporated relatively big particles in high concentration. The goal of this work was to evaluate the possibility to achieve fast disintegrating ODFs with homogenously incorporated spherical granules without loss of required mechanical properties. Hypromellose films with incorporated placebo pellets (size 200 µm or 100 µm) in a content range of 20-45 % w/w were prepared by a solvent casting method. Planetary mixer (Thinky) was successfully applied for preparation of a homogeneous mass for casting. The suspended spherical solid particles caused dose and size dependent changes in the mechanical properties and disintegration behaviour of ODFs films, but only 100 µm pellets in concentration higher than 40 % reduced significantly the tear resistance. The films with the pellets disintegrated faster and the larger particles reduced the disintegration time by 60 %. Good homogeneity of pellets distribution, expressed as a number of the particles per unit area, was confirmed for films obtained with a gap height 500 or 800 µm.
Collapse
Affiliation(s)
- Katarzyna Centkowska
- Medical University of Gdansk, Department of Pharmaceutical Technology, Hallera Str. 107, 80-416 Gdansk, Poland.
| | - Martyna Szadkowska
- Student Chapter of the International Society of Pharmaceutical Engineering (ISPE), Hallera 107, Gdansk, 80-416, Poland.
| | - Marta Basztura
- Student Chapter of the International Society of Pharmaceutical Engineering (ISPE), Hallera 107, Gdansk, 80-416, Poland.
| | - Małgorzata Sznitowska
- Medical University of Gdansk, Department of Pharmaceutical Technology, Hallera Str. 107, 80-416 Gdansk, Poland.
| |
Collapse
|
2
|
Liu J, Zhang Y, Liu C, Fang L. Effect of Physicochemical Properties on the Basic Drug-Acid-Polymer Interactions and Miscibility in PVA Based Orodispersible Films. AAPS J 2024; 26:83. [PMID: 39009955 DOI: 10.1208/s12248-024-00949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/09/2024] [Indexed: 07/17/2024] Open
Abstract
Salts of weakly basic drugs can partially dissociate in formulations, to give basic drugs and counter acids. The aim of the present study was to clarify the effect of physicochemical properties on the basic drug-acid-polymer interactions and salt-polymer miscibility, and to explain the influence mechanism at the molecular level. Six maleate salts with different physicochemical properties were selected and PVA was used as the film forming material. The relationship between the physicochemical properties and the miscibility was presented with multiple linear regression analysis. The existence state of salts in formulations were determined by XRD and Raman imaging. The stability of salts was characterized by NMR and XPS. The intermolecular interactions were investigated by FTIR and NMR. The results showed that the salt-PVA miscibility was related to polar surface area of salts and Tg of free bases, which represented hydrogen bond interaction and solubility potential. The basic drug-acid-PVA intermolecular interactions determined the existence state and bonding pattern of the three molecules. Meanwhile, the decrease of the stability after formulation increased the number of free bases in orodispersible films, which in turn affected the miscibility with PVA. The study provided references for the rational design of PVA based orodispersible films.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Yongguo Zhang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Formerly General Hospital of Shenyang Military Area), Shenyang, 110840, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
3
|
Chen R, Yang M, Peng C, Yin D, Zhang Y, Xu F. Pharmacodynamics Research on Danggui-Shaoyao-San through Body Fluid Indexes of Spleen Deficiency-water Dampness Rats using Bio-impedance Technology. Curr Pharm Biotechnol 2024; 25:1602-1616. [PMID: 37921128 DOI: 10.2174/0113892010243018231025065109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Spleen deficiency-water dampness symptom is closely related to body fluid-mediated organism metabolism and circulation. However, previous clinical evaluation of spleen deficiency-water dampness model was based only on body weight, D-xylose excretion rate, serum gastrin content, etc. Therefore, we established a large sample of normal rats and model rats experiment to verify the scientific nature of bio-impedance measuring body fluid indexes for evaluation of the modeling state. Pharmacodynamics research on Danggui-Shaoyao- San (DSS) was conducted through body fluid index changes of rats using bio-impedance technology. METHODS A spleen deficiency-water dampness symptom rat model was established through an inappropriate diet combined with excess fatigue. Experimental rats were divided into a normal control group, a model control group, a positive drug control group (hydrochlorothiazide), a blood-activating group, a water-disinhibiting group, and a DSS group. Total Body Water/Body Weight (TBW%), extracellular fluid/total body water content (ECF%), intracellular fluid/total body water content (ICF%), extracellular fluid/intracellular fluid (ECF/ICF), fat mass/body weight (FM%), fat-free mass/body weight (FFM%), and fat mass/fat-free mass (FM/FFM) of 150 rats were detected by a Bio-Imp Vet Body analyzer. RESULTS The TBW% of the model control group increased significantly, and the FM/FFM was significantly reduced compared with the normal group (P < 0.05) (P < 0.01), showing symptoms of spleen deficiency and diarrhea; the TBW% of the blood-activating group, and the waterdisinhibiting group decreased significantly, and the FM/FFM increased significantly (P < 0.05) (P < 0.01). The TBW% and FM/FFM in the water-disinhibiting group had returned to nearnormal values compared with the model control group. The blood-activating and waterdisinhibiting split prescriptions in DSS are both effective in treating spleen deficiency-water dampness rats. Comparatively, the fluid-regulating effect of split prescriptions in DSS was even stronger than that of DSS as shown in the present study. CONCLUSIONS These findings suggest that using bio-impedance technology to measure body fluid indexes can pave a road for further exploring the molecular mechanism of the reason why the blood-activating and disinhibit-water split prescriptions in DSS are both effective in treating spleen deficiency-water dampness rats.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| | - Mo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application
| | - Yunjing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China
- Key Laboratory of Chinese Medicine Formula of Anhui Province, Hefei, 230012, PR China
| |
Collapse
|
4
|
Orodispersible Films-Current State of the Art, Limitations, Advances and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020361. [PMID: 36839683 PMCID: PMC9965071 DOI: 10.3390/pharmaceutics15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Orodispersible Films (ODFs) are drug delivery systems manufactured with a wide range of methods on a big scale or for customized medicines and small-scale pharmacy. Both ODFs and their fabrication methods have certain limitations. Many pharmaceutical companies and academic research centers across the world cooperate in order to cope with these issues and also to find new formulations for a wide array of APIs what could make their work profitable for them and beneficial for patients as well. The number of pending patent applications and granted patents with their innovative approaches makes the progress in the manufacturing of ODFs unquestionable. The number of commercially available ODFs is still growing. However, some of them were discontinued and are no longer available on the markets. This review aims to summarize currently marketed ODFs and those withdrawn from sale and also provides an insight into recently published studies concerning orodispersible films, emphasizing of utilized APIs. The work also highlights the attempts of scientific communities to overcome ODF's manufacturing methods limitations.
Collapse
|
5
|
Remiro PDFR, Nagahara MHT, Azoubel RA, Franz-Montan M, d’Ávila MA, Moraes ÂM. Polymeric Biomaterials for Topical Drug Delivery in the Oral Cavity: Advances on Devices and Manufacturing Technologies. Pharmaceutics 2022; 15:12. [PMID: 36678640 PMCID: PMC9864928 DOI: 10.3390/pharmaceutics15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
There are several routes of drug administration, and each one has advantages and limitations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual, palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter of relevance for children and the elderly. Another advantage is the high permeability of the oral mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without significant damage to the stomach. This route also allows the local treatment of lesions that affect the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral medications that require drug swallowing. Thus, this drug delivery route has been arousing great interest in the pharmaceutical industry. This review aims to condense information on the types of biomaterials and polymers used for this functionality, as well as on production methods and market perspectives of this topical drug delivery route.
Collapse
Affiliation(s)
- Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
6
|
Gupta MS, Gowda DV, Kumar TP, Rosenholm JM. A Comprehensive Review of Patented Technologies to Fabricate Orodispersible Films: Proof of Patent Analysis (2000–2020). Pharmaceutics 2022; 14:pharmaceutics14040820. [PMID: 35456654 PMCID: PMC9031760 DOI: 10.3390/pharmaceutics14040820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Orodispersible films (ODFs)are ultra-thin, stamp-sized, rapidly disintegrating, and attractive oral drug delivery dosage forms best suited for the pediatric and geriatric patient populations. They can be fabricated by different techniques, but the most popular, simple, and industrially applicable technique is the solvent casting method (SCM). In addition, they can also be fabricated by extrusion, printing, electrospinning, and by a combination of these technologies (e.g., SCM + printing). The present review is aimed to provide a comprehensive overview of patented technologies of the last two decades to fabricate ODFs. Through this review, we present evidence to adamantly confirm that SCM is the most popular method while electrospinning is the most recent and upcoming method to fabricate ODFs. We also speculate around the more patent-protected technologies especially in the domain of printing (two or three-dimensional), extrusion (ram or hot-melt extrusion), and electrospinning, or a combination of the methods thereof.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
- Correspondence: ; Tel.: +91-99-4549-0571
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (D.V.G.); (T.P.K.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, ÅboAkademi University, 20520 Turku, Finland;
| |
Collapse
|
7
|
Morath B, Sauer S, Zaradzki M, Wagner A. TEMPORARY REMOVAL: Orodispersible films – Recent developments and new applications in drug delivery and therapy. Biochem Pharmacol 2022; 200:115036. [DOI: 10.1016/j.bcp.2022.115036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
|
8
|
Concept of Orodispersible or Mucoadhesive “Tandem Films” and Their Pharmaceutical Realization. Pharmaceutics 2022; 14:pharmaceutics14020264. [PMID: 35213997 PMCID: PMC8880444 DOI: 10.3390/pharmaceutics14020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Orodispersible or mucoadhesive films as a patient-oriented dosage form for low-dosed drugs are usually produced using solvent casting. This paper presents a modification of the solvent casting technique that aimed to divide oral films into two or more compartments. The proposed objectives and fields of applications include improved handling properties and safety of application, the optimization of drug release kinetics and the enhancement of long-term stability when combining two or more active pharmaceutical ingredients into one oral film. A feasibility study for the combination of different film-forming polymers to generate the so-called tandem films was performed. As examples of practical implementation, orodispersible applicator films consisting of a drug-loaded section and a handheld piece were cast, and mucoadhesive buccal tandem films were cast to optimize the dissolution rate of the films.
Collapse
|
9
|
Łyszczarz E, Brniak W, Szafraniec-Szczęsny J, Majka TM, Majda D, Zych M, Pielichowski K, Jachowicz R. The Impact of the Preparation Method on the Properties of Orodispersible Films with Aripiprazole: Electrospinning vs. Casting and 3D Printing Methods. Pharmaceutics 2021; 13:1122. [PMID: 34452083 PMCID: PMC8401512 DOI: 10.3390/pharmaceutics13081122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Orodispersible films (ODFs) address the needs of pediatric and geriatric patients and people with swallowing difficulties due to fast disintegration in the mouth. Typically, they are obtained using the solvent casting method, but other techniques such as 3D printing and electrospinning have already been investigated. The decision on the manufacturing method is of crucial importance because it affects film properties. This study aimed to compare electrospun ODFs containing aripiprazole and polyvinyl alcohol with films prepared using casting and 3D printing methods. Characterization of films included DSC and XRD analysis, microscopic analysis, the assessment of mechanical parameters, disintegration, and dissolution tests. Simplified stability studies were performed after one month of storage. All prepared films met acceptance criteria for mechanical properties. Electrospun ODFs disintegrated in 1.0 s, which was much less than in the case of other films. Stability studies have shown the sensitivity of electrospun films to the storage condition resulting in partial recrystallization of ARP. These changes negatively affected the dissolution rate, but mechanical properties and disintegration time remained at a desirable level. The results demonstrated that electrospun fibers are promising solutions that can be used in the future for the treatment of patients with swallowing problems.
Collapse
Affiliation(s)
- Ewelina Łyszczarz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (E.Ł.); (J.S.-S.); (R.J.)
| | - Witold Brniak
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (E.Ł.); (J.S.-S.); (R.J.)
| | - Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (E.Ł.); (J.S.-S.); (R.J.)
| | - Tomasz M. Majka
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (T.M.M.); (K.P.)
| | - Dorota Majda
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland; (D.M.); (M.Z.)
| | - Marta Zych
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland; (D.M.); (M.Z.)
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (T.M.M.); (K.P.)
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (E.Ł.); (J.S.-S.); (R.J.)
| |
Collapse
|
10
|
Kiefer O, Fischer B, Breitkreutz J. Fundamental Investigations into Metoprolol Tartrate Deposition on Orodispersible Films by Inkjet Printing for Individualised Drug Dosing. Pharmaceutics 2021; 13:pharmaceutics13020247. [PMID: 33578818 PMCID: PMC7916552 DOI: 10.3390/pharmaceutics13020247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Individualised medicine is continuously gaining attention in pharmaceutical research. New concepts and manufacturing technologies are required to realise this therapeutic approach. Off-label drugs used in paediatrics, such as metoprolol tartrate (MPT), are potential candidates for innovations in this context. Orodispersible films (ODFs) have been shown as an accepted alternative dosage form during the last years and inkjet printing is traded as seminal technology of precise deposition of active pharmaceutical ingredients (APIs). The objective of this study was to combine both technologies by developing imprinted ODFs based on hypromellose with therapeutically reasonable MPT single doses of 0.35 to 3.5 mg for paediatric use. After preselection, suitable ink compositions were analysed by confocal Raman microscopy regarding MPT distribution within the imprinted ODFs. Adjusted print settings, speed, print direction and angle, characterised the final ODF surface structure. The present investigations show that uniform dosages with acceptance values between 1 and 6 can be achieved. Nevertheless, changes in calibrated printed quantity due to nozzle aging have a significant effect on the final applied dose. At the lowest investigated quantity, the RSD was ±28% and at the highest, ±9%. This has to be considered for implementation of inkjet printing as a pharmaceutical production tool in the future.
Collapse
Affiliation(s)
- Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (B.F.); (J.B.)
- Correspondence:
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (B.F.); (J.B.)
- FISCHER GmbH, Raman Spectroscopic Services, 40667 Meerbusch, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (B.F.); (J.B.)
| |
Collapse
|
11
|
Inoue M, Kiefer O, Fischer B, Breitkreutz J. Raman monitoring of semi-continuously manufactured orodispersible films for individualized dosing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Sjöholm E, Mathiyalagan R, Rajan Prakash D, Lindfors L, Wang Q, Wang X, Ojala S, Sandler N. 3D-Printed Veterinary Dosage Forms-A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics 2020; 12:E1239. [PMID: 33352700 PMCID: PMC7767139 DOI: 10.3390/pharmaceutics12121239] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Currently, the number of approved veterinary medicines are limited, and human medications are used off-label. These approved human medications are of too high potencies for a cat or a small dog breed. Therefore, there is a dire demand for smaller doses of veterinary medicines. This study aims to investigate the use of three semi-solid extrusion 3D printers in a pharmacy or animal clinic setting for the extemporaneous manufacturing of prednisolone containing orodispersible films for veterinary use. Orodispersible films with adequate content uniformity and acceptance values as defined by the European Pharmacopoeia were produced with one of the studied printers, namely the Allevi 2 bioprinter. Smooth and flexible films with high mechanical strength, neutral pH, and low moisture content were produced with a high correlation between the prepared design and the obtained drug amount, indicating that the Allevi 2 printer could successfully be used to extemporaneously manufacture personalized doses for animals at the point-of-care.
Collapse
Affiliation(s)
- Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Rathna Mathiyalagan
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Dhayakumar Rajan Prakash
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Lisa Lindfors
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
| | - Qingbo Wang
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland;
| | - Xiaoju Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland;
| | - Samuli Ojala
- Oulun Keskus Apteekki, Isokatu 45, 90100 Oulu, Finland;
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; (R.M.); (D.R.P.); (L.L.); (X.W.); (N.S.)
- Nanoform Finland Oyj, Viikinkaari 4, 00790 Helsinki, Finland
| |
Collapse
|
13
|
Cetindag E, Pentangelo J, Arrieta Cespedes T, Davé RN. Effect of solvents and cellulosic polymers on quality attributes of films loaded with a poorly water-soluble drug. Carbohydr Polym 2020; 250:117012. [PMID: 33049873 PMCID: PMC7575819 DOI: 10.1016/j.carbpol.2020.117012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
The combined effect of solvent, cellulosic polymer, and a poorly water-soluble drug, fenofibrate (FNB) on solution-cast pharmaceutical film quality attributes, e.g., morphology, drug recrystallization, content uniformity, mechanical properties, dissolution rate and supersaturation level, was investigated. Film morphology, content uniformity, and mechanical properties were impacted by the extent of FNB recrystallization which was strongly affected by FNB solubility in the solvent as compared to the polymer type, hydroxypropyl methylcellulose or hydroxypropyl cellulose. FNB recrystallization affected drug dissolution rates and supersaturation under non-sink conditions. Specifically, the area under the curve linearly correlated with recrystallization. After one-year storage, FNB recrystallization reached very high levels even for the films with no initial recrystallization, suggesting low initial crystallinity does not guarantee stability. Thus, uncontrolled recrystallization and poor time-stability would be unavoidable for solution-cast films. Overall, both the polymer and the solvent strongly impact drug recrystallization, film structure, mechanical properties, dissolution rate, and supersaturation.
Collapse
Affiliation(s)
- Eylul Cetindag
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - John Pentangelo
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Thierry Arrieta Cespedes
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| | - Rajesh N Davé
- Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA.
| |
Collapse
|
14
|
Kottke D, Lura A, Lunter DJ, Breitkreutz J. Manufacturing and characterisation of a novel composite dosage form for buccal drug administration. Int J Pharm 2020; 589:119839. [PMID: 32898634 DOI: 10.1016/j.ijpharm.2020.119839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/26/2023]
Abstract
The potential of alternative routes of application compared to the traditional oral route is constantly growing. Especially in transmucosal applications for the oral cavity, easy accessibility is an attractive feature with many new opportunities. The combination of a minitablet and a buccal mucoadhesive carrier film has been shown to enable safe and accurate drug administration compared to semi-solid formulations currently available on the market. In order to investigate these so-called composite dosage forms in more detail, two different manufacturing methods were compared within this study to investigate the resulting properties. The formulation development of the minitablets containing lidocaine, complying with the compendial requirements, resulted in immediate release using both manufacturing methods (more than 80% lidocaine release after 3-4 min using direct incorporation, 7-8 min by the gluing method). Differences in morphology and drug migration behaviour could be observed. The directly incorporated minitablets revealed a twofold higher drug migration (1.5 mm) into the mucoadhesive shielding film within two weeks compared to the glued minitablets (0.8 mm). These findings enable a further optimization of the formulation depending on the duration of the application and the feasibility for the addressed patient population.
Collapse
Affiliation(s)
- Dina Kottke
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Ard Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Dominique Jasmin Lunter
- Institute of Pharmacy and Biochemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
15
|
Gupta MS, Kumar TP. Characterization of Orodispersible Films: An Overview of Methods and Introduction to a New Disintegration Test Apparatus Using LDR - LED Sensors. J Pharm Sci 2020; 109:2925-2942. [PMID: 32565356 DOI: 10.1016/j.xphs.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Orodispersible Film (ODF) is a promising and progressive dosage form that offers exceptional drug delivery benefits to patients. Indeed, they are the most transformational alternatives to traditional/conventional dosage forms such as tablets and capsules. ODFs are portable and highly comfortable for self-administration by patients with swallowing problems. The key to gain end-user acceptance is to have an ODF with outstanding quality. Poor quality may lead to choking or spitting, accordingly leading to a lack of compliance. It is vital to employ suitable experimental methodologies that facilitate characterization or determination of the quality of ODF. Nonetheless, there are no standard techniques prescribed in official compendia of any country. But, there is a consensus in the thin-film research community about the characterization techniques that one relies on deciding the quality of an ODF. We review various experimental techniques and highlight its importance in determining the performance and quality of an ODF. We provide a relatively novel and inventive disintegration test apparatus, which works using 'Light Dependent Resistor (LDR) and Light Emitting Diode (LED) sensors' for clear and accurate determination of start and end disintegration time of an ODF.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India.
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India
| |
Collapse
|
16
|
Electrospun Orodispersible Films of Isoniazid for Pediatric Tuberculosis Treatment. Pharmaceutics 2020; 12:pharmaceutics12050470. [PMID: 32455717 PMCID: PMC7284807 DOI: 10.3390/pharmaceutics12050470] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Child-appropriate dosage forms are critical in promoting adherence and effective pharmacotherapy in pediatric patients, especially those undergoing long-term treatment in low-resource settings. The present study aimed to develop orodispersible films (ODFs) for isoniazid administration to children exposed to tuberculosis. The ODFs were produced from the aqueous solutions of natural and semi-synthetic polymer blends using electrospinning. The spinning solutions and the resulting fibers were physicochemically characterized, and the disintegration time and isoniazid release from the ODFs were assessed in simulated salivary fluid. The ODFs comprised of nanofibers with adequate thermal stability and possible drug amorphization. Film disintegration occurred instantly upon contact with simulated salivary fluid within less than 15 s, and isoniazid release from the ODFs in the same medium followed after the disintegration profiles, achieving rapid and total drug release within less than 60 s. The ease of administration and favorable drug loading and release properties of the ODFs may provide a dosage form able to facilitate proper adherence to treatment within the pediatric patient population.
Collapse
|
17
|
Centkowska K, Ławrecka E, Sznitowska M. Technology of Orodispersible Polymer Films with Micronized Loratadine-Influence of Different Drug Loadings on Film Properties. Pharmaceutics 2020; 12:pharmaceutics12030250. [PMID: 32164345 PMCID: PMC7150835 DOI: 10.3390/pharmaceutics12030250] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
The production of orodispersible films (ODFs) with suspended insoluble drug substances is still a challenge, mainly due to the difficulty associated with achieving a proper homogeneity and mechanical properties of the films. Hypromellose (HPMC) and a mixture of polyvinyl alcohol (AP) and povidone (PVP) were compared in terms of their suitability for ODFs incorporating suspended micronized loratadine (LO) in a concentration range of 10%–40%. In a planetary mixer (Thinky), a uniform dispersion of LO in an aqueous viscous casting solution was obtained. The suspended LO particles caused dose-dependent changes in the viscosity of the casting mass and affected the mechanical quality of ODFs. Drug concentrations higher than 30% reduced the film flexibility and tear resistance, depending on the polymer type. LO films with a thickness of 100 µm disintegrated within 60-100 s, with no significant influence of the LO content in the range 10%–30%. HPMC films, regardless of the drug concentration, met the pharmacopoeial requirements regarding the uniformity of the drug content. AP/PVP films were too elastic, and the drug content uniformity was not achieved. The conclusion is that, using an HPMC matrix, it is possible to obtain a high load of a poorly water-soluble drug (30% of dry film mass corresponds to a dose of 5 mg per 1.5 cm2) in ODFs characterized by proper physical characteristics.
Collapse
|
18
|
Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm 2020; 576:118963. [DOI: 10.1016/j.ijpharm.2019.118963] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
19
|
Ehtezazi T, Algellay M, Hardy A. Next Steps in 3D Printing of Fast Dissolving Oral Films for Commercial Production. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 14:5-20. [PMID: 31886755 DOI: 10.2174/1872211314666191230115851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient's needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Marwan Algellay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alison Hardy
- Knowledge Exchange and Commercialisation, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
20
|
Palo M, Rönkönharju S, Tiirik K, Viidik L, Sandler N, Kogermann K. Bi-Layered Polymer Carriers with Surface Modification by Electrospinning for Potential Wound Care Applications. Pharmaceutics 2019; 11:E678. [PMID: 31842385 PMCID: PMC6969931 DOI: 10.3390/pharmaceutics11120678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/03/2022] Open
Abstract
Polymeric wound dressings with advanced properties are highly preferred formulations to promote the tissue healing process in wound care. In this study, a combinational technique was investigated for the fabrication of bi-layered carriers from a blend of polyvinyl alcohol (PVA) and sodium alginate (SA). The bi-layered carriers were prepared by solvent casting in combination with two surface modification approaches: electrospinning or three-dimensional (3D) printing. The bi-layered carriers were characterized and evaluated in terms of physical, physicochemical, adhesive properties and for the safety and biological cell behavior. In addition, an initial inkjet printing trial for the incorporation of bioactive substances for drug delivery purposes was performed. The solvent cast (SC) film served as a robust base layer. The bi-layered carriers with electrospun nanofibers (NFs) as the surface layer showed improved physical durability and decreased adhesiveness compared to the SC film and bi-layered carriers with patterned 3D printed layer. Thus, these bi-layered carriers presented favorable properties for dermal use with minimal tissue damage. In addition, electrospun NFs on SC films (bi-layered SC/NF carrier) provided the best physical structure for the cell adhesion and proliferation as the highest cell viability was measured compared to the SC film and the carrier with patterned 3D printed layer (bi-layered SC/3D carrier). The surface properties of the bi-layered carriers with electrospun NFs showed great potential to be utilized in advanced technical approach with inkjet printing for the fabrication of bioactive wound dressings.
Collapse
Affiliation(s)
- Mirja Palo
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (M.P.); (S.R.); (N.S.)
| | - Sophie Rönkönharju
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (M.P.); (S.R.); (N.S.)
| | - Kairi Tiirik
- Institute of Pharmacy, University of Tartu, Nooruse 1, EE-50411 Tartu, Estonia; (K.T.); (L.V.)
| | - Laura Viidik
- Institute of Pharmacy, University of Tartu, Nooruse 1, EE-50411 Tartu, Estonia; (K.T.); (L.V.)
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (M.P.); (S.R.); (N.S.)
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, EE-50411 Tartu, Estonia; (K.T.); (L.V.)
| |
Collapse
|
21
|
Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm 2019; 575:118883. [PMID: 31811925 DOI: 10.1016/j.ijpharm.2019.118883] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022]
Abstract
The aim of this study was to prepare benzydamine hydrochloride loaded orodispersible films using modified semisolid extrusion 3D printing method. An innovative approach was developed where thin layer of drug loaded dispersion is printed and dried before printing of subsequent layers. Layer-by-layer drying as the in process step improves mechanical properties of films, uniformity of drug content and allows faster preparation of films in compounding settings due to shortening of drying time. Orodispersible films consisted of film forming maltodextrin, sorbitol as a plasticizer and hydroxyethylcellulose as a thickening agent. The height of the digital model showed excellent correlation with the disintegration time, weight, thickness and mechanical properties of prepared films. Drug content, predefined by volume of digital model and concentration of drug in print dispersion, showed excellent uniformity. The modified printing method shows great promise in a compounding production of personalized film dosage forms, and brings in possibilities such as one step preparation of films with compartmented drugs and incorporation of taste masking or release control layers.
Collapse
Affiliation(s)
- Jan Elbl
- Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Palackého tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Palackého tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Jan Kolarczyk
- Department of Pharmaceutics, Faculty of Pharmacy, Veterinary and Pharmaceutical University Brno, Palackého tr. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
22
|
Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
El Aita I, Ponsar H, Quodbach J. A Critical Review on 3D-printed Dosage Forms. Curr Pharm Des 2019; 24:4957-4978. [PMID: 30520369 DOI: 10.2174/1381612825666181206124206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decades, 3D-printing has been investigated and used intensively in the field of tissue engineering, automotive and aerospace. With the first FDA approved printed medicinal product in 2015, the research on 3D-printing for pharmaceutical application has attracted the attention of pharmaceutical scientists. Due to its potential of fabricating complex structures and geometrics, it is a highly promising technology for manufacturing individualized dosage forms. In addition, it enables the fabrication of dosage forms with tailored drug release profiles. OBJECTIVE The aim of this review article is to give a comprehensive overview of the used 3D-printing techniques for pharmaceutical applications, including information about the required material, advantages and disadvantages of the respective technique. METHODS For the literature research, relevant keywords were identified and the literature was then thoroughly researched. CONCLUSION The current status of 3D-printing as a manufacturing process for pharmaceutical dosage forms was highlighted in this review article. Moreover, this article presents a critical evaluation of 3D-printing to control the dose and drug release of printed dosage forms.
Collapse
Affiliation(s)
- Ilias El Aita
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Hanna Ponsar
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.,INVITE GmbH, Drug Delivery Innovation Center (DDIC), Chempark Building W 32, 51368 Leverkusen, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
24
|
Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, Sjöholm E, Öblom H, Sandler N, Hinrichs WLJ, Frijlink HW, Breitkreutz J, Visser JC. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv 2019; 16:981-993. [DOI: 10.1080/17425247.2019.1652595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yu Tian
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Mine Orlu
- School of Pharmacy, University College London, London, Bloomsbury, UK
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | | | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dina Kottke
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Heidi Öblom
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| |
Collapse
|
25
|
Towards Printed Pediatric Medicines in Hospital Pharmacies: Comparison of 2D and 3D-Printed Orodispersible Warfarin Films with Conventional Oral Powders in Unit Dose Sachets. Pharmaceutics 2019; 11:pharmaceutics11070334. [PMID: 31337146 PMCID: PMC6680667 DOI: 10.3390/pharmaceutics11070334] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/29/2023] Open
Abstract
To date, the lack of age-appropriate medicines for many indications results in dose manipulation of commercially available dosage forms, commonly resulting in inaccurate doses. Various printing technologies have recently been explored in the pharmaceutical field due to the flexible and precise nature of the techniques. The aim of this study was, therefore, to compare the currently used method to produce patient-tailored warfarin doses at HUS Pharmacy in Finland with two innovative printing techniques. Dosage forms of various strengths (0.1, 0.5, 1, and 2 mg) were prepared utilizing semisolid extrusion 3D printing, inkjet printing and the established compounding procedure for oral powders in unit dose sachets (OPSs). Orodispersible films (ODFs) drug-loaded with warfarin were prepared by means of printing using hydroxypropylcellulose as a film-forming agent. The OPSs consisted of commercially available warfarin tablets and lactose monohydrate as a filler. The ODFs resulted in thin and flexible films showing acceptable ODF properties. Moreover, the printed ODFs displayed improved drug content compared to the established OPSs. All dosage forms were found to be stable over the one-month stability study and suitable for administration through a naso-gastric tube, thus, enabling administration to all possible patient groups in a hospital ward. This work demonstrates the potential of utilizing printing technologies for the production of on-demand patient-specific doses and further discusses the advantages and limitations of each method.
Collapse
|
26
|
Edinger M, Iftimi LD, Markl D, Al-Sharabi M, Bar-Shalom D, Rantanen J, Genina N. Quantification of Inkjet-Printed Pharmaceuticals on Porous Substrates Using Raman Spectroscopy and Near-Infrared Spectroscopy. AAPS PharmSciTech 2019; 20:207. [PMID: 31161397 DOI: 10.1208/s12249-019-1423-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
The use of inkjet printing for pharmaceutical manufacturing is gaining interest for production of personalized dosage forms tailored to specific patients. As part of the manufacturing, it is imperative to ensure that the correct dose is printed. The aim of this study was to use inkjet printing for manufacturing of personalized dosage forms combined with the use of near-infrared (NIR) and Raman spectroscopy as complementary analytical techniques for active pharmaceutical ingredient (API) quantification of the inkjet-printed dosage forms. Three APIs, propranolol (0.5-4.1 mg), montelukast (2.1-12.1 mg), and haloperidol (0.6-4.1 mg) were inkjet printed in 1 cm2 areas on a porous substrate. The printed doses were non-destructively analyzed by transmission NIR and Raman spectroscopy (both transmission and backscatter). X-ray computed microtomography (μ-CT) analysis was undertaken for porosity measurements of the substrate. The API content was confirmed using high-performance liquid chromatography (HPLC), and the content in the dosage forms was modeled from the NIR and Raman spectra using partial least squares regression (PLS). HPLC analysis revealed a linear correlation of the number of layers printed to the API content. The resulting PLS models for both NIR and Raman had R2 values between 0.95 and 0.99. The best predictive model was obtained using NIR, followed by Raman spectroscopy. μ-CT revealed the substrate to be highly porous and optimal for inkjet printing. In conclusion, NIR and Raman spectroscopic techniques could be used complementary as fast API quantification tools for inkjet-printed medicines.
Collapse
|
27
|
Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm 2018; 553:97-108. [PMID: 30316794 DOI: 10.1016/j.ijpharm.2018.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Printing technologies, both 2D and 3D, have gained considerable interest during the last years for manufacturing of personalized dosage forms, tailored to each patient. Here we review the research work on 2D printing techniques, mainly inkjet printing, for manufacturing of film-based oral dosage forms. We describe the different printing techniques and give an overview of film-based oral dosage forms produced using them. The main part of the review focuses on the non-destructive analytical methods used for evaluation of qualitative aspects of printed dosage forms, e.g., solid-state properties, as well as for quantification of the active pharmaceutical ingredient (API) in the printed dosage forms, with an emphasis on spectroscopic methods. Finally, the authors share their view on the future of printed dosage forms.
Collapse
Affiliation(s)
- Magnus Edinger
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark.
| |
Collapse
|
28
|
Niese S, Quodbach J. Application of a chromatic confocal measurement system as new approach for in-line wet film thickness determination in continuous oral film manufacturing processes. Int J Pharm 2018; 551:203-211. [PMID: 30223080 DOI: 10.1016/j.ijpharm.2018.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
The key parameter of the oral film production process is the wet film thickness since it regulates the active pharmaceutical ingredient (API) content of the finished product. There is no general recommendation on how to adjust the gap height of the coating knife during the film manufacturing process to obtain the target content. Therefore, trial and error approaches are common to determine the surplus of drug for every newly developed formulation. This wastes resources, money and time and calls for an adequate in-line tool for wet film thickness measurement during the film manufacturing process to ensure consistent quality. In this work, a chromatic confocal optical probe was implemented into a continuous oral film manufacturing process on a pilot-scale coating bench. The optical probe allows a non-destructive and contactless wet film thickness measurement. The validation of the method showed good results. Linearity was demonstrated over a wide range of film thicknesses (R2 = 0.999). A good precision between different films was revealed by a coefficient of variation smaller than 2%. The robustness investigations showed that the method is applicable for transparent and non-transparent film forming masses. Furthermore, coloring agents, particles in the polymer mass and different viscosities do not influence the thickness measurement.
Collapse
Affiliation(s)
- Svenja Niese
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Julian Quodbach
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
29
|
Continuous inkjet printing of enalapril maleate onto orodispersible film formulations. Int J Pharm 2018; 546:180-187. [PMID: 29753906 DOI: 10.1016/j.ijpharm.2018.04.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 11/21/2022]
Abstract
Piezoelectric inkjet printing onto orodispersible films (ODFs) was proven to be a successful technique applying flexible doses of active pharmaceutical ingredients (APIs) onto edible substrates. The reported API printing and ODF production was conducted in a non-continuous production approach. Within this study, drug-free and hydrochlorothiazide (HCT) containing ODFs should be imprinted in-line with enalapril maleate (EM) ink during continuous ODF production. Macrogol inks based on various solvents and solvent-water mixtures were developed providing dynamic viscosities from 7 to 17 mPa*s. Water based inks contained 1.25%, methanol based inks up to 10% EM. Both inks could be printed (500-1000 Hz) during continuous ODF production. No EM recrystallization was observed for water-based inks. Mechanical properties were not affected by drug printing using various firing frequencies. ODF imprinted with water-based EM inks contained 0.04 mg EM/6 cm2. EM amount can be increased to a paediatric therapeutic dose of 0.5 mg EM utilizing methanol-based inks. These inks were successfully printed onto HCT ODFs resulting in a therapeutically relevant fixed-dose combination. No EM migration into the HCT layer could be observed. In conclusion, it was feasible to print EM doses onto drug-free and HCT ODFs during an in-line continuous manufacturing process.
Collapse
|