1
|
Mao J, Liu X, Zhang L, Chen Y, Zhou S, Liu Y, Ye J, Xu X, Zhang Q. Self-Nanoemulsifying Drug Delivery System of Morin: A New Approach for Combating Acute Alcohol Intoxication. Int J Nanomedicine 2024; 19:10569-10588. [PMID: 39439503 PMCID: PMC11495198 DOI: 10.2147/ijn.s472287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Acute alcohol intoxication (AAI) is a life-threatening medical condition resulting from excessive alcohol consumption. Our research revealed the potential of morin (MOR) in treating AAI. However, MOR's effectiveness against AAI was hindered by its poor solubility in water and low bioavailability. In this study, our aim was to develop a self-nanoemulsifying drug delivery system (SNEDDS) to enhance MOR's solubility and bioavailability, evaluate its anti-AAI effects, and investigate the underlying mechanism. Methods The composition of MOR-loaded self-nanoemulsifying drug delivery system (MOR-SNEDDS) was determined by constructing pseudo-ternary phase diagrams, and its formulation proportion was optimized using the Box-Behnken design. Following characterization of MOR-SNEDDS, we investigated its pharmacokinetics and biodistribution in healthy animals. Additionally, we assessed the anti-AAI effects and gastric mucosal protection of MOR-SNEDDS in an AAI mice model, exploring potential mechanisms. Results After breaking down into tiny droplets, the optimized mixture of MOR-SNEDDS showed small droplet size on average, even distribution, strong stability, and permeability. Pharmacokinetic studies indicated that MOR-SNEDDS, compared to a MOR suspension, increased the area under the plasma concentration-time curve (AUC0-t) by 10.43 times. Additionally, studies on how drugs move and are distributed in the body showed that MOR-SNEDDS had an advantage in passively targeting the liver. Moreover, in a mouse model for alcohol addiction, MOR not only decreased alcohol levels by boosting the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the stomach and liver, which counteracted the loss of righting reflex (LORR), but also reduced alcohol-induced damage to the stomach lining by lowering malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) levels. Furthermore, MOR-SNEDDS notably amplified these effects. Conclusion MOR exhibits significant potential as a new medication for treating AAI, and utilizing MOR-SNEDDS with high oral bioavailability represents a promising new strategy in combating AAI.
Collapse
Affiliation(s)
- Jiamin Mao
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Xiaoyuan Liu
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Lie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yu Chen
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Shiyu Zhou
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yujiao Liu
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Jing Ye
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Xiaohong Xu
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Quan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Sichuan Higher Education Institute Key Laboratory of Structure-Specific Small Molecule Drugs, Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histoembryology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Chengdu Nature’s Grace Biological Technology Co., Ltd., Chengdu, 610213, People’s Republic of China
| |
Collapse
|
2
|
Hua Z, Li Y, Chen T, Wu D, Xu Y, Hu JN. Morin-Based Nanoparticles for Regulation of Blood Glucose. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21400-21414. [PMID: 38640094 DOI: 10.1021/acsami.3c17642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Morin, a naturally occurring bioactive compound shows great potential as an antioxidant, anti-inflammatory agent, and regulator of blood glucose levels. However, its low water solubility, poor lipid solubility, limited bioavailability, and rapid clearance in vivo hinder its application in blood glucose regulation. To address these limitations, we report an enzymatically synthesized nanosized morin particle (MNs) encapsulated in sodium alginate microgels (M@SA). This approach significantly enhances morin's delivery efficiency and therapeutic efficacy in blood glucose regulation. Utilizing horseradish peroxidase, we synthesized MNs averaging 305.7 ± 88.7 nm in size. These MNs were then encapsulated via electrohydrodynamic microdroplet spraying to form M@SA microgels. In vivo studies revealed that M@SA microgels demonstrated prolonged intestinal retention and superior efficacy compared with unmodified morin and MNs alone. Moreover, MNs notably improved glucose uptake in HepG2 cells. Furthermore, M@SA microgels effectively regulated blood glucose, lipid profiles, and oxidative stress in diabetic mice while mitigating liver, kidney, and pancreatic damage and enhancing anti-inflammatory responses. Our findings propose a promising strategy for the oral administration of natural compounds for blood glucose regulation, with implications for broader therapeutic applications.
Collapse
Affiliation(s)
- Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
4
|
De Gaetano F, Margani F, Barbera V, D’Angelo V, Germanò MP, Pistarà V, Ventura CA. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2209. [PMID: 37765179 PMCID: PMC10536596 DOI: 10.3390/pharmaceutics15092209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Morin (MRN) is a natural compound with antiangiogenic, antioxidant, anti-inflammatory, and anticancer activity. However, it shows a very low water solubility (28 μg/mL) that reduces its oral absorption, making bioavailability low and unpredictable. To improve MRN solubility and positively affect its biological activity, particularly its antiangiogenic activity, in this work, we prepared the inclusion complexes of MNR with sulfobutylether-β-cyclodextrin (SBE-β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes obtained by the freeze-drying method were extensively characterized in solution (phase-solubility studies, UV-Vis titration, and NMR spectroscopy) and in the solid state (TGA, DSC, and WAXD analysis). The complexation significantly increased the water solubility by about 100 times for MRN/HP-β-CD and 115 times for MRN/SBE-β-CD. Furthermore, quantitative dissolution of the complexes was observed within 60 min, whilst 1% of the free drug dissolved in the same experimental time. 1H NMR and UV-Vis titration studies demonstrated both CDs well include the benzoyl moiety of the drug. Additionally, SBE-β-CD could interact with the cinnamoyl moiety of MRN too. The complexes are stable in solution, showing a high value of association constant, that is, 3380 M-1 for MRN/HP-β-CD and 2870 M-1 for MRN/SBE-β-CD. In vivo biological studies on chick embryo chorioallantoic membrane (CAM) and zebrafish embryo models demonstrated the high biocompatibility of the inclusion complexes and the effective increase in antiangiogenic activity of complexed MRN with respect to the free drug.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Fatima Margani
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano, Italy; (F.M.); (V.B.)
| | - Valeria D’Angelo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Maria Paola Germanò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina, Italy; (F.D.G.); (V.D.); (M.P.G.)
| |
Collapse
|
5
|
Cunha C, Marinheiro D, Ferreira BJML, Oliveira H, Daniel-da-Silva AL. Morin Hydrate Encapsulation and Release from Mesoporous Silica Nanoparticles for Melanoma Therapy. Molecules 2023; 28:4776. [PMID: 37375331 DOI: 10.3390/molecules28124776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma incidence, a type of skin cancer, has been increasing worldwide. There is a strong need to develop new therapeutic strategies to improve melanoma treatment. Morin is a bioflavonoid with the potential for use in the treatment of cancer, including melanoma. However, therapeutic applications of morin are restrained owing to its low aqueous solubility and limited bioavailability. This work investigates morin hydrate (MH) encapsulation in mesoporous silica nanoparticles (MSNs) to enhance morin bioavailability and consequently increase the antitumor effects in melanoma cells. Spheroidal MSNs with a mean size of 56.3 ± 6.5 nm and a specific surface area of 816 m2/g were synthesized. MH was successfully loaded (MH-MSN) using the evaporation method, with a loading capacity of 28.3% and loading efficiency of 99.1%. In vitro release studies showed that morin release from MH-MSNs was enhanced at pH 5.2, indicating increased flavonoid solubility. The in vitro cytotoxicity of MH and MH-MSNs on human A375, MNT-1 and SK-MEL-28 melanoma cell lines was investigated. Exposure to MSNs did not affect the cell viability of any of the cell lines tested, suggesting that the nanoparticles are biocompatible. The effect of MH and MH-MSNs on reducing cell viability was time- and concentration-dependent in all melanoma cell lines. The A375 and SK-MEL-28 cell lines were slightly more sensitive than MNT-1 cells in both the MH and MH-MSN treatments. Our findings suggest that MH-MSNs are a promising delivery system for the treatment of melanoma.
Collapse
Affiliation(s)
- Catarina Cunha
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Marinheiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J M L Ferreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D, Iannazzo D, Strano V, Gueli AM, Tommasini S, Ventura CA, Stancanelli R. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023; 15:1605. [PMID: 37376054 DOI: 10.3390/pharmaceutics15061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via μ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Giuseppe Paladini
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Vincenza Strano
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Anna M Gueli
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Ivanova D, Toneva M, Simeonov E, Nikolova B, Semkova S, Antov G, Yaneva Z. Newly Synthesized Lignin Microparticles as Bioinspired Oral Drug-Delivery Vehicles: Flavonoid-Carrier Potential and In Vitro Radical-Scavenging Activity. Pharmaceutics 2023; 15:pharmaceutics15041067. [PMID: 37111553 PMCID: PMC10142347 DOI: 10.3390/pharmaceutics15041067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
The aim of the present study was to synthesize lignin microparticles, to evaluate their physicochemical, spectral, morphological and structural characteristics, to examine their encapsulation and in vitro release potential and behaviour towards the flavonoid morin in simulated physiological medium and to assess the in vitro radical-scavenging potential of the morin-loaded lignin microcarrier systems. The physicochemical, structural and morphological characteristics of alkali lignin, lignin particles (LP) and morin-encapsulated lignin microparticles (LMP) were determined based on particle size distribution, SEM, UV/Vis spectrophotometric, FTIR and potentiometric titration analyses. The encapsulation efficiency of LMP was 98.1%. The FTIR analyses proved that morin was successfully encapsulated in the LP without unexpected chemical reactions between the flavonoid and the heteropolymer. The in vitro release performance of the microcarrier system was successfully mathematically described by Korsmeyer–Peppas and the sigmoidal models outlining the general role of diffusion during the initial stages of the in vitro release process in simulated gastric fluid (SGF), and the predominant contribution of biopolymer relaxation and erosion was determined in simulated intestinal medium (SIF). The higher radical-scavenging potential of LMP, as compared to that of LP, was proven via DPPH and ABTS assays. The synthesis of lignin microcarriers not only provides a facile approach for the utilization of the heteropolymer but also determines its potential for the design of drug-delivery matrices.
Collapse
|
8
|
Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS). Pharmaceuticals (Basel) 2023; 16:ph16010099. [PMID: 36678595 PMCID: PMC9861023 DOI: 10.3390/ph16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The objective of the present study was to develop a gentiopicroside-phospholipid complex (GTP-PC) and its self-nanoemulsion drug delivery system (GTP-PC-SNEDDS) to increase the oral bioavailability of gentiopicroside (GTP). The factors affecting the formation of GTP-PC were studied with the complexation efficiency and dissociation rate. The properties of the complex were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), dissolution, etc. Then, GTP-PC was loaded into SNEDDS by investigating the effects of weight ratios of GTP-PC to blank SNEDDS, preparation technology, dilution media, and dilution multi, based on the screening results of oils, surfactants, and cosurfactants. In rats, GTP, GTP-PC, and GTP-PC-SNEDDS were orally administered at different times, and GTP concentrations were determined using RP-HPLC. The optimal GTP-PC was prepared with tetrahydrofuran as the reaction solvent, GTP:phospholipid = 1:2, and stirring for 4 h. The optimal prescription for GTP-PC-SNEDDS was as follows: Maisin 35-1:Miglycol = 30%, Labrasol:Cremophor EL = 1:4 = 40%, Transcutol P = 30%; Maisin 35-1:Miglycol = 12, and the ratio of GTP-PC to blank was 1:10-then the mixture was stirred at 37 °C for 1 d and then placed for 2 d to form stable GTP-PC-SNEDDS. After oral administration of GTP, GTP-PC and GTP-PC-SNEDDS, and mean plasma GTP concentration-time curves were all in accordance with the single-compartment model. The Cmax, AUC0-∞, and Fr of the three formulations were significantly higher than that of GTP, demonstrating that GTP was metabolized rapidly, and its higher bioavailability could be achieved by the formation of GTP-PC and GTP-PC-SNEDDS. Among the three formations, the bioavailability of GTP-PC-SNEDDS was highest, with approximately 2.6-fold and 1.3-fold of Fr value, compared with GTP-PC (suspension) and GTP-PC (oil solution), respectively. Compared with GTP, GTP-PC and GTP-PC-SNEDDS enhanced the bioavailability of GTP significantly. In the future, this study could serve as a reference for clinical trials using GTP-PC and GTP-PC-SNEDDS.
Collapse
|
9
|
Discovery and characterization of the flavonoids in Cortex Mori Radicis as naturally occurring inhibitors against intestinal nitroreductases. Chem Biol Interact 2022; 368:110222. [PMID: 36244406 DOI: 10.1016/j.cbi.2022.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Gut bacterial nitroreductases are found to be heavily related with the intestinal toxicity of nitroaromatic compounds in food or medicine, which can be converted into mutagenic and enterotoxic nitroso or N-hydroxyl intermediates. Thus, inhibiting the gut microbe-encoded nitroreductases has become an attractive method to reduce the mutagen metabolites in colon and prevent intestinal diseases. In this study, the inhibitory effects of sixteen constituents in Cortex Mori Radicis on two kinds of gut bacterial nitroreductases (EcNfsA and EcNfsB) were evaluated with nitrofurazone (NFZ) as substrate and NADPH as electron donor. The results clearly demonstrated that four flavonoids including kuwanon G, kuwanon A, sanggenol A and kuwanon C showed dual inhibition on both EcNfsA and EcNfsB mediated NFZ reduction; morusin, morin, and sanggenone C were strong inhibitors towards EcNfsA; kuwanon H and kuwanon E exhibited effective inhibition on EcNfsB. Further inhibition kinetic analysis and molecular docking simulations displayed that all inhibitors above suppressed both EcNfsA and EcNfsB activities in competitive manners, except non-competitive inhibition of morin on EcNfsA and non-competitive inhibition of kuwanon C on EcNfsB, respectively. Taking together, these findings revealed that most flavonoids in Cortex Mori Radicis presented effective inhibition on gut microbial nitroreductases, suggesting that Cortex Mori Radicis might be a promising candidate for ameliorating nitroreductases mediated intestinal mutagenicity.
Collapse
|
10
|
Alonso M, Barcia E, González JF, Montejo C, García-García L, Villa-Hermosilla MC, Negro S, Fraguas-Sánchez AI, Fernández-Carballido A. Functionalization of Morin-Loaded PLGA Nanoparticles with Phenylalanine Dipeptide Targeting the Brain. Pharmaceutics 2022; 14:pharmaceutics14112348. [PMID: 36365169 PMCID: PMC9696360 DOI: 10.3390/pharmaceutics14112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with its incidence constantly increasing. To date, there is no cure for the disease, with a need for new and effective treatments. Morin hydrate (MH) is a naturally occurring flavonoid of the Moraceae family with antioxidant and anti-inflammatory properties; however, the blood–brain barrier (BBB) prevents this flavonoid from reaching the CNS when aiming to potentially treat AD. Seeking to use the LAT-1 transporter present in the BBB, a nanoparticle (NPs) formulation loaded with MH and functionalized with phenylalanine-phenylalanine dipeptide was developed (NPphe-MH) and compared to non-functionalized NPs (NP-MH). In addition, two formulations were prepared using rhodamine B (Rh-B) as a fluorescent dye (NPphe-Rh and NP-Rh) to study their biodistribution and ability to cross the BBB. Functionalization of PLGA NPs resulted in high encapsulation efficiencies for both MH and Rh-B. Studies conducted in Wistar rats showed that the presence of phenylalanine dipeptide in the NPs modified their biodistribution profiles, making them more attractive for both liver and lungs, whereas non-functionalized NPs were predominantly distributed to the spleen. Formulation NPphe-Rh remained in the brain for at least 2 h after administration.
Collapse
Affiliation(s)
- Mario Alonso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-94-17-41
| | - Juan-Francisco González
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Consuelo Montejo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, 28668 Boadilla del Monte, Spain
| | - Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Brain Mapping Lab, Pluridisciplinary Research Institute, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mónica-Carolina Villa-Hermosilla
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana-Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
11
|
Ren X, Sun Y, Guo Q, Liu H, Jiang H, He X, Li X, Shi X, Xiu Z, Dong Y. Ameliorating Effect of the Total Flavonoids of Morus nigra L. on Prediabetic Mice Based on Regulation of Inflammation and Insulin Sensitization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12484-12501. [PMID: 36150176 DOI: 10.1021/acs.jafc.2c04970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prediabetes is a critical stage characterized by insulin resistance. Morus nigra L., an edible plant, is widely used in food and nutritive supplements and exhibits various pharmacological activities; however, its therapeutic effects and mechanisms on prediabetes have rarely been reported. In this research, the major components of total flavonoids of M. nigra L. (TFM) were identified, and TFM treatment was found to reduce prediabetes progressing to type 2 diabetes mellitus (T2DM) from 93.75 to 18.75%. The microbiota and next-generation sequencing combined with western blotting in vivo and in vitro demonstrated that TFM and its components ameliorated insulin resistance mediated by the suppressor of cytokine signaling and protein tyrosine phosphatase 1B, which benefited by maintaining intestinal homeostasis and restraining plasma levels of inflammatory factors. This study confirmed the T2DM prevention effect of TFM and revealed the underlying mechanism, setting the stage for the design of functional foods for diabetes prevention.
Collapse
Affiliation(s)
- Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yu Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Qinfeng Guo
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Haodong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Hui Jiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiaoshi He
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xia Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xuan Shi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
12
|
Trypsin stabilized copper nanoclusters as a highly sensitive and selective probe for fluorescence sensing of morin and temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Thakur N, Kundu M, Chatterjee S, Singh TA, Das J, Sil PC. Morin-loaded nanoceria as an efficient nanoformulation for increased antioxidant and antibacterial efficacy. JOURNAL OF NANOPARTICLE RESEARCH 2022; 24:176. [DOI: 10.1007/s11051-022-05552-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/09/2022] [Indexed: 11/29/2023]
|
14
|
Ulla A, Ozaki K, Rahman MM, Nakao R, Uchida T, Maru I, Mawatari K, Fukawa T, Kanayama HO, Sakakibara I, Hirasaka K, Nikawa T. Morin improves dexamethasone-induced muscle atrophy by modulating atrophy-related genes and oxidative stress in female mice. Biosci Biotechnol Biochem 2022; 86:1448-1458. [PMID: 35977398 DOI: 10.1093/bbb/zbac140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 11/12/2022]
Abstract
This study investigated the effect of morin, a flavonoid, on dexamethasone-induced muscle atrophy in C57BL/6J female mice. Dexamethasone (10 mg/kg body weight) for 10 days significantly reduced body weight, gastrocnemius and tibialis anterior muscle mass, and muscle protein in mice. Dexamethasone significantly upregulated muscle atrophy-associated ubiquitin ligases, including atrogin-1 and MuRF-1, and the upstream transcription factors FoxO3a and Klf15. Additionally, dexamethasone significantly induced the expression of oxidative stress-sensitive ubiquitin ligase Cbl-b and the accumulation of the oxidative stress markers malondialdehyde and advanced protein oxidation products in both the plasma and skeletal muscle samples. Intriguingly, morin treatment (20 mg/kg body weight) for 17 days effectively attenuated the loss of muscle mass and muscle protein and suppressed the expression of ubiquitin ligases while reducing the expression of upstream transcriptional factors. Therefore, morin might act as a potential therapeutic agent to attenuate muscle atrophy by modulating atrophy inducing genes and preventing oxidative stress.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Kanae Ozaki
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Isafumi Maru
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
15
|
Mondal S, Das S, Mahapatra PK, Saha KD. Morin encapsulated chitosan nanoparticles (MCNPs) ameliorate arsenic induced liver damage through improvement of the antioxidant system and prevention of apoptosis and inflammation in mice. NANOSCALE ADVANCES 2022; 4:2857-2872. [PMID: 36132010 PMCID: PMC9419452 DOI: 10.1039/d2na00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/30/2022] [Indexed: 05/31/2023]
Abstract
Chronic exposure to arsenic over a period of time induces toxicity, primarily in the liver but gradually in all systems of the body. Morin hydrate (MH; 2',3,4',5,7-pentahydroxyflavone), a potent flavonoid abundantly present in plants of the Moraceae family, is thought to be a major bioactive compound that may be used to prevent a wide range of disease pathologies including hepatotoxicity. Therapeutic applications of morin (MOR) are however seriously constrained because of its insolubility, poor bioavailability, high metabolism and rapid elimination from the human body. Nanoformulation of MOR is a possible solution to these problems. In the present study we investigated the effectiveness of morin encapsulated chitosan nanoparticles (MCNPs) against arsenic induced liver damage in mice. MNCPs with an average diameter of 124.5 nm, a zeta potential of +16.2 mV and an encapsulation efficiency of 78% were prepared. Co-treatment of MOR and MCNPs by oral gavage on alternate days reduced the serum levels of AST, ALT, and ALP that were elevated in arsenic treated mice. The efficiency of MCNPs was found to be nearly 4 times higher than that of free MOR. Haematological and serum biochemical parameters including lipid profiles altered by arsenic were normalized following MCNP treatment. Arsenic deposition was lowered in the presence of MCNPs. Administration of MCNPs markedly inhibited ROS generation and elevated MDA levels in arsenic exposed mice. The level of hepatic antioxidant factors such as nuclear Nrf2 (Nrf2), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), GSH peroxidase (GPx), glutathione-S-transferase (GST), heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1(NQO1) were markedly enhanced in the arsenic + MCNP group. Treatment by MCNPs prevented the arsenic induced damage of tissue histology. Also, MCNPs suppressed the arsenic induced pro- and anti-apoptotic parameters and attenuated the level of inflammatory mediators. Our data suggest that MCNPs are good hepatoprotective agents compared to free morin against arsenic induced toxicity and the protective effect results from its strong antioxidant, antiapoptotic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Sanchaita Mondal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
- Department of Chemistry, Jadavpur University 188, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Sujata Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Pradip Kumar Mahapatra
- Department of Chemistry, Jadavpur University 188, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata-700032 West Bengal India
| |
Collapse
|
16
|
Uchiyama H, Kadota K, Tozuka Y. A review of transglycosylated compounds as food additives to enhance the solubility and oral absorption of hydrophobic compounds in nutraceuticals and pharmaceuticals. Crit Rev Food Sci Nutr 2022; 63:11226-11243. [PMID: 35757865 DOI: 10.1080/10408398.2022.2092056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transglycosylation has been used to modify the physicochemical properties of original compounds. As a result, transglycosylated compounds can form molecular aggregates in size ranges of a few nanometers in an aqueous medium when their concentrations exceed a specific level. Incorporating these hydrophobic compounds has been observed to enhance the solubility of hydrophobic compounds into aggregate structures. Thus, this review introduces four transglycosylated compounds as food additives that can enhance the solubility and oral absorption of hydrophobic compounds. Here, transglycosylated hesperidin, transglycosylated rutin, transglycosylated naringin, and transglycosylated stevia are the focus as representative substances. Significantly, we observed that amorphous formations containing hydrophobic compounds with transglycosylated compounds improved solubility and oral absorption compared to untreated hydrophobic compounds. Moreover, combining transglycosylated compounds with hydrophilic polymers or surfactants enhanced the solubilizing effects on hydrophobic compounds. Furthermore, the enhanced solubility of hydrophobic compounds improved their oral absorption. Transglycosylated compounds also influenced nanoparticle preparation of hydrophobic compounds as a dispersant. This study demonstrated the benefits of transglycosylated compounds in developing supplements and nutraceuticals of hydrophobic compounds with poor aqueous solubility.
Collapse
Affiliation(s)
- Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
17
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
19
|
Zhang A, Li J, Wang S, Xu Y, Li Q, Wu Z, Wang C, Meng H, Zhang J. Rapid and improved oral absorption of N-butylphthalide by sodium cholate-appended liposomes for efficient ischemic stroke therapy. Drug Deliv 2021; 28:2469-2479. [PMID: 34766542 PMCID: PMC8592624 DOI: 10.1080/10717544.2021.2000678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
As a multi-target drug to treat ischemic stroke, N-butylphthalide (NBP) is extremely water-insoluble and exhibits limited oral bioavailability, impeding its wide oral application. Effective treatment of ischemic stroke by NBP requires timely and efficient drug exposure, necessitating the development of new oral formulations. Herein, liposomes containing biosurfactant sodium cholate (CA-liposomes) were systemically investigated as an oral NBP delivery platform because of its high biocompatibility and great potential for clinical applications. The optimized liposomes have a uniform hydrodynamic size of 104.30 ± 1.60 nm and excellent encapsulation efficiency (93.91 ± 1.10%). Intriguingly, NBP-loaded CA-liposomes produced rapid drug release and the cumulative release was up to 88.09 ± 4.04% during 12 h while that for NBP group was only 6.79 ± 0.99%. Caco-2 cell monolayer assay demonstrated the superior cell uptake and transport efficiency of NBP-loaded CA-liposomes than free NBP, which was mediated by passive diffusion via transcellular and paracellular routes. After oral administration to rats, NBP-loaded CA-liposomes exhibited rapid and almost complete drug absorption, with a tmax of 0.70 ± 0.14 h and an absolute bioavailability of 92.65% while NBP suspension demonstrated relatively low bioavailability (21.7%). Meanwhile, NBP-loaded CA-liposomes produced 18.30-fold drug concentration in the brain at 5 min compared with NBP suspension, and the brain bioavailability increased by 2.48-fold. As expected, NBP-loaded CA-liposomes demonstrated significant therapeutic efficacy in a middle cerebral artery occlusion rat model. Our study provides new insights for engineering oral formulations of NBP with fast and sufficient drug exposure against ischemic stroke in the clinic.
Collapse
Affiliation(s)
- Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbo Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuaishuai Wang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaru Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qinglian Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Wu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenxu Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjie Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Qiu H, Guo Z, Xu Q, Mao S, Wu W. Evaluation on absorption risks of amentoflavone after oral administration in rats. Biopharm Drug Dispos 2021; 42:435-443. [PMID: 34655436 DOI: 10.1002/bdd.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022]
Abstract
The present study was aimed to systemically assess the absorption risks of amentoflavone (AMF). Physicochemical properties of AMF were evaluated using in vitro assays including water solubility and stability in both simulated gastric and intestinal fluids, as well as logD, pka and permeability studies in a monolayer Caco-2 model. The results together suggested that AMF was a compound with moderate intestinal absorption and the poor solubility was the key rate-limiting step for the oral absorption of AMF, and PVP-K30 were thus used as a solubilizer to improve its solubility and oral bioavailability. Furthermore, studies on pharmacokinetics and biliary excretion of AMF with tween 80 or PVP-K30 were performed after oral administration, and the results showed that the percentage of AMF conjugates in bile was determined up to be 96.73% and no AMF conjugates were detected in rat plasma. The above results revealed that the poor oral absorption of AMF may probably be attributed to the low solubility, high level of metabolism and hepatic first-pass effects. The relative bioavailability of AMF solubilized by PVP-K30 was about 2-fold than that of AMF suspended in 1% tween 80. The present study may help provide scientific insights to guide the rational design of AMF into more efficient formulation systems.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengbing Guo
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Qian Xu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Shengfang Mao
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenming Wu
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Li J, Feng T, Yang W, Xu Y, Wang S, Cai H, Liu Z, Qiang H, Zhang J. Rational formulation engineering of fraxinellone utilizing 6-O-α-D-maltosyl-β-cyclodextrin for enhanced oral bioavailability and hepatic fibrosis therapy. Drug Deliv 2021; 28:1890-1902. [PMID: 34519225 PMCID: PMC8451604 DOI: 10.1080/10717544.2021.1976310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although Fraxinellone (Frax) isolated from Dictamnus albus L. possessed excellent anti-hepatic fibrosis activity, oral administration of Frax suffered from the inefficient therapeutic outcome in vivo due to negligible oral absorption. At present, the oral formulation of Frax is rarely exploited. For rational formulation design, we evaluated preabsorption risks of Frax and found that Frax was rather stable while poorly dissolved in the gastrointestinal tract (78.88 μg/mL), which predominantly limited its oral absorption. Further solubility test revealed the outstanding capacity of cyclodextrin derivatives (CDs) to solubilize Frax (6.8-12.8 mg/mL). This led us to study the inclusion complexes of Frax with a series of CDs and holistically explore their drug delivery performance. Characterization techniques involving 1H-NMR, FT-IR, DSC, PXRD, and molecular docking confirmed the most stable binding interactions when Frax complexed with 6-O-α-D-maltosyl-β-cyclodextrin (G2-β-CD-Frax). Notably, G2-β-CD-Frax exhibited the highest solubilizing capacity, fast dissolution rate, and superior Caco-2 cell internalization with no obvious toxicity. Pharmacokinetic studies demonstrated markedly higher oral bioavailability of G2-β-CD-Frax (5.8-fold that of free drug) than other Frax-CDs. Further, long-term administration of G2-β-CD-Frax (5 mg/kg) efficiently inhibited CCl4-induced hepatic fibrosis in the mouse without inducing any toxicity. Our results will inspire the continued advancement of optimal oral Frax formulations for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Jianbo Li
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiange Feng
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Weijing Yang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Yaru Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Shuaishuai Wang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Huijie Cai
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Zhilei Liu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Qiang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| | - Jinjie Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives. Phytother Res 2021; 35:6843-6861. [PMID: 34498311 DOI: 10.1002/ptr.7270] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Flavonoids constitute one of the most important classes of polyphenols, which have been found to have a wide range of biological activities such as anticancer effects. A large body of evidence demonstrates that morin as a pleiotropic dietary flavonoid possesses potent anticarcinogenic and anticancer activities with minimal toxicity against normal cells. The present review comprehensively elaborates the molecular mechanisms underlying antitumorigenic and anticancer effects of morin. Morin exerts its anticarcinogenic effects through multiple cancer preventive mechanisms, including reduction of oxidative stress, activation of phase II enzymes, induction of apoptosis, attenuation of inflammatory mediators, and downregulation of p-Akt and NF-κB expression. A variety of molecular targets and signaling pathways such as apoptosis, cell cycle, reactive oxygen species (ROS), matrix metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT), and microRNAs (miRNAs) as well as signal transducer and activator of transcription 3 (STAT3), NF-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Hippo pathways have been found to be involved in the anticancer effects of morin. In the adjuvant therapy, morin has been shown to have synergistic anticancer effects with several chemotherapeutic drugs. The findings of this review indicate that morin can act as a promising chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Tan OJ, Loo HL, Thiagarajah G, Palanisamy UD, Sundralingam U. Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations - A Scoping Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153651. [PMID: 34340903 DOI: 10.1016/j.phymed.2021.153651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although numerous medicinal herbal compounds demonstrate promising therapeutic potential, their clinical application is often limited by their poor oral bioavailability. To circumvent this barrier, various lipid-based herbal formulations have been developed and trialled with promising experimental results. PURPOSE This scoping review aims to describe the effect of lipid-based formulations on the oral bioavailability of herbal compounds. METHODS A systematic search was conducted across three electronic databases (Medline, Embase and Cochrane Library) between January 2010 and January 2021 to identify relevant studies. The articles were rigorously screened for eligibility. Data from eligible studies were then extracted and collated for synthesis and descriptive analysis using Covidence. RESULTS A total of 109 studies were included in the present review: 105 animal studies and four clinical trials. Among the formulations investigated, 50% were emulsions, 34% lipid particulate systems, 12% vesicular systems, and 4% were other types of lipid-based formulations. Within the emulsion system classification, self-emulsifying drug delivery systems were observed to produce the best improvements in oral bioavailability, followed by mixed micellar formulations. The introduction of composite lipid-based formulations and the use of uncommon surfactants such as sodium oleate in emulsion preparation was shown to consistently enhance the bioavailability of herbal compounds with poor oral absorption. Interestingly, the lipid-based formulations of magnesium lithospermate B and Pulsatilla chinensis produced an absolute bioavailability greater than 100% indicating the possibility of prolonged systemic circulation. With respect to chemical conjugation, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was the most frequently used and significantly improved the bioavailability of its phytoconstituents. CONCLUSION Our findings suggest that there is no distinct lipid-based formulation superior to the other. Bioavailability improvements were largely dependent on the nature of the phytoconstituents. This scoping review, however, provided a detailed summary of the most up-to-date evidence on phytoconstituents formulated into lipid preparations and their oral bioavailability. We conclude that a systematic review and meta-analysis between bioavailability improvements of individual phytoconstituents (such as kaempferol, morin and myricetin) in various lipid-based formulations will provide a more detailed association. Such a review will be highly beneficial for both researchers and herbal manufacturers.
Collapse
Affiliation(s)
- Oi Jin Tan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Hooi Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Gayathiri Thiagarajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| |
Collapse
|
24
|
Dhritlahre RK, Ruchika, Padwad Y, Saneja A. Self-emulsifying formulations to augment therapeutic efficacy of nutraceuticals: From concepts to clinic. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Bai Y, Chen L, Cao YF, Hou XD, Jia SN, Zhou Q, He YQ, Hou J. Beta-Glucuronidase Inhibition by Constituents of Mulberry Bark. PLANTA MEDICA 2021; 87:631-641. [PMID: 33733438 DOI: 10.1055/a-1402-6431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intestinal bacterial β-glucuronidases, the key enzymes responsible for the hydrolysis of various glucuronides into free aglycone, have been recognized as key targets for treating various intestinal diseases. This study aimed to investigate the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli β-glucuronidase (EcGUS), the most abundant β-glucuronidases produced by intestinal bacteria. The results showed that the flavonoids isolated from Mulberry bark could strongly inhibit E. coli β-glucuronidase, with IC50 values ranging from 1.12 µM to 10.63 µM, which were more potent than D-glucaric acid-1,4-lactone. Furthermore, the mode of inhibition of 5 flavonoids with strong E. coli β-glucuronidase inhibitory activity (IC50 ≤ 5 µM) was carefully investigated by a set of kinetic assays and in silico analyses. The results demonstrated that these flavonoids were noncompetitive inhibitors against E. coli β-glucuronidase-catalyzed 4-nitrophenyl β-D-glucuronide hydrolysis, with Ki values of 0.97 µM, 2.71 µM, 3.74 µM, 3.35 µM, and 4.03 µM for morin (1: ), sanggenon C (2: ), kuwanon G (3: ), sanggenol A (4: ), and kuwanon C (5: ), respectively. Additionally, molecular docking simulations showed that all identified flavonoid-type E. coli β-glucuronidase inhibitors could be well-docked into E. coli β-glucuronidase at nonsubstrate binding sites, which were highly consistent with these agents' noncompetitive inhibition mode. Collectively, our findings demonstrated that the flavonoids in Mulberry bark displayed strong E. coli β-glucuronidase inhibition activity, suggesting that Mulberry bark might be a promising dietary supplement for ameliorating β-glucuronidase-mediated intestinal toxicity.
Collapse
Affiliation(s)
- Yue Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lu Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun-Feng Cao
- Dalian Runsheng Kangtai Medical Laboratory Co. Ltd, Dalian, China
| | - Xu-Dong Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Qi Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu-Qi He
- The Key Laboratory of the Basic Pharmacology of the Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Tran PHL, Lee BJ, Tran TTD. Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs. Curr Pharm Des 2021; 27:1498-1506. [PMID: 33087026 DOI: 10.2174/1381612826666201021125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.
Collapse
Affiliation(s)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
27
|
Rajput SA, Wang XQ, Yan HC. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 2021; 138:111511. [PMID: 33744757 DOI: 10.1016/j.biopha.2021.111511] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/β-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Investigation of the Factors Responsible for the Poor Oral Bioavailability of Acacetin in Rats: Physicochemical and Biopharmaceutical Aspects. Pharmaceutics 2021; 13:pharmaceutics13020175. [PMID: 33525442 PMCID: PMC7911516 DOI: 10.3390/pharmaceutics13020175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
Acacetin, an important ingredient of acacia honey and a component of several medicinal plants, exhibits therapeutic effects such as antioxidative, anticancer, anti-inflammatory, and anti-plasmodial activities. However, to date, studies reporting a systematic investigation of the in vivo fate of orally administered acacetin are limited. Moreover, the in vitro physicochemical and biopharmaceutical properties of acacetin in the gastrointestinal (GI) tract and their pharmacokinetic impacts remain unclear. Therefore, in this study, we aimed to systematically investigate the oral absorption and disposition of acacetin using relevant rat models. Acacetin exhibited poor solubility (≤119 ng/mL) and relatively low stability (27.5–62.0% remaining after 24 h) in pH 7 phosphate buffer and simulated GI fluids. A major portion (97.1%) of the initially injected acacetin dose remained unabsorbed in the jejunal segments, and the oral bioavailability of acacetin was very low at 2.34%. The systemic metabolism of acacetin occurred ubiquitously in various tissues (particularly in the liver, where it occurred most extensively), resulting in very high total plasma clearance of 199 ± 36 mL/min/kg. Collectively, the poor oral bioavailability of acacetin could be attributed mainly to its poor solubility and low GI luminal stability.
Collapse
|
29
|
Tallei TE, Tumilaar SG, Niode NJ, Fatimawali, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (M pro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. SCIENTIFICA 2020; 2020:6307457. [PMID: 33425427 PMCID: PMC7773461 DOI: 10.1155/2020/6307457] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 05/20/2023]
Abstract
Since the outbreak of the COVID-19 (coronavirus disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants using a molecular docking approach to inhibit the main protease (Mpro) and spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina (AV) as a docking engine. A rule of five (Ro5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was performed by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding/ΔG). As a comparison, nelfinavir (an antiretroviral drug), chloroquine, and hydroxychloroquine sulfate (antimalarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. This finding implied that several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate, which so far are recommended in the treatment of COVID-19. From quantum chemical DFT calculations, the ascending order of chemical reactivity of selected compounds was pectolinarin > hesperidin > rhoifolin > morin > epigallocatechin gallate. All isolated compounds' C=O regions are preferable for an electrophilic attack, and O-H regions are suitable for a nucleophilic attack. Furthermore, Homo-Lumo and global descriptor values indicated a satisfactory remarkable profile for the selected compounds. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2. The present study identified plant-based compounds that can be further investigated in vitro and in vivo as lead compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Al Azhar University, South Jakarta 12110, Indonesia
| | - Shahenur Alam Sakib
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
30
|
Morin decreases acrolein-induced cell injury in normal human hepatocyte cell line LO2. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Kesharwani SS, Jain V, Dey S, Sharma S, Mallya P, Kumar VA. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Kesharwani SS, Mallya P, Kumar VA, Jain V, Sharma S, Dey S. Nobiletin as a Molecule for Formulation Development: An Overview of Advanced Formulation and Nanotechnology-Based Strategies of Nobiletin. AAPS PharmSciTech 2020; 21:226. [PMID: 32761293 DOI: 10.1208/s12249-020-01767-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Approximately 40% of compounds in clinical drug development suffer from solubility and bioavailability challenges. Evidence from literature demonstrates the growing interest to utilize flavonoids as potential compounds owing to their widespread therapeutic utility in various ailments. Nobiletin (NOB), one such dietary polymethoxylated flavonoid found in citrus fruits, has multiple pharmacological effects such as antioxidant, anti-microbial, anti-cancer, and anti-inflammatory. It is useful in cancer, inflammatory bowel diseases, atherosclerosis, obesity, and Alzheimer's disease. Although preclinical studies demonstrate the therapeutic utility of NOB, it suffers from serious biopharmaceutical limitations such as low aqueous solubility (below 1 μg/ml), poor permeability across biological barriers, and low bioavailability. To overcome these biopharmaceutical challenges associated with NOB, the use of advanced formulations and nanotechnology-based strategies appears to be a promising approach to potentiate its therapeutic action. Multiple reviews cover the various therapeutic benefits of NOB in various diseases; however, there is an absence of a comprehensive review that focuses on the formulation development strategies of NOB. The purpose of this review is to provide a concise perspective on NOB as a candidate molecule for formulation development. The manuscript covers various aspects related to NOB, such as its chemistry, physicochemical properties, and pharmacological effects. This is also a thorough review of various formulation development strategies with advances made in the past years to improve the solubility, bioavailability, and therapeutic efficacy of NOB. The review also contains information related to toxicity and patents involving NOB and its formulation.
Collapse
|
33
|
Arriagada F, Günther G, Morales J. Nanoantioxidant-Based Silica Particles as Flavonoid Carrier for Drug Delivery Applications. Pharmaceutics 2020; 12:E302. [PMID: 32224905 PMCID: PMC7238062 DOI: 10.3390/pharmaceutics12040302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Nanosystems used in pharmaceutical formulations have shown promising results in enhancing the administration of drugs of difficult formulations. In particular, porous silica nanoparticles have demonstrated excellent properties for application in biological systems; however, there are still several challenges related to the development of more effective and biocompatible materials. An interesting approach to enhance these nanomaterials has been the development of nanoantioxidant carriers. In this work, a hybrid nanoantioxidant carrier based on porous silica nanoplatform with rosmarinic acid antioxidant immobilized on its surface were developed and characterized. Techniques such as dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), N2 adsorption-desorption measurements, differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH●) assay were used to characterize and evaluate the antioxidant activity of nanocarriers. In addition, drug release profile was evaluated using two biorelevant media. The antioxidant activity of rosmarinic acid was maintained, suggesting the correct disposition of the moiety. Kinetic studies reveal that more morin is released in the simulated intestinal fluid than in the gastric one, while an anomalous non-Fickian release mechanism was observed. These results suggest a promising antioxidant nanocarrier suitable for future application in drug delivery.
Collapse
Affiliation(s)
- Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, 5110033 Valdivia, Chile
| | - Germán Günther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile;
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494 Santiago, Chile;
| |
Collapse
|
34
|
Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (M pro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. SCIENTIFICA 2020; 2020:6307457. [PMID: 33425427 DOI: 10.20944/preprints202004.0102.v2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Since the outbreak of the COVID-19 (coronavirus disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants using a molecular docking approach to inhibit the main protease (Mpro) and spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina (AV) as a docking engine. A rule of five (Ro5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was performed by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding/ΔG). As a comparison, nelfinavir (an antiretroviral drug), chloroquine, and hydroxychloroquine sulfate (antimalarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. This finding implied that several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate, which so far are recommended in the treatment of COVID-19. From quantum chemical DFT calculations, the ascending order of chemical reactivity of selected compounds was pectolinarin > hesperidin > rhoifolin > morin > epigallocatechin gallate. All isolated compounds' C=O regions are preferable for an electrophilic attack, and O-H regions are suitable for a nucleophilic attack. Furthermore, Homo-Lumo and global descriptor values indicated a satisfactory remarkable profile for the selected compounds. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2. The present study identified plant-based compounds that can be further investigated in vitro and in vivo as lead compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Al Azhar University, South Jakarta 12110, Indonesia
| | - Shahenur Alam Sakib
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
35
|
Hattori T, Tagawa H, Inai M, Kan T, Kimura SI, Itai S, Mitragotri S, Iwao Y. Transdermal delivery of nobiletin using ionic liquids. Sci Rep 2019; 9:20191. [PMID: 31882884 PMCID: PMC6934657 DOI: 10.1038/s41598-019-56731-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023] Open
Abstract
Nobiletin (NOB), a flavonoid, has extremely low water solubility and low oral bioavailability; however, despite these problems, various physiological effects have been investigated in vitro. In the present study, we investigated the transdermal delivery of NOB using choline and geranic acid (CAGE), which is a biocompatible material that has been reported to be a promising transdermal delivery approach. The feasibility was evaluated by a set of in vitro and in vivo tests. A solubility evaluation demonstrated that CAGE induced excellent solubility of NOB induced by multipoint hydrogen bonding between NOB and CAGE. In vitro transdermal tests using a Franz diffusion cell showed that CAGE was effective in enhancing transdermal absorption of NOB, compared to other penetration enhancers. Subsequent in vivo tests demonstrated that CAGE significantly improved area under the concentration-time curve of NOB in vivo and NOB/CAGE sample showed 20-times higher bioavailability than oral administration of NOB crystal. Furthermore, NOB/CAGE sample also showed significant drops of the blood glucose level in rats derived from hypoglycemic activity of NOB. Thus, transdermal administration of NOB using CAGE was shown to be feasible, which indicates that the use of CAGE may be adapted for other flavonoids that also show both low water solubility and low permeability.
Collapse
Affiliation(s)
- Tadashi Hattori
- Laboratory of Pharmaceutical Engineering and Drug Delivery Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Tagawa
- Laboratory of Pharmaceutical Engineering and Drug Delivery Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Makoto Inai
- Laboratory of Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Toshiyuki Kan
- Laboratory of Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shin-Ichiro Kimura
- Laboratory of Pharmaceutical Engineering and Drug Delivery Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shigeru Itai
- Laboratory of Pharmaceutical Engineering and Drug Delivery Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Yasunori Iwao
- Laboratory of Pharmaceutical Engineering and Drug Delivery Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
36
|
Tong Y, Zhang Q, Shi W, Wang J. Mechanisms of oral absorption improvement for insoluble drugs by the combination of phospholipid complex and SNEDDS. Drug Deliv 2019; 26:1155-1166. [PMID: 31736393 PMCID: PMC6882455 DOI: 10.1080/10717544.2019.1686086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
In the present study, a water insoluble drug named silybin was encapsulated into self-nanoemulsifying drug delivery system (SNEDDS) following the preparation of silybin-phospholipid complex (SB-PC), then several methods were carried out to characterize SB-PC-SNEDDS and elucidate its mechanisms to improve the oral absorption of SB. Using a dynamic in vitro digestion model, the lipolysis of SB-PC-SNEDDS was proved to be mainly related with the property of its lipid excipients. SB-PC-SNEDDS could significantly enhance the transport of SB across Caco-2 cells, which may partly attribute to the increased cell membrane fluidity and the loss of tight junction according to the analysis results of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and tight junction protein (ZO-1). The result of in situ perfusion showed the intestinal absorption of SB from high to low was SB-PC-SNEDDS, SB-PC, and SB. The extent of lymphatic transport of SB-PC and SB-PC-SNEDDS via the mesenteric duct was 12.2 and 22.7 folds of that of SB, respectively. In the lymph duct cannulated rats, the relative bioavailability (Fr) of SB-PC and SB-PC-SEDDS compared to SB was 1265.9% and 1802.5%, respectively. All the above results provided mechanistic support for oral absorption improvement of water insoluble drugs by the combination of PC and SNEDDS.
Collapse
Affiliation(s)
- Yingpeng Tong
- School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, China
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
| | - Qin Zhang
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
| | - Wen Shi
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
| | - Jianxin Wang
- School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, China
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|