1
|
Wu H, Lu X, Hu Y, Baatarbolat J, Zhang Z, Liang Y, Zhang Y, Liu Y, Lv H, Jin X. Biomimic Nanodrugs Overcome Tumor Immunosuppressive Microenvironment to Enhance Cuproptosis/Chemodynamic-Induced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411122. [PMID: 39665263 PMCID: PMC11791997 DOI: 10.1002/advs.202411122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and disrupt intracellular Cu homeostasis. Extra intracellular Cu induces cuproptosis and chemodynamic therapy (CDT), which further cascades immunogenic cell death (ICD) and activates antitumor immune responses. However, the tumor immunosuppressive microenvironment (TIM) attenuates the efficiency of the immune response. Herein, a biomimic nanodrug (ECNM) is fabricated, of which ES, Cu2+ and NLG919 (an IDO1 inhibitor) are integrated via a self-assembly process and subsequently coated with 4T1 cell membrane. ECNM can overcome the typical drawbacks of ES, ameliorating the stability and half-life of ES by membrane-coating and enhancing its tumor accumulation and internalization via homotypic targeting. It is worth mentioning that, the addition of NLG919 is also beneficial to the system circulation stability of ES and reduces the non-specific ES release. After internalization, ECNM dissociates via the glutathione-responsive process and exhibits comprehensive antitumor capabilities, including cuproptosis, CDT and TIM reversing, thereby eliciting ICD and optimizing the antitumor immune response. Furthermore, ECNM not only accelerates tumor regression but also gains a strong abscopal effect and displays the potential of tumor vaccination. Overall, ECNM can activate antitumor immunity via cuproptosis and CDT, together with TIM reversing, for cancer treatment.
Collapse
Affiliation(s)
- Hangyi Wu
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Xiaoyu Lu
- Phase I clinical trial centerThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouJiangsu215000China
| | - Yuhan Hu
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - J. Baatarbolat
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Zhihao Zhang
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Yiping Liang
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
- Phase I clinical trial centerThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouJiangsu215000China
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| | - Youwen Zhang
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| | - Ye Liu
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| | - Huixia Lv
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Xin Jin
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| |
Collapse
|
2
|
Zhang D, Song J, Jing Z, Qin H, Wu Y, Zhou J, Zang X. Stimulus Responsive Nanocarrier for Enhanced Antitumor Responses Against Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:13339-13355. [PMID: 39679249 PMCID: PMC11646471 DOI: 10.2147/ijn.s486465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a serious global health concern, accounting for about 90% of all liver cancer instances. Surgical treatment is a fundamental aspect of HCC management; however, the challenge of postoperative recurrence significantly impacts mortality rates. Methods We have developed a pH and reactive oxygen species (ROS) dual stimulus-responsive drug delivery system (PN@GPB-PEG NPs) loaded with chemotherapeutic paclitaxel (PTX) and indoleamine 2.3-dioxygenase (IDO) inhibitor NLG919, for HCC chemoimmunotherapy. The physiochemical properties, such as particle size, zeta potential, morphology, and encapsulation efficiency, were characterized. Furthermore, we investigated in vitro cytotoxicity, cellular uptake and immunogenic cell death in tumor cells treated with our nanoparticles. In vivo biodistribution, antitumor effects and immune responses were assessed in an HCC mice model. Results PN@GPB-PEG NPs display pH-responsive properties with improved targeting abilities toward tumors and improved uptake by HCC cells. Upon exposure to oxygen peroxide (H2O2), the sophisticated design allows for rapid release of therapeutic agents. In this process, PTX induces immunogenic cell death (ICD), which activates the immune system to generate an antitumor response. Simultaneously, NLG919 works to inhibit IDO, mitigating the immunosuppressive environment. This combination strategy leverages the advantages of both chemotherapy and immunotherapy, resulting in a powerful synergistic antitumor effect. In a mouse model of HCC, our nanoparticles effectively inhibited the growth of primary and recurrent tumors. Conclusion These encouraging results highlight the potential of our nanocarrier system as an innovative therapeutic approach to address HCC primary tumor and postsurgical recurrence, providing hope for enhanced patient outcomes.
Collapse
Affiliation(s)
- Deteng Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, People’s Republic of China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Jinxiao Song
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Zhenghui Jing
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Huan Qin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - You Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, People’s Republic of China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Xinlong Zang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, People’s Republic of China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
3
|
Kasprzak A, Żuchowska A, Sakurai H. Complexation by γ-cyclodextrin as a way of improving anticancer potential of sumanene. Sci Rep 2024; 14:27158. [PMID: 39511291 PMCID: PMC11543856 DOI: 10.1038/s41598-024-78110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Biological applications of sumanene buckybowl molecule have been widely discussed over the years yet remain still unexplored experimentally. On the other hand, creating cyclodextrin-containing supramolecular assemblies was demonstrated to be a powerful tool in terms of designing effective systems for medicinal chemistry purposes. Here, we show that sumanene molecule exclusively forms 1:1 host-guest complexes with γ-cyclodextrin (γCD) or (2-hydroxypropyl)-γ-cyclodextrin (HP-γCD), as revealed by extensive spectroscopic studies supported with density functional theory (DFT) computations. Based on our preliminary biological studies, we discovered that the formation of such complexes resulted in the improvement of anticancer properties of sumanene, expressed by high cell viabilities in vitro of healthy human mammary fibroblasts (HMF) together with low viabilities of human breast adenocarcinoma cells (MDA-MB-231). Improved pharmacokinetic (ADME-Tox) properties for sumanene@γCD and sumanene@HP-γCD complexes in comparison to native sumanene were also supported by in sillico modeling studies. This work provides the method how to focus the cytotoxic action of sumanene toward cancer cells using supramolecular assembly strategy, paving the way to the further exploration of biological properties of sumanene-containing supramolecular systems with bioactive features and applications of this buckybowl in general.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, Warsaw, 00-664, Poland.
| | - Agnieszka Żuchowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, Warsaw, 00-664, Poland
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, 565-0871, Osaka, Japan
| |
Collapse
|
4
|
Hu W, Ye B, Yu G, Yang H, Wu H, Ding Y, Huang F, Wang W, Mao Z. Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305382. [PMID: 38493499 PMCID: PMC11132052 DOI: 10.1002/advs.202305382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by β-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Hao Wu
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Feihe Huang
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
- Zhejiang‐Israel Joint Laboratory of Self‐Assembling Functional MaterialsZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouZhejiang311215China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityResearch Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityClinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang ProvinceHangzhouZhejiang310009China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic DiseaseZhejiang UniversityHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310009China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- The Second Affiliated Hospital of Zhejiang UniversityKey Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
5
|
Badiee P, Maritz MF, Dehghankelishadi P, Dmochowska N, Thierry B. Hydrophobic ion pairing and microfluidic nanoprecipitation enable efficient nanoformulation of a small molecule indolamine 2, 3-dioxygenase inhibitor immunotherapeutic. Bioeng Transl Med 2024; 9:e10599. [PMID: 38193128 PMCID: PMC10771570 DOI: 10.1002/btm2.10599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 01/10/2024] Open
Abstract
Blockade of programmed cell death-1 (PD-1) is a transformative immunotherapy. However, only a fraction of patients benefit, and there is a critical need for broad-spectrum checkpoint inhibition approaches that both enhance the recruitment of cytotoxic immune cells in cold tumors and target resistance pathways. Indoleamine 2, 3-dioxygenase (IDO) small molecule inhibitors are promising but suboptimal tumor bioavailability and dose-limiting toxicity have limited therapeutic benefits in clinical trials. This study reports on a nanoformulation of the IDO inhibitor navoximod within polymeric nanoparticles prepared using a high-throughput microfluidic mixing device. Hydrophobic ion pairing addresses the challenging physicochemical properties of navoximod, yielding remarkably high loading (>10%). The nanoformulation efficiently inhibits IDO and, in synergy with PD-1 antibodies improves the anti-cancer cytotoxicity of T-cells, in vitro and in vivo. This study provides new insight into the IDO and PD-1 inhibitors synergy and validates hydrophobic ion pairing as a simple and clinically scalable formulation approach.
Collapse
Affiliation(s)
- Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio‐Nano Science and TechnologyUniversity of South AustraliaAdelaideAustralia
- UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Michelle F. Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio‐Nano Science and TechnologyUniversity of South AustraliaAdelaideAustralia
| | - Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio‐Nano Science and TechnologyUniversity of South AustraliaAdelaideAustralia
- UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio‐Nano Science and TechnologyUniversity of South AustraliaAdelaideAustralia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio‐Nano Science and TechnologyUniversity of South AustraliaAdelaideAustralia
| |
Collapse
|
6
|
Kwiatkowska I, Hermanowicz JM, Czarnomysy R, Surażyński A, Kowalczuk K, Kałafut J, Przybyszewska-Podstawka A, Bielawski K, Rivero-Müller A, Mojzych M, Pawlak D. Assessment of an Anticancer Effect of the Simultaneous Administration of MM-129 and Indoximod in the Colorectal Cancer Model. Cancers (Basel) 2023; 16:122. [PMID: 38201550 PMCID: PMC10778160 DOI: 10.3390/cancers16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: The purpose of the given study was to examine the antitumor activity of the simultaneous administration of MM-129, a 1,2,4-triazine derivative, and indoximod (IND), the kynurenine pathway inhibitor, toward colon cancer. (2) Methods: The efficiency of the co-administration of the studied compounds was assessed in xenografted zebrafish embryos. Then, the effects of the combined administration of compounds on cellular processes such as cell viability, apoptosis, and intracellular signaling pathways were evaluated. In vitro studies were performed using two colorectal cancer cell lines, namely, DLD-1 and HT-29. (3) Results: The results indicated that the simultaneous application of MM-129 and indoximod induced a stronger inhibition of tumor growth in zebrafish xenografts. The combination of these compounds intensified the process of apoptosis by lowering the mitochondrial potential, enhancing the externalization of phosphatidylserine (PS) and activation of caspases. Additionally, the expression of protein kinase B (AKT) and indoleamine 2,3-dioxygenase-(1IDO1) was disrupted under the applied compound combination. (4) Conclusions: Simultaneous targeting of ongoing cell signaling that promotes tumor progression, along with inhibition of the kynurenine pathway enzyme IDO1, results in the enhancement of the antitumor effect of the tested compounds against the colon cancer cells.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Mariusz Mojzych
- Faculty of Health Science, Collegium Medicum, The Mazovian Academy in Plock, Plac Dabrowskiego 2, 09-402 Plock, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
7
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
8
|
Wei X, Yu CY, Wei H. Application of Cyclodextrin for Cancer Immunotherapy. Molecules 2023; 28:5610. [PMID: 37513483 PMCID: PMC10384645 DOI: 10.3390/molecules28145610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor immunotherapy, compared with other treatment strategies, has the notable advantage of a long-term therapeutic effect for preventing metastasis and the recurrence of tumors, thus holding great potential for the future of advanced tumor therapy. However, due to the poor water solubility of immune modulators and immune escape properties of tumor cells, the treatment efficiency of immunotherapy is usually significantly reduced. Cyclodextrin (CD) has been repeatedly highlighted to be probably one of the most investigated building units for cancer therapy due to its elegant integration of an internal hydrophobic hollow cavity and an external hydrophilic outer surface. The application of CD for immunotherapy provides new opportunities for overcoming the aforementioned obstacles. However, there are few published reviews, to our knowledge, summarizing the use of CD for cancer immunotherapy. For this purpose, this paper provides a comprehensive summary on the application of CD for immunotherapy with an emphasis on the role, function, and reported strategies of CD in mediating immunotherapy. This review summarizes the research progress made in using CD for tumor immunotherapy, which will facilitate the generation of various CD-based immunotherapeutic delivery systems with superior anticancer efficacy.
Collapse
Affiliation(s)
- Xiaojie Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Li J, Cao Y, Zhang X, An M, Zhang J, Liu Y. Simultaneous assaying of NLG919, tryptophan and kynurenine by ultrahigh performance LC-MS in pharmacokinetics and biodistribution studies. Bioanalysis 2023; 15:315-330. [PMID: 37083471 DOI: 10.4155/bio-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Indocyanine2,3-dioxygenase (IDO) is an enzyme that can catalyze the metabolism of tryptophan (Trp) into kynurenine (Kyn), thus inhibiting the tumor immune microenvironment. Method: Based on its inhibitor, NLG919(NLG), the authors developed a new immunomodulatory polymer micelle and established and verified an ultrahigh performance liquid chromatography-mass spectrometry method for the simultaneous determination of NLG, Trp and Kyn in mouse tumors through the ratio determination of Trp/Kyn tissue distribution and pharmacokinetics. The linear range of the method was 0.001-10 μg/ml. Results: Compared with NLG solution, the immunomodulatory polymeric drug-loaded micelles based on polystyrene-arginine showed higher Trp/Kyn ratio, more tumor aggregation and good pharmacokinetics. Conclusion: This method has been successfully applied to the simultaneous determination of Trp/Kyn and NLG in tumor tissues of mice.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| |
Collapse
|
10
|
Ramezanpour A, Ansari L, Rahimkhoei V, Sharifi S, Bigham A, Lighvan ZM, Rezaie J, Szafert S, Mahdavinia G, Akbari A, Jabbari E. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
An Updated Overview of Cyclodextrin-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081748. [PMID: 36015374 PMCID: PMC9412332 DOI: 10.3390/pharmaceutics14081748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/18/2022] Open
Abstract
Encompassing a group of complex and heterogeneous diseases, cancer continues to be a challenge for patients and healthcare systems worldwide. Thus, it is of vital importance to develop advanced treatment strategies that could reduce the trends of cancer-associated morbidity and mortality rates. Scientists have focused on creating performant delivery vehicles for anti-cancer agents. Among the possible materials, cyclodextrins (CDs) attracted increasing interest over the past few years, leading to the emergence of promising anti-tumor nanomedicines. Tackling their advantageous chemical structure, ease of modification, natural origin, biocompatibility, low immunogenicity, and commercial availability, researchers investigated CD-based therapeutical formulations against many types of cancer. In this respect, in this paper, we briefly present the properties of interest of CDs for designing performant nanocarriers, further reviewing some of the most recent potential applications of CD-based delivery systems in cancer management.
Collapse
|
12
|
Păduraru DN, Niculescu AG, Bolocan A, Andronic O, Grumezescu AM, Bîrlă R. An Updated Overview of Cyclodextrin-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022. [DOI: https://doi.org/10.3390/pharmaceutics14081748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Encompassing a group of complex and heterogeneous diseases, cancer continues to be a challenge for patients and healthcare systems worldwide. Thus, it is of vital importance to develop advanced treatment strategies that could reduce the trends of cancer-associated morbidity and mortality rates. Scientists have focused on creating performant delivery vehicles for anti-cancer agents. Among the possible materials, cyclodextrins (CDs) attracted increasing interest over the past few years, leading to the emergence of promising anti-tumor nanomedicines. Tackling their advantageous chemical structure, ease of modification, natural origin, biocompatibility, low immunogenicity, and commercial availability, researchers investigated CD-based therapeutical formulations against many types of cancer. In this respect, in this paper, we briefly present the properties of interest of CDs for designing performant nanocarriers, further reviewing some of the most recent potential applications of CD-based delivery systems in cancer management.
Collapse
|
13
|
Ferreira L, Campos J, Veiga F, Cardoso C, Cláudia Paiva-Santos A. Cyclodextrin-based delivery systems in parenteral formulations: a critical update review. Eur J Pharm Biopharm 2022; 178:35-52. [PMID: 35868490 DOI: 10.1016/j.ejpb.2022.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/17/2022] [Indexed: 11/04/2022]
Abstract
Parenteral formulations are indispensable in clinical practice and often are the only option to administer drugs that cannot be administrated through other routes, such as proteins and certain anticancer drugs - which are indispensable to treat some of the most prevailing chronic diseases worldwide (like diabetes and cancer). Additionally, parenteral formulations play a relevant role in emergency care since they are the only ones that provide an immediate action of the drug after its administration. However, the development of parenteral formulations is a complex task owing to the specific quality and safety requirements set for these preparations and the intrinsic properties of the drugs. Amongst all the strategies that can be useful in the development of parenteral formulations, the formation of water-soluble host-guest inclusion complexes with cyclodextrins (CDs) has proven to be one of the most advantageous. CDs are multifunctional pharmaceutical excipients able to form water-soluble host-guest inclusion complexes with a wide variety of molecules, particularly drugs, and thus improve their apparent water-solubility, chemical stability, and bioavailability, to make them suitable for parenteral administration. Besides, CDs can be employed as building blocks of more complex injectable drug delivery systems with enhanced characteristics, such as nanoparticles and supramolecular hydrogels, that has been found particularly beneficial for the delivery of anticancer drugs. However, only a few CDs are considered safe when parenterally administered, and some of these types are already approved to be used in parenteral dosage forms. Therefore, the application of CDs in the development of parenteral formulations has been a more common practice in the last few years, due to their significant worldwide acceptance by the health authorities, promoting the development of safer and more efficient injectable drug delivery systems.
Collapse
Affiliation(s)
- Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Haley RM, Gottardi R, Langer R, Mitchell MJ. Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Deliv Transl Res 2021; 10:661-677. [PMID: 32077052 DOI: 10.1007/s13346-020-00724-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene therapy is a powerful tool against genetic disorders and cancer, targeting the source of the disease rather than just treating the symptoms. While much of the initial success of gene delivery relied on viral vectors, non-viral vectors are emerging as promising gene delivery systems for efficacious treatment with decreased toxicity concerns. However, the delivery of genetic material is still challenging, and there is a need for vectors with enhanced targeting, reduced toxicity, and controlled release. In this article, we highlight current work in gene therapy which utilizes the cyclic oligosaccharide molecule cyclodextrin (CD). With a number of unique abilities, such as hosting small molecule drugs, acting as a linker or modular component, reducing immunogenicity, and disrupting membranes, CD is a valuable constituent in many delivery systems. These carriers also demonstrate great promise in combination therapies, due to the ease of assembling macromolecular structures and wide variety of chemical derivatives, which allow for customizable delivery systems and co-delivery of therapeutics. The use of combination and personalized therapies can result in improved patient health-modular systems, such as those which incorporate CD, are more conducive to these therapy types. Graphical abstract.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Fondazione Ri.MED, Palermo, Italy
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Mor A, Kalaska B, Pawlak D. Kynurenine Pathway in Chronic Kidney Disease: What’s Old, What’s New, and What’s Next? Int J Tryptophan Res 2020; 13:1178646920954882. [PMID: 35210786 PMCID: PMC8862190 DOI: 10.1177/1178646920954882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Impaired kidney function and increased inflammatory process occurring in the course of Chronic Kidney Disease (CKD) contribute to the development of complex amino-acid alterations. The essential amino-acid tryptophan (TRP) undergoes extensive metabolism along several pathways, resulting in the production of many biologically active compounds. The results of many studies have shown that its metabolism via the kynurenine pathway is potently increased in the course of CKD. Metabolites of this pathway exhibit differential, sometimes opposite, roles in several biological processes. Their accumulation in the course of CKD may induce oxidative cell damage which stimulates inflammatory processes. They can also modulate the activity of numerous cellular signaling pathways through activation of the aryl hydrocarbon receptor, leading to the disruption of homeostasis of various organs. As a result, they can contribute to the development of the systemic disorders accompanying the course of chronic renal failure. This review gathers and systematizes reports concerning the knowledge connecting the kynurenine pathway metabolites to systemic disorders accompanying the development of CKD.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Huang Z, Song W, Chen X. Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy. Front Chem 2020; 8:380. [PMID: 32528926 PMCID: PMC7262496 DOI: 10.3389/fchem.2020.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Functional materials and nanostructures have been widely used for enhancing the therapeutic potency and safety of current cancer immunotherapy. While profound nanostructures have been developed to participate in the development of cancer immunotherapy, the construction of intricate nanostructures with easy fabrication and functionalization properties to satisfy the diversified requirements in cancer immunotherapy are highly required. Hierarchical self-assembly using supramolecular interactions to manufacture organized architectures at multiple length scales represents an interesting and promising avenue for sophisticated nanostructure construction. In this mini-review, we will outline the recent progress made in the development of supramolecular self-assembled nanostructures for cancer immunotherapy, with special focus on the supramolecular interactions including supramolecular peptide assembly, supramolecular DNA assembly, lipid hydrophobic assembly, host-guest assembly, and biomolecular recognition assembly.
Collapse
Affiliation(s)
- Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| |
Collapse
|
17
|
Hu Z, Zheng B, Xu J, Gao S, Lu W. An albumin-bound drug conjugate of paclitaxel and indoleamine-2,3-dioxygenase inhibitor for enhanced cancer chemo-immunotherapy. NANOTECHNOLOGY 2020; 31:295101. [PMID: 32203949 DOI: 10.1088/1361-6528/ab824d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the promising target of immunosuppressive enzyme indoleamine-2,3-dioxygenase (IDO) for cancer immunotherapy, IDO blockade monotherapy does not show significant benefit to cancer patients in the clinic. Recent research has focused on the combinatorial therapy of the IDO inhibitor and the immune checkpoint blockade or chemotherapy. Here, we synthesize a drug conjugate methyltryptophan-paclitaxel (MP) by linking the IDO inhibitor, D-1-methyltryptophan (D-1MT), to the chemotherapeutic agent, paclitaxel (PTX), through an ester bond. MP exhibits a similar tubulin-stabilizing effect to PTX. Like PTX, MP binds to human serum albumin to form albumin-bound MP nanoparticles (MP NPs) with a particle size of ∼115 nm in diameter. MP NPs significantly improve the tumor concentration of D-1MT due to the hydrolysis of MP in tumors. The codelivery of PTX and D-1MT offered by MP NPs in tumors significantly enhances the anti-tumor effect compared with the albumin-bound PTX NPs. Immune cell phenotyping reveals that MP NPs ameliorate the immune environment through increasing the number of the effector CD8+ T cells, and decreasing the population of regulatory T cells and granulocyte-like myeloid-derived suppressor cells. These results prove that the design of the twin drug from the IDO inhibitor and PTX synergizes the anti-tumor effect and shows promise in clinical translation.
Collapse
|
18
|
Clemente N, Boggio E, Gigliotti LC, Raineri D, Ferrara B, Miglio G, Argenziano M, Chiocchetti A, Cappellano G, Trotta F, Caldera F, Capucchio MT, Yagi J, Rojo MJ, Renò F, Cavalli R, Dianzani C, Dianzani U. Immunotherapy of experimental melanoma with ICOS-Fc loaded in biocompatible and biodegradable nanoparticles. J Control Release 2020; 320:112-124. [PMID: 31962094 DOI: 10.1016/j.jconrel.2020.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/18/2023]
Abstract
Inducible T-cell costimulator (ICOS) upon binding to its ligand (ICOSL) mediates adaptive immunity and antitumor response. Thus, antitumor therapies targeting the ICOS/ICOSL pathway hold great promise for cancer treatment. In this regard, ICOSL triggering by a soluble recombinant form of ICOS (ICOS-Fc) hampered adhesiveness and migration of dendritic, endothelial, and tumor cells in vitro. Furthermore, in vivo treatment with ICOS-Fc previously showed the capability to inhibit lung metastatization of ICOSL+ B16-F10 melanoma cells when injected intravenously in mice, but it failed to block the growth of established subcutaneous B16-F10 murine tumors. Thus, we asked whether passive targeting of solid tumors with ICOS-Fc-loaded biocompatible and biodegradable nanoparticles (NPs) could instead prove effectiveness in reducing tumor growth. Here, ICOS-Fc was loaded in two types of polymer nanoparticles, i.e. cross-linked β-cyclodextrin nanosponges (CDNS) and poly(lactic-co-glycolic acid) (PLGA) NPs and in vitro characterized. In vivo experiments showed that treatment of C57BL6/J mice with ICOS-Fc loaded into the two nanoformulations inhibits the growth of established subcutaneous B16-F10 tumors. This anticancer activity appears to involve both anti-angiogenic and immunoregulatory effects, as shown by decreased tumor vascularization and downmodulation of IL-10 and Foxp3, two markers of regulatory T cells (Tregs). Overall, the substantial in vivo anticancer activity of ICOS-Fc-loaded CDNS and PLGA NPs against different components of the tumor microenvironment makes these nanoformulations attractive candidates for future combination cancer therapy.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy
| | - Luca Casimiro Gigliotti
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy
| | - Davide Raineri
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Benedetta Ferrara
- Department of Scienza e Tecnologia del Farmaco, University of Torino, 10125 Torino, Italy
| | - Gianluca Miglio
- Department of Scienza e Tecnologia del Farmaco, University of Torino, 10125 Torino, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Torino, 10125 Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | | | - Junji Yagi
- Department of Microbiology and Immunology, Tokyo Women's Medical University, Tokyo 108-8639, Japan
| | - Maria Josè Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientıficas, 28040 Madrid, Spain
| | - Filippo Renò
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Torino, 10125 Torino, Italy.
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Torino, 10125 Torino, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Inter Interdisciplinary Research Center of Autoimmune Diseases, UPO, 28100 Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|