1
|
Lu Y, Abdullah M, Healy LR, Tambini MD. Valosin-containing Protein is Cargo in Amyloid Precursor Protein Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633888. [PMID: 39896452 PMCID: PMC11785032 DOI: 10.1101/2025.01.20.633888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The Amyloid Precursor Protein (APP), a genetic cause of Alzheimer's disease (AD), is a type-I transmembrane protein that is metabolized by proteolysis in the endolysomal system. APP and its metabolites are secreted by cells in extracellular vesicles (EVs). To study the function of APP-containing EVs, we isolated App-EVs from rat primary neuronal conditioned media and proteomic analysis identified the Valosin-containing protein (Vcp) as molecular cargo. Pharmacological modulation of Vcp activity was found to alter App processing and global EV secretion in rat primary neurons. AD-associated knock-in App mutations were found to alter the abundance of App-EVs and the trafficking of App metabolites within App-EVs, in a manner related to the epitopes generated by the nonamyloidogenic processing of App. The presence of Vcp suggests a role for App-EVs in the clearance of protein aggregates.
Collapse
|
2
|
Ding R, Edwards TC, Goswami P, Wilson DJ, Dreis CD, Ye Y, Geraghty RJ, Chen L. p97 Inhibitors Possessing Antiviral Activity Against SARS-CoV-2 and Low Cytotoxicity. Pharmaceuticals (Basel) 2025; 18:131. [PMID: 39861192 PMCID: PMC11768289 DOI: 10.3390/ph18010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background: p97 (also known as valosin-containing protein, VCP) is a member of the AAA+ ATPase family and is intimately associated with protein quality control and homeostasis regulation. Therefore, pharmaceutical inhibition of p97 has been actively pursued as an anticancer strategy. Recently, p97 has emerged as an important pro-viral host factor and p97 inhibitors are being evaluated as potential antiviral agents. Methods: We designed and synthesized novel p97 inhibitors based on the rearrangement of the central fused ring of our previously reported p97 inhibitors. These compounds were tested for inhibition of p97, cytotoxicity, and antiviral activity against SARS-CoV-2. Molecular docking was also performed on selected inhibitors to shed light on their binding modes. Results: Among these new p97 inhibitors, two compounds possess enhanced anti-p97 activity over their parent compounds. More significantly, these two inhibitors exhibit strong antiviral activity against SARS-CoV-2 at doses with no significant cytotoxicity. Molecular docking reveals no major change of the binding mode relative to that of their parent compounds, further supporting our design strategy. Conclusions: These compounds are structurally novel p97 inhibitors that display low toxicity and possess promising antiviral activity against SARS-CoV-2 and potentially other viruses. Further structural exploration is therefore justified and improved analogs will serve as useful tools for studying p97 as a promising host antiviral target.
Collapse
Affiliation(s)
- Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Tiffany C. Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Prithwish Goswami
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Daniel J. Wilson
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Christine D. Dreis
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA (P.G.); (C.D.D.)
| |
Collapse
|
3
|
Michon M, Müller-Schiffmann A, Lingappa AF, Yu SF, Du L, Deiter F, Broce S, Mallesh S, Crabtree J, Lingappa UF, Macieik A, Müller L, Ostermann PN, Andrée M, Adams O, Schaal H, Hogan RJ, Tripp RA, Appaiah U, Anand SK, Campi TW, Ford MJ, Reed JC, Lin J, Akintunde O, Copeland K, Nichols C, Petrouski E, Moreira AR, Jiang IT, DeYarman N, Brown I, Lau S, Segal I, Goldsmith D, Hong S, Asundi V, Briggs EM, Phyo NS, Froehlich M, Onisko B, Matlack K, Dey D, Lingappa JR, Prasad MD, Kitaygorodskyy A, Solas D, Boushey H, Greenland J, Pillai S, Lo MK, Montgomery JM, Spiropoulou CF, Korth C, Selvarajah S, Paulvannan K, Lingappa VR. A Pan-Respiratory Antiviral Chemotype Targeting a Host Multi-Protein Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.01.17.426875. [PMID: 34931190 PMCID: PMC8687465 DOI: 10.1101/2021.01.17.426875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious virus in multiple cell culture models for all six families of viruses causing most respiratory disease in humans. In animals this chemotype has been demonstrated efficacious for Porcine Epidemic Diarrhea Virus (a coronavirus) and Respiratory Syncytial Virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral lifecycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Collapse
Affiliation(s)
- Maya Michon
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | - Li Du
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fred Deiter
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sean Broce
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Jackelyn Crabtree
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | - Lisa Müller
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Marcel Andrée
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Robert J. Hogan
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | - Ralph A. Tripp
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | | | | | - Jonathan C. Reed
- Dept. of Global Health, University of Washington, Seattle, WA, USA
| | - Jim Lin
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ian Brown
- Prosetta Biosciences, San Francisco, CA, USA
| | - Sharon Lau
- Prosetta Biosciences, San Francisco, CA, USA
| | - Ilana Segal
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Shi Hong
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - John Greenland
- Veterans Administration Medical Center, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Satish Pillai
- Vitalant Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Carsten Korth
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Vishwanath R. Lingappa
- Prosetta Biosciences, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
LaPorte M, Alverez C, Chatterley A, Kovaliov M, Carder EJ, Houghton MJ, Lim C, Miller ER, Samankumara LP, Liang M, Kerrigan K, Yue Z, Li S, Tomaino F, Wang F, Green N, Stott GM, Srivastava A, Chou TF, Wipf P, Huryn DM. Optimization of 1,2,4-Triazole-Based p97 Inhibitors for the Treatment of Cancer. ACS Med Chem Lett 2023; 14:977-985. [PMID: 37465292 PMCID: PMC10351062 DOI: 10.1021/acsmedchemlett.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
The AAA+ ATPase p97 (valosin-containing protein, VCP) is a master regulator of protein homeostasis and therefore represents a novel target for cancer therapy. Starting from a known allosteric inhibitor, NMS-873, we systematically optimized this scaffold, in particular, by applying a benzene-to-acetylene isosteric replacement strategy, specific incorporation of F, and eutomer/distomer identification, which led to compounds that exhibited nanomolar biochemical and cell-based potency. In cellular pharmacodynamic assays, robust effects on biomarkers of p97 inhibition and apoptosis, including increased levels of ubiquitinated proteins, CHOP and cleaved caspase 3, were observed. Compound (R)-29 (UPCDC-30766) represents the most potent allosteric inhibitor of p97 reported to date.
Collapse
Affiliation(s)
- Matthew
G. LaPorte
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Celeste Alverez
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Chatterley
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marina Kovaliov
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Evan J. Carder
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Houghton
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chaemin Lim
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Eric R. Miller
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lalith P. Samankumara
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kaylan Kerrigan
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhizhou Yue
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shan Li
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Francesca Tomaino
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Feng Wang
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Neal Green
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Gordon M. Stott
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Apurva Srivastava
- Leidos
Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Tsui-Fen Chou
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Peter Wipf
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- University
of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
6
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|
7
|
Wang F, Li S, Cheng KW, Rosencrans WM, Chou TF. The p97 Inhibitor UPCDC-30245 Blocks Endo-Lysosomal Degradation. Pharmaceuticals (Basel) 2022; 15:ph15020204. [PMID: 35215314 PMCID: PMC8880557 DOI: 10.3390/ph15020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The diverse modes of action of small molecule inhibitors provide versatile tools to investigate basic biology and develop therapeutics. However, it remains a challenging task to evaluate their exact mechanisms of action. We identified two classes of inhibitors for the p97 ATPase: ATP competitive and allosteric. We showed that the allosteric p97 inhibitor, UPCDC-30245, does not affect two well-known cellular functions of p97, endoplasmic-reticulum-associated protein degradation and the unfolded protein response pathway; instead, it strongly increases the lipidated form of microtubule-associated proteins 1A/1B light chain 3B (LC3-II), suggesting an alteration of autophagic pathways. To evaluate the molecular mechanism, we performed proteomic analysis of UPCDC-30245 treated cells. Our results revealed that UPCDC-30245 blocks endo-lysosomal degradation by inhibiting the formation of early endosome and reducing the acidity of the lysosome, an effect not observed with the potent p97 inhibitor CB-5083. This unique effect allows us to demonstrate UPCDC-30245 exhibits antiviral effects against coronavirus by blocking viral entry.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - William M. Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (K.-W.C.); (W.M.R.)
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (F.W.); (T.-F.C.); Tel.: +1 626-395-6772 (T.-F.C.)
| |
Collapse
|
8
|
Hu Y, Ma C, Wang J. Cytopathic Effect Assay and Plaque Assay to Evaluate in vitro Activity of Antiviral Compounds Against Human Coronaviruses 229E, OC43, and NL63. Bio Protoc 2022; 12:e4314. [PMID: 35284599 PMCID: PMC8855088 DOI: 10.21769/bioprotoc.4314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 10/03/2023] Open
Abstract
Coronaviruses are important human pathogens, among which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. To combat the SARS-CoV-2 pandemic, there is a pressing need for antivirals, especially broad-spectrum antivirals that are active against all seven human coronaviruses (HCoVs). For this reason, we are interested in developing antiviral assays to expedite the drug discovery process. Here, we provide the detailed protocol for the cytopathic effect (CPE) assay and the plaque assay for human coronaviruses 229E (HCoV-229E), HCoV-OC43, and HCoV-NL63, to identify novel antivirals against HCoVs. Neutral red was used in the CPE assay, as it is relatively inexpensive and more sensitive than other reagents. Multiple parameters including multiplicity of infection, incubation time and temperature, and staining conditions have been optimized for CPE and plaque assays for HCoV-229E in MRC-5, Huh-7, and RD cell lines; HCoV-OC43 in RD, MRC-5, and BSC-1 cell lines, and HCoV-NL63 in Vero E6, Huh-7, MRC-5, and RD cell lines. Both CPE and plaque assays have been calibrated with the positive control compounds remdesivir and GC-376. Both CPE and plaque assays have high sensitivity, excellent reproducibility, and are cost-effective. The protocols described herein can be used as surrogate assays in the biosafety level 2 facility to identify entry inhibitors and protease inhibitors for SARS-CoV-2, as HCoV-NL63 also uses ACE2 as the receptor for cell entry, and the main proteases of HCoV-OC43 and SARS-CoV-2 are highly conserved. In addition, these assays can also be used as secondary assays to profile the broad-spectrum antiviral activity of existing SARS-CoV-2 drug candidates.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect 2021; 10:317-330. [PMID: 33560940 PMCID: PMC7919907 DOI: 10.1080/22221751.2021.1888660] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that lacks effective therapeutic interventions. SARS-CoV-2 infects ACE2-expressing cells and gains cell entry through either direct plasma membrane fusion or endocytosis. Recent studies have shown that in addition to ACE2, heparan sulfate proteoglycans (HSPGs) also play an important role in SARS-CoV-2 cell attachment by serving as an attachment factor. Binding of viral spike protein to HSPGs leads to the enrichment of local concentration for the subsequent specific binding with ACE2. We therefore hypothesize that blocking the interactions between viral spike protein and the HSPGs will lead to inhibition of viral replication. In this study, we report our findings of the broad-spectrum antiviral activity and the mechanism of action of lactoferrin (LF) against multiple common human coronaviruses as well as SARS-CoV-2. Our study has shown that LF has broad-spectrum antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E in cell culture, and bovine lactoferrin (BLF) is more potent than human lactoferrin. Mechanistic studies revealed that BLF binds to HSPGs, thereby blocking viral attachment to the host cell. The antiviral activity of BLF can be antagonized by the HSPG mimetic heparin. Combination therapy experiment showed that the antiviral activity of LF is synergistic with remdesivir in cell culture. Molecular modelling suggests that the N-terminal positively charged region in BLF (residues 17-41) confers the binding to HSPGs. Overall, LF appears to be a promising drug candidate for COVID-19 that warrants further investigation.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Cheng KW, Li S, Wang F, Ruiz-Lopez NM, Houerbi N, Chou TF. Impacts of p97 on Proteome Changes in Human Cells during Coronaviral Replication. Cells 2021; 10:cells10112953. [PMID: 34831176 PMCID: PMC8616207 DOI: 10.3390/cells10112953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human coronavirus (HCoV) similar to other viruses rely on host cell machinery for both replication and to spread. The p97/VCP ATPase is associated with diverse pathways that may favor HCoV replication. In this study, we assessed the role of p97 and associated host responses in human lung cell line H1299 after HCoV-229E or HCoV-OC43 infection. Inhibition of p97 function by small molecule inhibitors shows antiviral activity, particularly at early stages of the virus life cycle, during virus uncoating and viral RNA replication. Importantly, p97 activity inhibition protects human cells against HCoV-induced cytopathic effects. The p97 knockdown also inhibits viral production in infected cells. Unbiased quantitative proteomics analyses reveal that HCoV-OC43 infection resulted in proteome changes enriched in cellular senescence and DNA repair during virus replication. Further analysis of protein changes between infected cells with control and p97 shRNA identifies cell cycle pathways for both HCoV-229E and HCoV-OC43 infection. Together, our data indicate a role for the essential host protein p97 in supporting HCoV replication, suggesting that p97 is a therapeutic target to treat HCoV infection.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
- Correspondence: (K.-W.C.); (T.-F.C.); Tel.: +1-626-395-6772 (T.-F.C.)
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Nallely M. Ruiz-Lopez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (S.L.); (F.W.); (N.M.R.-L.); (N.H.)
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (K.-W.C.); (T.-F.C.); Tel.: +1-626-395-6772 (T.-F.C.)
| |
Collapse
|
11
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
12
|
Mechanistic insight into substrate processing and allosteric inhibition of human p97. Nat Struct Mol Biol 2021; 28:614-625. [PMID: 34262183 DOI: 10.1038/s41594-021-00617-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
p97 processes ubiquitinated substrates and plays a central role in cellular protein homeostasis. Here, we report a series of cryo-EM structures of the substrate-engaged human p97 complex with resolutions ranging from 2.9 to 3.8 Å that captured 'power-stroke'-like motions of both the D1 and D2 ATPase rings of p97. A key feature of these structures is the critical conformational changes of the intersubunit signaling (ISS) motifs, which tighten the binding of nucleotides and neighboring subunits and contribute to the spiral staircase conformation of the D1 and D2 rings. In addition, we determined the cryo-EM structure of human p97 in complex with NMS-873, a potent p97 inhibitor, at a resolution of 2.4 Å. The structures showed that NMS-873 binds at a cryptic groove in the D2 domain and interacts with the ISS motif, preventing its conformational change and thus blocking substrate translocation allosterically.
Collapse
|
13
|
Schindell BG, Allardice M, Lockman S, Kindrachuk J. Integrating Proteomics for Facilitating Drug Identification and Repurposing During an Emerging Virus Pandemic. ACS Infect Dis 2021; 7:1303-1316. [PMID: 33319978 DOI: 10.1021/acsinfecdis.0c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has disrupted global healthcare and economic systems throughout 2020 with no clear end in sight. While the pandemic continues to have deleterious effects across the globe, mechanisms for disrupting disease transmission have relied on behavioral controls (e.g., social distancing, masks, and hygiene) as there are currently no vaccines approved for use and limited therapeutic options. As this pandemic has demonstrated our vulnerability to newly emerging viruses, there has been strong interest in utilizing proteomics approaches to identify targets for repurposed drugs as novel therapeutic candidates that could be fast-tracked for human use. Building on a previous discussion on the combination of proteomics technologies with clinical data for combating emerging viruses, we discuss how these technologies are being employed for COVID-19 and the current state of knowledge regarding repurposed drugs in these efforts.
Collapse
Affiliation(s)
- Brayden G. Schindell
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Meagan Allardice
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Sandhini Lockman
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg R3T 2N2, Canada
- Vaccine and Infectious Disease Organization−International Vaccine Centre (VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada
| |
Collapse
|
14
|
Bouwer MF, Hamilton KE, Jonker PB, Kuiper SR, Louters LL, Looyenga BD. NMS-873 functions as a dual inhibitor of mitochondrial oxidative phosphorylation. Biochimie 2021; 185:33-42. [PMID: 33727138 DOI: 10.1016/j.biochi.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Small-molecule inhibitors of enzyme function are critical tools for the study of cell biological processes and for treatment of human disease. Identifying inhibitors with suitable specificity and selectivity for single enzymes, however, remains a challenge. In this study we describe our serendipitous discovery that NMS-873, a compound that was previously identified as a highly selective allosteric inhibitor of the ATPase valosin-containing protein (VCP/p97), rapidly induces aerobic fermentation in cultured human and mouse cells. Our further investigation uncovered an unexpected off-target effect of NMS-873 on mitochondrial oxidative phosphorylation, specifically as a dual inhibitor of Complex I and ATP synthase. This work points to the need for caution regarding the interpretation of cell survival data associated with NMS-873 treatment and indicates that cellular toxicity associated with its use may be caused by both VCP/p97-dependent and VCP/p97-independent mechanisms.
Collapse
Affiliation(s)
- Miranda F Bouwer
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Kathryn E Hamilton
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Patrick B Jonker
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Sam R Kuiper
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Larry L Louters
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Brendan D Looyenga
- Calvin University, Department of Chemistry & Biochemistry, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
15
|
Wang Y, Soto-Acosta R, Ding R, Chen L, Geraghty RJ. Anti-HCMV activity by an irreversible p97 inhibitor LC-1310. Med Chem Res 2021; 30:440-448. [PMID: 33456290 PMCID: PMC7794631 DOI: 10.1007/s00044-020-02679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
The AAA+ (ATPase associated with various cellular activities) protein p97, also called valosin-containing protein, is a hexameric ring ATPase and uses ATP hydrolysis to unfold or extract proteins from biological complexes. Many cellular processes are affected by p97 including ER-associated degradation, DNA damage response, cell signaling (NF-κB), cell cycle progression, autophagy, and others. Not surprisingly, with its role in many fundamental cellular processes, p97 function is important for the replication of many viruses. We tested irreversible p97-targeting compounds for their ability to inhibit the replication of multiple viruses compared to the known p97 inhibitors NMS-873 and CB-5083. Our results indicate that overall cellular toxicity for p97 compounds provides a challenge for antivirals targeting p97. However, we identified one compound with sub-micromolar activity against human cytomegalovirus and improved cell viability to provide evidence for the potential of irreversible p97 inhibitors as antivirals. ![]()
Collapse
Affiliation(s)
- Yan Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
- Present Address: Translational Medicine R&D Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Ruben Soto-Acosta
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rui Ding
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Liqiang Chen
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
16
|
White Spot Syndrome Virus Benefits from Endosomal Trafficking, Substantially Facilitated by a Valosin-Containing Protein, To Escape Autophagic Elimination and Propagate in the Crustacean Cherax quadricarinatus. J Virol 2020; 94:JVI.01570-20. [PMID: 32967962 DOI: 10.1128/jvi.01570-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
As the most severely lethal viral pathogen for crustaceans in both brackish water and freshwater, white spot syndrome virus (WSSV) has a mechanism of infection that remains largely unknown, which profoundly limits the control of WSSV disease. By using a hematopoietic tissue (Hpt) stem cell culture from the red claw crayfish Cherax quadricarinatus suitable for WSSV propagation in vitro, the intracellular trafficking of live WSSV, in which the acidic-pH-dependent endosomal environment was a prerequisite for WSSV fusion, was determined for the first time via live-cell imaging. When the acidic pH within the endosome was alkalized by chemicals, the intracellular WSSV virions were detained in dysfunctional endosomes, resulting in appreciable blocking of the viral infection. Furthermore, disrupted valosin-containing protein (C. quadricarinatus VCP [CqVCP]) activity resulted in considerable aggregation of endocytic WSSV virions in the disordered endosomes, which subsequently recruited autophagosomes, likely by binding to CqGABARAP via CqVCP, to eliminate the aggregated virions within the dysfunctional endosomes. Importantly, both autophagic sorting and the degradation of intracellular WSSV virions were clearly enhanced in Hpt cells with increased autophagic activity, demonstrating that autophagy played a defensive role against WSSV infection. Intriguingly, most of the endocytic WSSV virions were directed to the endosomal delivery system facilitated by CqVCP activity so that they avoided autophagy degradation and successfully delivered the viral genome into Hpt cell nuclei, which was followed by the propagation of progeny virions. These findings will benefit anti-WSSV target design against the most severe viral disease currently affecting farmed crustaceans.IMPORTANCE White spot disease is currently the most devastating viral disease in farmed crustaceans, such as shrimp and crayfish, and has resulted in a severe ecological problem for both brackish water and freshwater aquaculture areas worldwide. Efficient antiviral control of WSSV disease is still lacking due to our limited knowledge of its pathogenesis. Importantly, research on the WSSV infection mechanism is also quite meaningful for the elucidation of viral pathogenesis and virus-host coevolution, as WSSV is one of the largest animal viruses, in terms of genome size, that infects only crustaceans. Here, we found that most of the endocytic WSSV virions were directed to the endosomal delivery system, strongly facilitated by CqVCP, so that they avoided autophagic degradation and successfully delivered the viral genome into the Hpt cell nucleus for propagation. Our data point to a virus-sorting model that might also explain the escape of other enveloped DNA viruses.
Collapse
|
17
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
18
|
Wu X, Spence JS, Das T, Yuan X, Chen C, Zhang Y, Li Y, Sun Y, Chandran K, Hang HC, Peng T. Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chem Biol 2020; 27:571-585.e6. [PMID: 32243810 PMCID: PMC7194980 DOI: 10.1016/j.chembiol.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a key interferon effector that broadly prevents infection by diverse viruses. However, the cellular factors that control IFITM3 homeostasis and antiviral activity have not been fully elucidated. Using site-specific photo-crosslinking and quantitative proteomic analysis, here we present the identification and functional characterization of VCP/p97 AAA-ATPase as a primary interaction partner of IFITM3. We show that IFITM3 ubiquitination at lysine 24 is crucial for VCP binding, trafficking, turnover, and engagement with incoming virus particles. Consistently, pharmacological inhibition of VCP/p97 ATPase activity leads to defective IFITM3 lysosomal sorting, turnover, and co-trafficking with virus particles. Our results showcase the utility of site-specific protein photo-crosslinking in mammalian cells and reveal VCP/p97 as a key cellular factor involved in IFITM3 trafficking and homeostasis. Photo-crosslinking proteomics identify VCP/p97 as an IFITM3-interacting protein Ubiquitination of IFITM3 is crucial for interaction with VCP Lysine 24 ubiquitination regulates IFITM3 trafficking and turnover Depletion or inhibition of VCP leads to delayed turnover and accumulation of IFITM3
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Xiaoqiu Yuan
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yumeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
19
|
Zhang J, Hu Y, Wu N, Wang J. Discovery of Influenza Polymerase PA-PB1 Interaction Inhibitors Using an In Vitro Split-Luciferase Complementation-Based Assay. ACS Chem Biol 2020; 15:74-82. [PMID: 31714745 DOI: 10.1021/acschembio.9b00552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The limited therapeutic options and increasing drug-resistance call for next-generation influenza antivirals. Due to the essential function in viral replication and high sequence conservation among influenza viruses, influenza polymerase PA-PB1 protein-protein interaction becomes an attractive drug target. Here, we developed an in vitro split luciferase complementation-based assay to speed up screening of PA-PB1 interaction inhibitors. By screening 10,000 compounds, we identified two PA-PB1 interaction inhibitors, R160792 and R151785, with potent and broad-spectrum antiviral activity against a panel of influenza A and B viruses, including amantadine-, oseltamivir-, or dual resistant strains. Further mechanistic study reveals that R151785 inhibits PA nuclear localization, reduces the levels of viral RNAs and proteins, and inhibits viral replication at the intermediate stage, all of which are in line with its antiviral mechanism of action. Overall, we developed a robust high throughput-screening assay for screening broad-spectrum influenza antivirals targeting PA-PB1 interaction and identified R151785 as a promising antiviral drug candidate.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nan Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Huryn DM, Kornfilt DJP, Wipf P. p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections. J Med Chem 2019; 63:1892-1907. [PMID: 31550150 DOI: 10.1021/acs.jmedchem.9b01318] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The AAA+ ATPase, p97, also referred to as VCP, plays an essential role in cellular homeostasis by regulating endoplasmic reticulum-associated degradation (ERAD), mitochondrial-associated degradation (MAD), chromatin-associated degradation, autophagy, and endosomal trafficking. Mutations in p97 have been linked to a number of neurodegenerative diseases, and overexpression of wild type p97 is observed in numerous cancers. Furthermore, p97 activity has been shown to be essential for the replication of certain viruses, including poliovirus, herpes simplex virus (HSV), cytomegalovirus (CMV), and influenza. Taken together, these observations highlight the potential for targeting p97 as a therapeutic approach in neurodegeneration, cancer, and certain infectious diseases. This Perspective reviews recent advances in the discovery of small molecule inhibitors of p97, their optimization and characterization, and therapeutic potential.
Collapse
|