1
|
Chougule M, Kollipara S, Mondal S, Ahmed T. A critical review on approaches to generate and validate virtual population for physiologically based pharmacokinetic models: Methodologies, case studies and way forward. Eur J Clin Pharmacol 2024; 80:1903-1922. [PMID: 39377787 DOI: 10.1007/s00228-024-03763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE In silico modeling and simulation techniques such as physiologically based pharmacokinetic (PBPK) and physiologically based biopharmaceutics modeling (PBBM) have demonstrated various applications in drug discovery and development. Virtual bioequivalence leverages these computation tools to predict bioequivalence between reference and test formulations thereby demonstrating possibilities to reduce human studies. A pre-requisite for virtual bioequivalence is development of validated virtual population that depicts the same variability as that of observed in clinic. This development, validation and optimization of virtual population is a key attribute of virtual bioequivalence based on which conclusion of bioequivalence is made. METHODS Various strategies for optimization of virtual population based on appropriate considerations of physicochemical, physiological and disposition aspects are demonstrated with the help of six diverse case studies of immediate and modified release formulations. Once the virtual population is optimized to match in vivo variability, it can be used for various applications such as biowaivers, dissolution specification justification, f2 mismatch, establishing dissolution safe space, etc. In this review article, we attempted to describe various methodologies and approaches for optimization of virtual population using Gastroplus. RESULTS Strategies based on optimization of virtual population with emphasis on specific and sensitive parameters were portrayed. We have further elucidated considerations related to study design, in vivo variability, sample size for optimization of virtual population from Gastroplus perspective. CONCLUSION We believe that this review article provides a step-by-step process for virtual population optimization for interest of biopharmaceutics modeling scientists in order to ensure reliable and credible physiological models.
Collapse
Affiliation(s)
- Mahendra Chougule
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Smritilekha Mondal
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| |
Collapse
|
2
|
Bhattiprolu AK, Kollipara S, Boddu R, Ahmed T. Justification of widened dissolution specifications of an extended-release product using physiologically based biopharmaceutics modeling. Xenobiotica 2024:1-15. [PMID: 39361244 DOI: 10.1080/00498254.2024.2411980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Drug products meeting the dissolution specifications is crucial in order to ensure consistent clinical performance. However, in certain cases, wider dissolution specifications may be required based on product behaviour. While the justification of such wider specifications may be challenging from a regulatory context, approaches such as physiological-based biopharmaceutics modeling (PBBM) can be utilised for this purpose.Product DRL is a fixed-dose combination product consisting of immediate release (IR) and extended-release (ER) portions. For the ER portion, the dissolution specifications consisted of four time points, and a proposal was made to relax the specification at the 2h time point (from 50-70% to 45-67%) to reduce the batch failures at the commercial scale.To support the wider specification, a PBBM was developed and extensively validated with literature & in-house studies. Virtual bioequivalence was performed using the pivotal clinical study data.Virtual dissolution profiles for proposed wider specifications were generated using three different approaches. The incorporation of lower and upper dissolution profiles into the model indicated the absence of impact on in vivo performance thereby justifying the specifications.Regulatory acceptance of proposed specifications with PBBM indicated the significance of using modeling approaches to reduce repeated testing thereby facilitating faster approvals.
Collapse
Affiliation(s)
- Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| |
Collapse
|
3
|
Purohit V, Sagawa K, Hsu HJ, Kushner J, Dowty ME, Tse S, Lin J, Blanchard A, Mukherjee A, Le V, Chang C. Integrating Clinical Variability into PBPK Models for Virtual Bioequivalence of Single and Multiple Doses of Tofacitinib Modified-Release Dosage Form. Clin Pharmacol Ther 2024; 116:996-1004. [PMID: 38797995 DOI: 10.1002/cpt.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Tofacitinib is a potent, selective inhibitor of the Janus kinase (JAK) family of kinases with a high degree of selectivity within the human genome's set of protein kinases. Currently approved formulations for tofacitinib citrate are immediate-release (IR) tablets, modified-release (MR) tablets, and IR solution. A once daily MR microsphere formulation was developed for use in pediatric patients. Demonstration of bioequivalence (BE) between the 10 mg once daily (q.d.) MR microsphere formulation and 5 mg twice daily (b.i.d.) IR solution is needed to enable the exposure-response analyses-based bridging to support regulatory approval. To assess BE between MR microsphere and IR solution, an innovative approach was utilized with physiologically-based pharmacokinetic (PBPK) virtual BE trials (VBE) in lieu of a clinical BE trial. A PBPK model was developed to characterize the absorption of different formulations of tofacitinib using Simcyp ADAM module. VBE trials were conducted by simulating PK profiles using the verified PBPK model and integrating the clinically observed intrasubject coefficient of variation (ICV) where BE was assessed with a predetermined sample size and prespecified criteria. The VBE trials demonstrated BE between IR solution 5 mg b.i.d. and MR microsphere 10 mg q.d. after a single dose on day 1 and after multiple doses on day 5. This research presents an innovative approach that incorporates clinically observed ICV in PBPK model-based VBE trials, which could reduce unnecessary drug exposure to healthy volunteers and streamline new formulation development strategies.
Collapse
Affiliation(s)
- Vivek Purohit
- Translational Clinical Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Kazuko Sagawa
- Pharmaceutical Science, Drug Product Design, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Hao-Jui Hsu
- Pharmaceutical Science, Drug Product Design, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Joseph Kushner
- Pharmaceutical Science, Drug Product Design, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Martin E Dowty
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Susanna Tse
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Jian Lin
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Andrew Blanchard
- Pharmaceutical Science, Analytical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Arnab Mukherjee
- Translational Clinical Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Vu Le
- Global Biometrics and Data Management, New York, New York, USA
| | - Cheng Chang
- Translational Clinical Sciences, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| |
Collapse
|
4
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
5
|
Yang R, Lin Y, Chen K, Huang J, Yang S, Yao A, Yang X, Lei D, Xiao J, Yang G, Pei Q. Establishing Virtual Bioequivalence and Clinically Relevant Specifications for Omeprazole Enteric-Coated Capsules by Incorporating Dissolution Data in PBPK Modeling. AAPS J 2024; 26:82. [PMID: 38997548 DOI: 10.1208/s12248-024-00956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Currently, Biopharmaceutics Classification System (BCS) classes I and III are the only biological exemptions of immediate-release solid oral dosage forms eligible for regulatory approval. However, through virtual bioequivalence (VBE) studies, BCS class II drugs may qualify for biological exemptions if reliable and validated modeling is used. Here, we sought to establish physiologically based pharmacokinetic (PBPK) models, in vitro-in vivo relationship (IVIVR), and VBE models for enteric-coated omeprazole capsules, to establish a clinically-relevant dissolution specification (CRDS) for screening BE and non-BE batches, and to ultimately develop evaluation criteria for generic omeprazole enteric-coated capsules. To establish omeprazole's IVIVR based on the PBPK model, we explored its in vitro dissolution conditions and then combined in vitro dissolution profile studies with in vivo clinical trials. The predicted omeprazole pharmacokinetics (PK) profiles and parameters closely matched the observed PK data. Based on the VBE results, the bioequivalence study of omeprazole enteric-coated capsules required at least 48 healthy Chinese subjects. Based on the CRDS, the capsules' in vitro dissolution should not be < 28%-54%, < 52%, or < 80% after two, three, and six hours, respectively. Failure to meet these dissolution criteria may result in non-bioequivalence. Here, PBPK modeling and IVIVR methods were used to bridge the in vitro dissolution of the drug with in vivo PK to establish the BE safety space of omeprazole enteric-coated capsules. The strategy used in this study can be applied in BE studies of other BCS II generics to obtain biological exemptions and accelerate drug development.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqi Lin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kaifeng Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - An Yao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Deqing Lei
- Changsha Institute for Food and Drug Control of Hunan Province, Changsha, China
| | - Jing Xiao
- Hunan Institute for Drug Control, Changsha, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
6
|
Kollipara S, Martins FS, Jereb R, Krajcar D, Ahmed T. Advancing Virtual Bioequivalence for Orally Administered Drug Products: Methodology, Real-World Applications and Future Outlook. Pharmaceuticals (Basel) 2024; 17:876. [PMID: 39065727 PMCID: PMC11279853 DOI: 10.3390/ph17070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Bioequivalence studies are pivotal in generic drug development wherein therapeutic equivalence is provided with an innovator product. However, bioequivalence studies represent significant complexities due to the interplay of multiple factors related to drug, formulation, physiology, and pharmacokinetics. Approaches such as physiologically based biopharmaceutics modeling (PBBM) can enable virtual bioequivalence (VBE) assessment through appropriately developed and validated models. Such models are now being extensively used for bioequivalence risk assessment, internal decision-making, and the evaluation of drug and formulation factors related to bioequivalence. Depiction of the above-mentioned factors through the incorporation of variability and development of a virtual population for bioequivalence assessment is of paramount importance in utilizing such models. In this manuscript, we have portrayed our current understanding of VBE. A detailed explanation was provided with respect to study designs, in vivo variability, and the impact of physiological, drug, and formulation factors on the development of the population for VBE. Furthermore, strategies are suggested to incorporate variability in GastroPlus with an emphasis on intra-subject and inter-occasion variability. Two industrial case studies pertaining to immediate and modified release formulation were portrayed wherein VBE was utilized for decision-making and regulatory justification. Finally, regulatory understanding in the area of VBE, along with future perspectives, was detailed.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy’s Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad 500 090, Telangana, India;
| | | | - Rebeka Jereb
- Clinical Pharmacology and Modeling & Simulation, Sandoz Global Development, Lek d. d., Verovškova ulica 57, SI-1526 Ljubljana, Slovenia; (R.J.); (D.K.)
| | - Dejan Krajcar
- Clinical Pharmacology and Modeling & Simulation, Sandoz Global Development, Lek d. d., Verovškova ulica 57, SI-1526 Ljubljana, Slovenia; (R.J.); (D.K.)
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy’s Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad 500 090, Telangana, India;
| |
Collapse
|
7
|
Reig-López J, Cuquerella-Gilabert M, Bandín-Vilar E, Merino-Sanjuán M, Mangas-Sanjuán V, García-Arieta A. Bioequivalence risk assessment of oral formulations containing racemic ibuprofen through a chiral physiologically based pharmacokinetic model of ibuprofen enantiomers. Eur J Pharm Biopharm 2024; 199:114293. [PMID: 38641229 DOI: 10.1016/j.ejpb.2024.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The characterization of the time course of ibuprofen enantiomers can be useful in the selection of the most sensitive analyte in bioequivalence studies. Physiologically based pharmacokinetic (PBPK) modelling and simulation represents the most efficient methodology to virtually assess bioequivalence outcomes. In this work, we aim to develop and verify a PBPK model for ibuprofen enantiomers administered as a racemic mixture with different immediate release dosage forms to anticipate bioequivalence outcomes based on different particle size distributions. A PBPK model incorporating stereoselectivity and non-linearity in plasma protein binding and metabolism as well as R-to-S unidirectional inversion has been developed in Simcyp®. A dataset composed of 11 Phase I clinical trials with 54 scenarios (27 per enantiomer) and 14,452 observations (7129 for R-ibuprofen and 7323 for S-ibuprofen) was used. Prediction errors for AUC0-t and Cmax for both enantiomers fell within the 0.8-1.25 range in 50/54 (93 %) and 42/54 (78 %) of scenarios, respectively. Outstanding model performance, with 10/10 (100 %) of Cmax and 9/10 (90 %) of AUC0-t within the 0.9-1.1 range, was demonstrated for oral suspensions, which strongly supported its use for bioequivalence risk assessment. The deterministic bioequivalence risk assessment has revealed R-ibuprofen as the most sensitive analyte to detect differences in particle size distribution for oral suspensions containing 400 mg of racemic ibuprofen, suggesting that achiral bioanalytical methods would increase type II error and declare non-bioequivalence for formulations that are bioequivalent for the eutomer.
Collapse
Affiliation(s)
- Javier Reig-López
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain
| | - Marina Cuquerella-Gilabert
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain; Simulation Department, Empresarios Agrupados Internacional S.A., Madrid, Spain
| | - Enrique Bandín-Vilar
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (CHUS), Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Spain; Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Spain
| | - Matilde Merino-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain
| | - Víctor Mangas-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, University of Valencia-Polytechnic University of Valencia, Spain.
| | - Alfredo García-Arieta
- Área de Farmacocinética y Medicamentos Genéricos, División de Farmacología y Evaluación Clínica, Departamento de Medicamentos de Uso Humano, Agencia Española de Medicamentos y Productos Sanitarios, Spain
| |
Collapse
|
8
|
Kowthavarapu VK, Charbe NB, Gupta C, Iakovleva T, Stillhart C, Parrott NJ, Schmidt S, Cristofoletti R. Mechanistic Modeling of In Vitro Biopharmaceutic Data for a Weak Acid Drug: A Pathway Towards Deriving Fundamental Parameters for Physiologically Based Biopharmaceutic Modeling. AAPS J 2024; 26:44. [PMID: 38575716 DOI: 10.1208/s12248-024-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
Mechanistic modeling of in vitro experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for in vitro-in vivo predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where in vitro data is used to predict the in vivo pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption in vivo. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.
Collapse
Affiliation(s)
- Venkata Krishna Kowthavarapu
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Nitin Bharat Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Churni Gupta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Tatiana Iakovleva
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Cordula Stillhart
- Pharmaceutical Research & Development, Formulation & Process Development, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Neil John Parrott
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics Lake Nona (Orlando), College of Pharmacy, University of Florida, 6550 Sanger Road, Office 467, Orlando, Florida, 32827, USA.
| |
Collapse
|
9
|
Shuklinova O, Wyszogrodzka-Gaweł G, Baran E, Lisowski B, Wiśniowska B, Dorożyński P, Kulinowski P, Polak S. Can 3D Printed Tablets Be Bioequivalent and How to Test It: A PBPK Model Based Virtual Bioequivalence Study for Ropinirole Modified Release Tablets. Pharmaceutics 2024; 16:259. [PMID: 38399313 PMCID: PMC10893163 DOI: 10.3390/pharmaceutics16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
As the field of personalized dosing develops, the pharmaceutical manufacturing industry needs to offer flexibility in terms of tailoring the drug release and strength to the individual patient's needs. One of the promising tools which have such capacity is 3D printing technology. However, manufacturing small batches of drugs for each patient might lead to huge test burden, including the need to conduct bioequivalence trials of formulations to support the change of equipment or strength. In this paper we demonstrate how to use 3D printing in conjunction with virtual bioequivalence trials based on physiologically based pharmacokinetic (PBPK) modeling. For this purpose, we developed 3D printed ropinirole formulations and tested their bioequivalence with the reference product Polpix. The Simcyp simulator and previously developed ropinirole PBPK model were used for the clinical trial simulations. The Weibull-fitted dissolution profiles of test and reference formulations were used as inputs for the model. The virtual bioequivalence trials were run using parallel design. The study power of 80% was reached using 125 individuals. The study demonstrated how to use PBPK modeling in conjunction with 3D printing to test the virtual bioequivalence of newly developed formulations. This virtual experiment demonstrated the bioequivalence of one of the newly developed formulations with a reference product available on a market.
Collapse
Affiliation(s)
- Olha Shuklinova
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Gabriela Wyszogrodzka-Gaweł
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Ewelina Baran
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Bartosz Lisowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Przemysław Dorożyński
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| |
Collapse
|
10
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
11
|
Saadeddin A, Purohit V, Huh Y, Wong M, Maulny A, Dowty ME, Sagawa K. Virtual Bioequivalence Assessment of Ritlecitinib Capsules with Incorporation of Observed Clinical Variability Using a Physiologically Based Pharmacokinetic Model. AAPS J 2024; 26:17. [PMID: 38267790 DOI: 10.1208/s12248-024-00888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Ritlecitinib, an orally available Janus kinase 3 and tyrosine kinase inhibitor being developed for the treatment of alopecia areata (AA), is highly soluble across the physiological pH range at the therapeutic dose. As such, it is expected to dissolve rapidly in any in vitro dissolution conditions. However, in vitro dissolution data showed slower dissolution for 100-mg capsules, used for the clinical bioequivalence (BE) study, compared with proposed commercial 50-mg capsules. Hence, a biowaiver for the lower 50-mg strength using comparable multimedia dissolution based on the f2 similarity factor was not possible. The in vivo relevance of this observed in vitro dissolution profile was evaluated with a physiologically based pharmacokinetic (PBPK) model. This report describes the development, verification, and application of the ritlecitinib PBPK model to translate observed in vitro dissolution data to an in vivo PK profile for ritlecitinib capsule formulations. Virtual BE (VBE) trials were conducted using the Simcyp VBE module, including the model-predicted within-subject variability or intra-subject coefficient of variation (ICV). The results showed the predicted ICV was predicted to be smaller than observed clinical ICV, resulting in a more optimistic BE risk assessment. Additional VBE assessment was conducted by incorporating clinically observed ICV. The VBE trial results including clinically observed ICV demonstrated that proposed commercial 50-mg capsules vs clinical 100-mg capsules were bioequivalent, with > 90% probability of success. This study demonstrates a PBPK model-based biowaiver for a clinical BE study while introducing a novel method to integrate clinically observed ICV into VBE trials with PBPK models. Trial registration: NCT02309827, NCT02684760, NCT04004663, NCT04390776, NCT05040295, NCT05128058.
Collapse
Affiliation(s)
- Anas Saadeddin
- Pharmaceutical Science, Pfizer Worldwide Research and Development, Madrid, Spain
| | - Vivek Purohit
- Translational Clinical Science, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Yeamin Huh
- Translational Clinical Science, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Mei Wong
- Pharmaceutical Science, Pfizer Worldwide Research and Development, Sandwich, UK
| | - Aurelia Maulny
- Pharmaceutical Science, Pfizer Worldwide Research and Development, Sandwich, UK
| | - Martin E Dowty
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Kazuko Sagawa
- Pharmaceutical Science, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT, 06340, USA.
| |
Collapse
|
12
|
Corpstein CD, Hou P, Park K, Li T. Multiphysics Simulation of Local Transport and Absorption Coupled with Pharmacokinetic Modeling of Systemic Exposure of Subcutaneously Injected Drug Solution. Pharm Res 2023; 40:2873-2886. [PMID: 37344601 DOI: 10.1007/s11095-023-03546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Subcutaneous (SC) injectables have become more acceptable and feasible for administration of biologics and small molecules. However, efficient development of these products is limited to costly and time-consuming techniques, partially because absorption mechanisms and kinetics at the local site of injection remain poorly understood. OBJECTIVE To bridge formulation critical quality attributes (CQA) of injectables with local physiological conditions to predict systemic exposure of these products. METHODOLOGY We have previously developed a multiscale, multiphysics computational model to simulate lymphatic absorption and whole-body pharmacokinetics of monoclonal antibodies. The same simulation framework was applied in this study to compute the capillary absorption of solubilized small molecule drugs that are injected subcutaneously. Sensitivity analyses were conducted to probe the impact by key simulation parameters on the local and systemic exposures. RESULTS This framework was capable of determining which parameters had the biggest impact on small molecule absorption in the SC. Particularly, membrane permeability of a drug was found to have the biggest impact on drug absorption kinetics, followed by capillary density and drug diffusivity. CONCLUSION Our modelling framework proved feasible in predicting local transport and systemic absorption from the injection site of small molecules. Understanding the effect of these properties and how to model them may help to greatly expedite the development process.
Collapse
Affiliation(s)
- Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA
| | - Peng Hou
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA.
| |
Collapse
|
13
|
Boddu R, Kollipara S, Bhattiprolu AK, Ahmed T. Novel application of PBBM to justify impact of faster dissolution on safety and pharmacokinetics - a case study and utility in regulatory justifications. Xenobiotica 2023; 53:587-602. [PMID: 38062540 DOI: 10.1080/00498254.2023.2289160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Physiologically based biopharmaceutics modelling (PBBM) was recognised as potential approach for biopharmaceutics applications. However, PBBM to justify safety is an unexplored area.In this manuscript, we elucidated PBBM application for safety justification. Product DRL is a generic extended release tablet containing an anti-epileptic narrow therapeutic index (NTI) drug. During dossier review, regulatory agency requested to evaluate the impact of faster dissolution profiles observed during stability on safety aspects. In order to justify, PBBMbased strategy was adapted.Model was validated and population simulations were performed for reference and test formulations and the predictions matched with clinical outcome. The model was found to be sensitive to dissolution changes and hence applied for the prediction of stability batches exhibiting faster dissolution profiles, virtually generated profiles at lower and upper specifications. The maximum predicted plasma levels were well below the reported safety levels, thereby demonstrating safety of the product.Overall, a novel application of PBBM to justify safety was demonstrated. Similar justifications using PBBM and linking with safety can be adopted where safety can be impacted due to aggravated dissolution profiles. Such justifications have potential to avoid clinical safety studies and helps in faster approval of drug product.
Collapse
Affiliation(s)
- Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| | - Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Integrated Product Development Organization (IPDO), Hyderabad, India
| |
Collapse
|
14
|
Han C, Sun T, Chirumamilla SK, Bois FY, Xu M, Rostami-Hodjegan A. Understanding Discordance between In Vitro Dissolution, Local Gut and Systemic Bioequivalence of Budesonide in Healthy and Crohn's Disease Patients through PBPK Modeling. Pharmaceutics 2023; 15:2237. [PMID: 37765205 PMCID: PMC10535222 DOI: 10.3390/pharmaceutics15092237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The most common method for establishing bioequivalence (BE) is to demonstrate similarity of concentration-time profiles in the systemic circulation, as a surrogate to the site of action. However, similarity of profiles from two formulations in the systemic circulation does not imply similarity in the gastrointestinal tract (GIT) nor local BE. We have explored the concordance of BE conclusions for a set of hypothetical formulations based on budesonide concentration profiles in various segments of gut vs. those in systemic circulation using virtual trials powered by physiologically based pharmacokinetic (PBPK) models. The impact of Crohn's disease on the BE conclusions was explored by changing physiological and biological GIT attributes. Substantial 'discordance' between local and systemic outcomes of VBE was observed. Upper GIT segments were much more sensitive to formulation changes than systemic circulation, where the latter led to false conclusions for BE. The ileum and colon showed a lower frequency of discordance. In the case of Crohn's disease, a product-specific similarity factor might be needed for products such as Entocort® EC to ensure local BE. Our results are specific to budesonide, but we demonstrate potential discordances between the local gut vs. systemic BE for the first time.
Collapse
Affiliation(s)
- Chunyan Han
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester M13 9PL, UK
- Pharmaron Inc., Beijing 100176, China; (T.S.); (M.X.)
| | - Tiancheng Sun
- Pharmaron Inc., Beijing 100176, China; (T.S.); (M.X.)
| | | | - Frederic Y. Bois
- Simcyp Division, Certara, Sheffield S1 2BJ, UK; (S.K.C.); (F.Y.B.)
| | - Mandy Xu
- Pharmaron Inc., Beijing 100176, China; (T.S.); (M.X.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester M13 9PL, UK
- Simcyp Division, Certara, Sheffield S1 2BJ, UK; (S.K.C.); (F.Y.B.)
| |
Collapse
|
15
|
Staniszewska M, Romański M, Polak S, Garbacz G, Dobosz J, Myslitska D, Romanova S, Paszkowska J, Danielak D. A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning. Pharmaceutics 2023; 15:2056. [PMID: 37631270 PMCID: PMC10458881 DOI: 10.3390/pharmaceutics15082056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule's opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms.
Collapse
Affiliation(s)
- Marcela Staniszewska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; (G.G.); (J.D.); (D.M.); (S.R.); (J.P.)
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (M.R.); (D.D.)
| | - Sebastian Polak
- Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland;
| | - Grzegorz Garbacz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; (G.G.); (J.D.); (D.M.); (S.R.); (J.P.)
| | - Justyna Dobosz
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; (G.G.); (J.D.); (D.M.); (S.R.); (J.P.)
| | - Daria Myslitska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; (G.G.); (J.D.); (D.M.); (S.R.); (J.P.)
| | - Svitlana Romanova
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; (G.G.); (J.D.); (D.M.); (S.R.); (J.P.)
| | - Jadwiga Paszkowska
- Physiolution Polska, 74 Piłsudskiego St., 50-020 Wrocław, Poland; (G.G.); (J.D.); (D.M.); (S.R.); (J.P.)
| | - Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (M.R.); (D.D.)
| |
Collapse
|
16
|
Boddu R, Kollipara S, Vijaywargi G, Ahmed T. Power of Integrating PBPK with PBBM (PBPK-BM): A Single Model Predicting Food Effect, Gender Impact, Drug-Drug Interactions and Bioequivalence in Fasting & Fed Conditions. Xenobiotica 2023:1-21. [PMID: 37471259 DOI: 10.1080/00498254.2023.2238048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Over the past few years, PBPK and PBBM modeling have proven their significance in drug development. PBPK modeling is traditionally used to predict drug-drug interactions, exposures in special populations whereas PBBM modeling is a part of PBPK modeling that is used for a range of biopharmaceutics applications.Because of these differences in utilities, often PBPK and PBBM models are developed separately. When both models are combined, they serve multiple purposes through unified model. In the present case, an integrated PBPK-PBBM model for an IR product has been utilized for bioequivalence prediction in fasting & fed conditions, evaluating gender impact and food effect, prediction of drug-drug interactions.Model was built using physicochemical properties, enzymes and transporter kinetics, bio-predictive dissolution and has been validated with passing and failed pilot BE studies. The validated model predicted pivotal bioequivalence outcome in fasting & fed conditions accurately, predicted gender impact and food effect in line with literature. Drug-drug interactions arising from transporter and metabolizing enzymes were predicted accurately.Overall, this work demonstrates utility of combining PBPK and PBBM model that can yield a single model which can be used for multiple purposes, regulatory justifications and can reduce regulatory review timelines.
Collapse
Affiliation(s)
- Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| | - Gautam Vijaywargi
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad-500 090, Telangana, India
| |
Collapse
|
17
|
Pawar G, Wu F, Zhao L, Fang L, Burckart GJ, Feng K, Mousa YM, Al Shoyaib A, Jones MC, Batchelor HK. Integration of Biorelevant Pediatric Dissolution Methodology into PBPK Modeling to Predict In Vivo Performance and Bioequivalence of Generic Drugs in Pediatric Populations: a Carbamazepine Case Study. AAPS J 2023; 25:67. [PMID: 37386339 DOI: 10.1208/s12248-023-00826-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
This study investigated the impact of gastro-intestinal fluid volume and bile salt (BS) concentration on the dissolution of carbamazepine (CBZ) immediate release (IR) 100 mg tablets and to integrate these in vitro biorelevant dissolution profiles into physiologically based pharmacokinetic modelling (PBPK) in pediatric and adult populations to determine the biopredictive dissolution profile. Dissolution profiles of CBZ IR tablets (100 mg) were generated in 50-900 mL biorelevant adult fasted state simulated gastric and intestinal fluid (Ad-FaSSGF and Ad-FaSSIF), also in three alternative compositions of biorelevant pediatric FaSSGF and FaSSIF medias at 200 mL. This study found that CBZ dissolution was poorly sensitive to changes in the composition of the biorelevant media, where dissimilar dissolution (F2 = 46.2) was only observed when the BS concentration was changed from 3000 to 89 μM (Ad-FaSSIF vs Ped-FaSSIF 50% 14 BS). PBPK modeling demonstrated the most predictive dissolution volume and media composition to forecast the PK was 500 mL of Ad-FaSSGF/Ad-FaSSIF media for adults and 200 mL Ped-FaSSGF/FaSSIF media for pediatrics. A virtual bioequivalence simulation was conducted by using Ad-FaSSGF and/or Ad-FaSSIF 500 mL or Ped-FaSSGF and/or Ped-FaSSIF 200 mL dissolution data for CBZ 100 mg (reference and generic test) IR product. The CBZ PBPK models showed bioequivalence of the product. This study demonstrates that the integration of biorelevant dissolution data can predict the PK profile of a poorly soluble drug in both populations. Further work using more pediatric drug products is needed to verify biorelevant dissolution data to predict the in vivo performance in pediatrics.
Collapse
Affiliation(s)
- Gopal Pawar
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Fang Wu
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Liang Zhao
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Kairui Feng
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Youssef M Mousa
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Abdullah Al Shoyaib
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Marie-Christine Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
18
|
Karnati P, Murthy A, Gundeti M, Ahmed T. Modelling Based Approaches to Support Generic Drug Regulatory Submissions-Practical Considerations and Case Studies. AAPS J 2023; 25:63. [PMID: 37353655 DOI: 10.1208/s12248-023-00831-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/03/2023] [Indexed: 06/25/2023] Open
Abstract
Model informed drug development (MiDD) is useful to predict in vivo exposure of drugs during various stages of the drug development process. This approach employs a variety of quantitative tools to assess the risks during the drug development process. One important tool in the MiDD tool kit is the Physiologically Based Pharmacokinetic Modelling (PBPK). This tool is extensively used to reduce the development cost and to accelerate the access of medicines to the patients. In this work, we provide an overview of PBPK modelling approaches in the generic drug development process, with a special emphasis on the bio-waiver applications. We describe herein approaches and common pitfalls while submitting model based justifications as a response to the regulatory deficiencies during the generic drug development process. With some in-house case studies, we have attempted to provide a clear path for PBPK model based justifications for bio-waivers. With this review, the gap between theoretical knowledge and practical application of modelling and simulation tools for generic drug product development could be potentially reduced.
Collapse
Affiliation(s)
- Prajwala Karnati
- Biopharmaceutics Department, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Hyderabad, India
| | - Aditya Murthy
- Biopharmaceutics Department, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Hyderabad, India
| | - Manoj Gundeti
- Biopharmaceutics Department, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Hyderabad, India
| | - Tausif Ahmed
- Biopharmaceutics Department, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Hyderabad, India.
| |
Collapse
|
19
|
Danielak D, Paszkowska J, Staniszewska M, Garbacz G, Terlecka A, Kubiak B, Romański M. Conjunction of semi-mechanistic in vitro-in vivo modeling and population pharmacokinetics as a tool for virtual bioequivalence analysis - a case study for a BCS class II drug. Eur J Pharm Biopharm 2023; 186:132-143. [PMID: 37015321 DOI: 10.1016/j.ejpb.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Virtual bioequivalence trial (VBE) simulations based on (semi)mechanistic in vitro-in vivo (IVIV) modeling have gained a huge interest in the pharmaceutical industry. Sophisticated commercially available software allows modeling variable drug fates in the gastrointestinal tract (GIT). Surprisingly, the between-subject and inter-occasion variability (IOV) of the distribution volumes and clearances are ignored or simplified, despite substantially contributing to varied plasma drug concentrations. The paper describes a novel approach for IVIV-based VBE by using population pharmacokinetics (popPK). The data from two bioequivalence trials with a poorly soluble BCS class II drug were analyzed retrospectively. In the first trial, the test drug product (biobatch 1) did not meet the bioequivalence criteria, but after a reformulation, the second trial succeeded (biobatch 2). The popPK model was developed in the Monolix software (Lixoft SAS, Simulation Plus) based on the originator's plasma concentrations. The modified Noyes-Whitney model was fitted to the results of discriminative biorelevant dissolution tests of the two biobatches and seven other reformulations. Then, the IVIV model was constructed by joining the popPK model with fixed drug disposition parameters, the drug dissolution model, and mechanistic approximation of the GIT transit. It was used to simulate the drug concentrations at different IOV levels of the primary pharmacokinetic parameters and perform the VBE. Estimated VBE success rates for both biobatches well reflected the outcomes of the bioequivalence trials. The predicted 90% confidence intervals for the area under the time-concentration curves were comparable with the observed values, and the 10% IOV allowed the closest approximation to the clinical results. Simulations confirmed that a significantly lower maximum drug concentration for biobatch 1 was responsible for the first clinical trial's failure. In conclusion, the proposed workflow might aid formulation screening in generic drug development.
Collapse
|
20
|
Mukherjee D, Chen MJ, Shao X, Ju TR, Shebley M, Marroum P. Virtual Bioequivalence Assessment of Elagolix Formulations Using Physiologically Based Pharmacokinetic Modeling. AAPS J 2023; 25:30. [PMID: 36949256 DOI: 10.1208/s12248-023-00794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
In lieu of large bioequivalence studies and exposing healthy postmenopausal women to additional drug exposure for elagolix coadministered with hormonal add-back therapy, physiologically based pharmacokinetic (PBPK) modeling was used with in vitro dissolution data to test for virtual bioequivalence. For endometriosis, elagolix is approved at doses of 150 mg once daily and 200 mg twice daily as a tablet. As a combination therapy, two individual tablets, consisting of an elagolix tablet and an estradiol/norethindrone acetate 1/0.5 mg (E2/NETA) tablet, were utilized in Phase 3 endometriosis trials. However, the commercial combination drug products consist of a morning capsule (containing an elagolix tablet and E2/NETA tablet as a fixed-dose combination capsule, AM capsule) and an evening capsule (consisting of an elagolix tablet, PM capsule). In vitro dissolution profiles were dissimilar for the tablet and capsule formulations; thus, in vivo bioequivalence studies or a bioequivalence waiver would have been required. To simulate virtual cross-over, bioequivalence trials, in vitro dissolution data was incorporated into a previously verified PBPK model. The updated PBPK model was externally validated using relevant bioequivalence study data. Based on results of the virtual bioequivalence simulations, the commercial drug product capsules met the bioequivalence criteria of 0.80-1.25 when compared to the reference tablets. This was a novel example where PBPK modeling was utilized along with in vitro dissolution data to demonstrate virtual bioequivalence in support of a regulatory bioequivalence waiver.
Collapse
Affiliation(s)
- Dwaipayan Mukherjee
- Clinical Pharmacology, AbbVie, Inc., Building AP31-3, 1 North Waukegan Rd., North Chicago, Illinois, 60064, USA.
| | - Mong-Jen Chen
- Clinical Pharmacology, AbbVie, Inc., Building AP31-3, 1 North Waukegan Rd., North Chicago, Illinois, 60064, USA
| | - Xi Shao
- Analytical Research & Development, AbbVie, Inc., North Chicago, Illinois, 60064, USA
| | - Tzuchi R Ju
- Analytical Research & Development, AbbVie, Inc., North Chicago, Illinois, 60064, USA
| | - Mohamad Shebley
- Clinical Pharmacology, AbbVie, Inc., Building AP31-3, 1 North Waukegan Rd., North Chicago, Illinois, 60064, USA
| | - Patrick Marroum
- Clinical Pharmacology, AbbVie, Inc., Building AP31-3, 1 North Waukegan Rd., North Chicago, Illinois, 60064, USA
| |
Collapse
|
21
|
Kourentas A, Gajewska M, Lin W, Dhareshwar SS, Steib-Lauer C, Kulkarni S, Hirsch S, Heimbach T, Mueller-Zsigmondy M. Establishing the Safe Space via Physiologically Based Biopharmaceutics Modeling. Case Study: Fevipiprant/QAW039. AAPS J 2023; 25:25. [PMID: 36788163 DOI: 10.1208/s12248-023-00787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Physiologically based pharmacokinetic and absorption modeling has increasingly been implemented for biopharmaceutics applications to define the safe space for drug product quality attributes such as dissolution. For fevipiprant/QAW039, simulations were performed to assess the impact of in vitro dissolution on the in vivo performance of immediate-release film-coated tablets during development and scaling up to commercial scale. A fevipiprant dissolution safe space was established using observed clinical intravenous and oral PK data from bioequivalent and non-bioequivalent formulations. Quality control dissolution profiles with tablets were used as GastroPlus™ model inputs to estimate the in vivo dissolution in the gastrointestinal tract and to simulate human exposure. The model was used to evaluate the intraluminal performance of the dosage forms and to predict the absorption rate limits for the 450 mg dose. The predictive model performance was demonstrated for various oral dosage forms (150‒500 mg), including the non-bioequivalent batches in fasted healthy adults. To define the safe space at 450 mg, simulations were performed using theoretical dissolution profiles. A specification of Q = 80% dissolved in 60 min or less for an immediate-release oral solid dosage form reflected the boundaries of the safe space. The dissolution profile of the 450 mg commercial scale batch was within a dissolution region where bioequivalence is anticipated, not near an edge of failure for dissolution, providing additional confidence to the proposed acceptance criteria. Thus, the safe space allowed for a wider than 10% dissolution difference for bioequivalent batches, superseding f2 similarity analyses.
Collapse
Affiliation(s)
- Alexandros Kourentas
- Dissolution & Biopharmaceutics, Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Monika Gajewska
- Pharmacokinetics Sciences, Translational Medicine, Novartis Institutes for BioMedical Research, Novartis AG, CH-4056, Basel, Switzerland
| | - Wen Lin
- Pharmacokinetics Sciences, Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharmaceuticals Corporation, New Jersey, One Health Plaza, East Hanover, 07936, USA.,PK/PD Group, Pharmacokinetics, Dynamics and Metabolism, Sanofi, Bridgewater, NJ, USA
| | - Sundeep S Dhareshwar
- Global Program Management, Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, 07936, USA
| | - Caroline Steib-Lauer
- Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Swarupa Kulkarni
- Pharmacokinetics Sciences, Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharmaceuticals Corporation, New Jersey, One Health Plaza, East Hanover, 07936, USA
| | - Stefan Hirsch
- Global Drug Development, Technical Portfolio and Project Management, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Tycho Heimbach
- Pharmacokinetics Sciences, Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharmaceuticals Corporation, New Jersey, One Health Plaza, East Hanover, 07936, USA.,Sterile and Specialty Products, Biopharmaceutics, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Martin Mueller-Zsigmondy
- Dissolution & Biopharmaceutics, Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland.
| |
Collapse
|
22
|
Kollipara S, Bhattiprolu AK, Boddu R, Ahmed T, Chachad S. Best Practices for Integration of Dissolution Data into Physiologically Based Biopharmaceutics Models (PBBM): A Biopharmaceutics Modeling Scientist Perspective. AAPS PharmSciTech 2023; 24:59. [PMID: 36759492 DOI: 10.1208/s12249-023-02521-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Dissolution is considered as a critical input into physiologically based biopharmaceutics models (PBBM) as it governs in vivo exposure. Despite many workshops, initiatives by academia, industry, and regulatory, wider practices are followed for dissolution data input into PBBM models. Due to variety of options available for dissolution data input into PBBM models, it is important to understand pros, cons, and best practices while using specific dissolution model. This present article attempts to summarize current understanding of various dissolution models and data inputs in PBBM software's and aims to discuss practical challenges and ways to overcome such scenarios. Different approaches to incorporate dissolution data for immediate, modified, and delayed release formulations are discussed in detail. Common challenges faced during fitting of z-factor are discussed along with novel approach of dissolution data incorporation using P-PSD model. Ways to incorporate dissolution data for MR formulations using Weibull and IVIVR approaches were portrayed with examples. Strategies to incorporate dissolution data for DR formulations was depicted along with practical aspects. Approaches to generate virtual dissolution profiles, using Weibull function, DDDPlus, and time scaling for defining dissolution safe space, and strategies to generate virtual dissolution profiles for justifying single and multiple dissolution specifications were discussed. Finally, novel ways to integrate dissolution data for complex products such as liposomes, data from complex dissolution systems, importance of precipitation, and bio-predictive ability of QC media for evaluation of CBA's impact were discussed. Overall, this article aims to provide an easy guide for biopharmaceutics modeling scientist to integrate dissolution data effectively into PBBM models.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| | - Siddharth Chachad
- Biopharmaceutics Group, Global Clinical Management, Integrated Product Development Organization (IPDO), Dr. Reddy's Laboratories Ltd, Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| |
Collapse
|
23
|
Pigliacelli C, Belton P, Wilde P, Bombelli FB, Kroon PA, Winterbone MS, Qi S. Interaction of polymers with bile salts - Impact on solubilisation and absorption of poorly water-soluble drugs. Colloids Surf B Biointerfaces 2023; 222:113044. [PMID: 36436403 DOI: 10.1016/j.colsurfb.2022.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Formulating poorly soluble drugs with polymers in the form of solid dispersions has been widely used for improving drug dissolution. Endogenous surface-active species present in the gut, such as bile salts, lecithin and other phospholipids, have been shown to play a key role in facilitating lipids and poorly soluble drugs solubilisation in the gut. In this study, we examined the possible occurrence of interactions between a model bile salt, sodium taurocholate (NaTC), and model spray dried solid dispersions comprising piroxicam and Hydroxypropyl Methylcellulose (HPMC), a commonly used hydrophilic polymer for solid dispersion preparation. Solubility measurements revealed the good solubilisation effect of NaTC on the crystalline drug, which was enhanced by the addition of HPMC, and further boosted by the drug formulation into solid dispersion. The colloidal behaviour of the solid dispersions upon dissolution in biorelevant media, with and without NaTC, revealed the formation of NaTC-HPMC complexes and other mixed colloidal species. Cellular level drug absorption studies obtained using Caco-2 monolayers confirmed that the combination of drug being delivered by solid dispersion and the presence of bile salt and lecithin significantly contributed to the improved drug absorption. Together with the role of NaTC-HPMC complexes in assisting the drug solubilisation, our results also highlight the complex interplay between bile salts, excipients and drug absorption.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Francesca Baldelli Bombelli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Mark S Winterbone
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
24
|
Zhou D, Chen B, Sharma S, Tang W, Pepin X. Physiologically Based Absorption Modelling to Explore the Formulation and Gastric pH Changes on the Pharmacokinetics of Acalabrutinib. Pharm Res 2023; 40:375-386. [PMID: 35478298 DOI: 10.1007/s11095-022-03268-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Acalabrutinib, a selective Bruton's tyrosine kinase inhibitor, is a biopharmaceutics classification system class II drug. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption of immediate release capsule formulation of acalabrutinib in humans. Integration of in vitro biorelevant measurements, dissolution studies and in silico modelling provided clinically relevant inputs for the mechanistic absorption PBPK model. The batch specific dissolution data were integrated in two ways, by fitting a diffusion layer model scalar to the drug product dissolution with integration of drug substance laser diffraction particle size data, or by fitting a product particle size distribution to the dissolution data. The latter method proved more robust and biopredictive. In both cases, the drug surface solubility was well predicted by the Simcyp simulator. The model using the product particle size distribution (P-PSD) for each clinical batch adequately captured the PK profiles of acalabrutinib and its active metabolite. Average fold errors were 0.89 for both Cmax and AUC, suggesting good agreement between predicted and observed PK values. The model also accurately predicted pH-dependent drug-drug interactions between omeprazole and acalabrutinib, which was similar across all clinical formulations. The model predicted acalabrutinib geometric mean AUC ratios (with omeprazole vs acalabrutinib alone) were 0.51 and 0.68 for 2 batches of formulations, which are close to observed values of 0.43 and 0.51~0.63, respectively. The mechanistic absorption PBPK model could be potentially used for future applications such as optimizing formulations or predicting the PK for different batches of the drug product.
Collapse
Affiliation(s)
- Diansong Zhou
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, Boston, Massachusetts, USA. .,AstraZeneca, 35 Gatehouse Dr., Waltham, Massachusett, 02451, USA.
| | - Buyun Chen
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, South San Francisco, California, USA
| | - Shringi Sharma
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, South San Francisco, California, USA
| | - Weifeng Tang
- Clinical Pharmacology & Quantitative Pharmacology, AstraZeneca, BioPharmaceuticals R&D, Gaithersburg, Maryland, USA
| | - Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
25
|
Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs. Pharm Res 2023; 40:337-357. [PMID: 35840856 DOI: 10.1007/s11095-022-03319-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
For successful oral drug development, defining a bioequivalence (BE) safe space is critical for the identification of newer bioequivalent formulations or for setting of clinically relevant in vitro specifications to ensure drug product quality. By definition, the safe space delineates the dissolution profile boundaries or other drug product quality attributes, within which the drug product variants are anticipated to be bioequivalent. Defining a BE safe space with physiologically based biopharmaceutics model (PBBM) allows the establishment of mechanistic in vitro and in vivo relationships (IVIVR) to better understand absorption mechanism and critical bioavailability attributes (CBA). Detailed case studies on how to use PBBM to establish a BE safe space for both innovator and generic drugs are described. New case studies and literature examples demonstrate BE safe space applications such as how to set in vitro dissolution/particle size distribution (PSD) specifications, widen dissolution specification to supersede f2 tests, or application toward a scale-up and post-approval changes (SUPAC) biowaiver. A workflow for detailed PBBM set-up and common clinical study data requirements to establish the safe space and knowledge space are discussed. Approaches to model in vitro dissolution profiles i.e. the diffusion layer model (DLM), Takano and Johnson models or the fitted PSD and Weibull function are described with a decision tree. The conduct of parameter sensitivity analyses on kinetic dissolution parameters for safe space and virtual bioequivalence (VBE) modeling for innovator and generic drugs are shared. The necessity for biopredictive dissolution method development and challenges with PBBM development and acceptance criteria are described.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Maitri Sanghavi
- Pharmacokinetics & Biopharmaceutics Group, Pharmaceutical Technology Center (PTC), Zydus Lifesciences Ltd., NH-8A, Sarkhej-Bavla Highway, Moraiya Ahmedabad, Gujarat, 382210, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Anuj K Saini
- Pharmacokinetics & Biopharmaceutics Group, Pharmaceutical Technology Center (PTC), Zydus Lifesciences Ltd., NH-8A, Sarkhej-Bavla Highway, Moraiya Ahmedabad, Gujarat, 382210, India
| | - Tycho Heimbach
- Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
| |
Collapse
|
26
|
Zhang F, Wu X, Wu K, Yu M, Liu B, Wang H. Predicting the Pharmacokinetics of Orally Administered Drugs across BCS Classes 1-4 by Virtual Bioequivalence Model. Mol Pharm 2023; 20:395-408. [PMID: 36469444 DOI: 10.1021/acs.molpharmaceut.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To evaluate the influence of solubility and permeability on the pharmacokinetic prediction performance of orally administered drugs using avirtual bioequivalence (VBE) model, a total of 23 orally administered drugs covering Biopharmaceutics Classification System (BCS) classes 1-4 were selected. A VBE model (i.e., a physiologically based pharmacokinetic model integrated with dissolution data) based on a B2O simulator was applied for pharmacokinetic (PK) prediction in a virtual population. Parameter sensitivity analysis was used for input parameter selection. The predictive performances of PK parameters (i.e., AUC0-t, Cmax, and Tmax), PK profiles, and bioequivalence (BE) results were evaluated using the twofold error, average fold error (AFE), absolute average fold error (AAFE), and BE reassessment metrics. All models successfully simulated the mean PK profiles, with AAFE < 2 and AFE ranging from 0.58 to 1.66. As for the PK parameters, except for the time of peak concentration, Tmax, of isosorbide mononitrate, other simulated PK parameters were all within a twofold error. The simulated PK behaviors were comparable to the observed ones, both for test (T) and reference (R) products, and the simulated T/R arithmetic mean ratios were all within 0.88-1.16 of the observed values. These four evaluation metrics were distributed equally among BCS class 1-4 drugs. The VBE model showed powerful performance to predict the PK behavior of orally administered drugs with various combinations of solubility and permeability, irrespective of the BCS category.
Collapse
Affiliation(s)
- Fan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Keheng Wu
- Yinghan Pharmaceutical Technology (Shanghai) Co., Ltd, Shanghai201100, China
| | - Mengyang Yu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Bo Liu
- Wuhan Institute of Technology, Wuhan, Hubei430205, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| |
Collapse
|
27
|
Han M, Xu J, Lin Y. Approaches of formulation bridging in support of orally administered drug product development. Int J Pharm 2022; 629:122380. [DOI: 10.1016/j.ijpharm.2022.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
28
|
Mittapelly N, Polak S. Modelling and Simulation Approaches to Support Formulation Optimization, Clinical Development and Regulatory Assessment of the Topically Applied Formulations- Nimesulide Solution Gel Case Study. Eur J Pharm Biopharm 2022; 178:140-149. [PMID: 35985454 DOI: 10.1016/j.ejpb.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
The objective of the study was to show how mechanistic modelling can be used to characterize the skin absorption of Nimesulide (NIM) in both in vitro systems and in vivo subjects. A basic PBPK model for oral absorption to characterize the systemic disposition of NIM and MPML MechDermATM models for in vitro permeation and in vivo, topical absorption was developed and verified using published data. The developed models utilize drug physicochemical properties, formulation attributes and physiology information either collected from literature and/or from Simcyp databases (systems' data). Following the verification of the PBPK models virtual bioequivalence (VBE) trials were performed both at systemic and local exposure levels (dermis concentrations) to compare these formulations. A parameter sensitivity analysis was conducted to understand the impact of vehicle-related attributes on IVPT (in vitro permeation test) data. The vehicle-stratum corneum lipids partition coefficient in the formulation layer (Kpsc_lip:vehicle) was identified to be an appropriate parameter to take into account the differences in dermal absorption of marketed preparations based on the qualitative composition. Thus, this parameter was optimized for each marketed product based on the published in vitro data. After verification of the IVPT model, IVIVE was performed to assess the predictability of the model for studying the in vivo pharmacokinetics of NIM. The VBE analysis concluded that these formulations are bioequivalent at the level of systemic and local dermis exposure. To summarize, the study shows the use of modelling and simulation (M&S) tools to better understand the behaviour of formulations and their interaction with human physiology.
Collapse
Affiliation(s)
- Naresh Mittapelly
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sebastian Polak
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
29
|
Patel N, Clarke JF, Salem F, Abdulla T, Martins F, Arora S, Tsakalozou E, Hodgkinson A, Arjmandi-Tash O, Cristea S, Ghosh P, Alam K, Raney SG, Jamei M, Polak S. Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin. CPT Pharmacometrics Syst Pharmacol 2022; 11:1060-1084. [PMID: 35670226 PMCID: PMC9381913 DOI: 10.1002/psp4.12814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 01/31/2023] Open
Abstract
Physiologically-based pharmacokinetic models combine knowledge about physiology, drug product properties, such as physicochemical parameters, absorption, distribution, metabolism, excretion characteristics, formulation attributes, and trial design or dosing regimen to mechanistically simulate drug pharmacokinetics (PK). The current work describes the development of a multiphase, multilayer mechanistic dermal absorption (MPML MechDermA) model within the Simcyp Simulator capable of simulating uptake and permeation of drugs through human skin following application of drug products to the skin. The model was designed to account for formulation characteristics as well as body site- and sex- population variability to predict local and systemic bioavailability. The present report outlines the structure and assumptions of the MPML MechDermA model and includes results from simulations comparing absorption at multiple body sites for two compounds, caffeine and benzoic acid, formulated as solutions. Finally, a model of the Feldene (piroxicam) topical gel, 0.5% was developed and assessed for its ability to predict both plasma and local skin concentrations when compared to in vivo PK data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eleftheria Tsakalozou
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | | | | | | | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Khondoker Alam
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | | | - Sebastian Polak
- Simcyp Division, Certara UK, Sheffield, UK.,Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
30
|
Anand O, Pepin XJH, Kolhatkar V, Seo P. The Use of Physiologically Based Pharmacokinetic Analyses-in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 2022; 39:1681-1700. [PMID: 35585448 DOI: 10.1007/s11095-022-03280-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.
Collapse
Affiliation(s)
- Om Anand
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
| | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Paul Seo
- Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
31
|
Subhani S, Kim C, Muniz P, Rodriguez M, van Os S, Suarez E, Cristofoletti R, Schmidt S, Vozmediano V. Application of Physiologically Based Absorption and Pharmacokinetic Modeling in the development process of oral modified release generic products. Eur J Pharm Biopharm 2022; 176:87-94. [DOI: 10.1016/j.ejpb.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
|
32
|
Mukherjee D, Chiney MS, Shao X, Ju TR, Shebley M, Marroum P. Physiologically based pharmacokinetic modeling and simulations to inform dissolution specifications and clinical relevance of release rates on elagolix exposure. Biopharm Drug Dispos 2022; 43:98-107. [PMID: 35405765 PMCID: PMC9320978 DOI: 10.1002/bdd.2315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/09/2022] [Accepted: 04/03/2022] [Indexed: 01/15/2023]
Abstract
The aim of this analysis was to use a physiologically based pharmacokinetic (PBPK) model to predict the impact of changes in dissolution rates on elagolix exposures and define clinically relevant acceptance criteria for dissolution. Varying in vitro dissolution profiles were utilized in a PBPK model to describe the absorption profiles of elagolix formulations used in Phase 3 clinical trials and for the to be marketed commercial formulations. Single dose studies of 200 mg elagolix formulations were used for model verification under fasted conditions. Additional dissolution scenarios were evaluated to assess the impact of dissolution rates on elagolix exposures. Compared to the Phase 3 clinical trial formulation, sensitivity analysis on dissolution rates suggested that a hypothetical scenario of ∼75% slower dissolution rate would result in 14% lower predicted elagolix plasma exposures, however, the predicted exposures are still within the bioequivalence boundaries of 0.8-1.25 for both Cmax and AUC. A clinically verified PBPK model of elagolix was utilized to evaluate the impact of wider dissolution specifications on elagolix plasma exposures. The simulation results indicated that a slower in vitro dissolution profile, would not have a clinically significant impact on elagolix exposures. These model results informed the setting of wider dissolution specifications without requiring in vivo studies.
Collapse
Affiliation(s)
- Dwaipayan Mukherjee
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, Illinois, USA
| | - Manoj S Chiney
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, Illinois, USA
| | - Xi Shao
- Analytical Research and Development, AbbVie, North Chicago, Illinois, USA
| | - Tzuchi R Ju
- Analytical Research and Development, AbbVie, North Chicago, Illinois, USA
| | - Mohamad Shebley
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, Illinois, USA
| | - Patrick Marroum
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, Illinois, USA
| |
Collapse
|
33
|
Navas-Bachiller M, Persoons T, D'Arcy DM. Exploring bulk volume, particle size and particle motion definitions to increase the predictive ability of in vitro dissolution simulations. Eur J Pharm Sci 2022; 174:106185. [PMID: 35398291 DOI: 10.1016/j.ejps.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
The definition of the local dissolution environment is central to accurate particle dissolution simulation, and is determined by the apparatus and conditions used. In the flow-through apparatus dissolution occurs in the cell, often in a low velocity environment, with the reservoir considered the relevant volume for dissolution kinetics. Dissolution simulations were conducted using a reduced-order model based on the Ranz-Marshall correlation for mass transfer from spherical particles. Using ibuprofen as a model drug, the effect of defining a local volume to simulate dynamic bulk concentration conditions in the flow-through and paddle apparatus was assessed by comparing use of a near particle volume (NPV), extending a distance of one radius from the particle surface, with a flow-through apparatus cell volume or paddle apparatus vessel volume as the relevant instantaneous volume for dissolution. The instantaneous inlet concentration to NPV or cell volume is the reservoir/vessel concentration at that simulation time point, reflecting the continuous input to the cell of more dilute solution from the reservoir (closed system). Additionally, inputting particle size distribution (PSD) instead of a median particle size (MPS) and enabling or disabling particle motion were investigated, in two media (resulting in low and high solubility) and with two fluid velocity conditions in each apparatus. The NPV predicted effects of fluid velocity differences on dissolution in the high solubility medium in the flow-through apparatus, but had no effect on predictive ability in the paddle apparatus. In both apparatuses, simulations were reasonable for the high solubility environment but underpredicted dissolution in the low solubility environment. The PSD option and disabling particle motion increased the predictive ability of the simulations in low solubility media in the flow-through apparatus. The results highlight the necessity to incorporate the local dynamic dissolution conditions in the flow-through apparatus for accurate dissolution simulation, and the challenges of defining an effective particle size for dissolution simulation and of reflecting hydrodynamic complexity in simulating dissolution in the paddle apparatus.
Collapse
Affiliation(s)
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland.
| |
Collapse
|
34
|
K Y, Kollipara S, Ahmed T, Chachad S. Applications of PBPK/PBBM modeling in generic product development: An industry perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Aishwarya R, Murthy A, Ahmed T, Chachad S. A Novel Approach to Justify Dissolution Differences in an Extended Release Drug Product Using Physiologically Based Biopharmaceutics Modeling and Simulation. J Pharm Sci 2022; 111:1820-1832. [PMID: 35217007 DOI: 10.1016/j.xphs.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
Dr Reddy's Laboratories Ltd. developed generic version of XYZ extended release tablets (ER) and achieved bioequivalence as per criteria mentioned by USFDA in both fasting and fed conditions for higher strength formulation (1200 mg). However, on comparison of multimedia dissolution profiles in pH 4.5 acetate media, the f2 similarity value was <50. The lower strength formulation (600 mg) demonstrated faster dissolution profile. This was identified as strength-dependent sink condition difference and in vitro multiunit dissolution studies were used to justify sink differences between the higher and lower strengths. Additionally, a Physiologically Based Biopharmaceutics Model (PBBM) was developed using GastroPlusTM. The validity of this model was established using in-house human pharmacokinetic data. Further, this model was used to justify the insignificant in vivo impact of the faster dissolution profile for the lower strength formulation. This work provides a novel and less explored approach that can be used to obtain biowaiver for lower strength formulations when the standard biowaiver criteria cannot be met. This work also demonstrates the usefulness of PBBM to justify dissolution dissimilarity between dose proportional formulations and to evaluate its biopharmaceutics risk without the need for actual in vivo studies.
Collapse
Affiliation(s)
- R Aishwarya
- Scientist, Biopharmaceutics - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad.
| | - Aditya Murthy
- Team Lead, Biopharmaceutics - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad.
| | - Tausif Ahmed
- Head, Biopharmaceutics and Bio analytical - Global Clinical Management, Dr. Reddy's Laboratories Ltd, Hyderabad.
| | - Siddharth Chachad
- Head, Global Clinical Management, Dr. Reddy's Laboratories Ltd, Leiden.
| |
Collapse
|
36
|
Bego M, Patel N, Cristofoletti R, Rostami-Hodjegan A. Proof of Concept in Assignment of Within-Subject Variability During Virtual Bioequivalence Studies: Propagation of Intra-Subject Variation in Gastrointestinal Physiology Using Physiologically Based Pharmacokinetic Modeling. AAPS J 2022; 24:21. [PMID: 34988679 PMCID: PMC8817238 DOI: 10.1208/s12248-021-00672-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
While the concept of ‘Virtual Bioequivalence’ (VBE) using a combination of modelling, in vitro tests and integration of pre-existing data on systems and drugs is growing from its infancy, building confidence on VBE outcomes requires demonstration of its ability not only in predicting formulation-dependent systemic exposure but also the expected degree of population variability. The concept of variation influencing the outcome of BE, despite being hidden with the cross-over nature of common BE studies, becomes evident when dealing with the acceptance criteria that consider the 90% confidence interval (CI) around the relative bioavailability. Hence, clinical studies comparing a reference product against itself may fail due to within-subject variations associated with the two occasions that the individual receives the same formulation. In this proof-of-concept study, we offer strategies to capture the most realistic predictions of CI around the pharmacokinetic parameters by propagating physiological variations through physiologically based pharmacokinetic modelling. The exercise indicates feasibility of the approach based on comparisons made between the simulated and observed WSV of pharmacokinetic parameters tested for a clinical bioequivalence case study. However, it also indicates that capturing WSV of a large array of physiological parameters using backward translation modelling from repeated BE studies of reference products would require a diverse set of drugs and formulations. The current case study of delayed-release formulation of posaconazole was able to declare certain combinations of WSV of physiological parameters as ‘not plausible’. The eliminated sets of WSV values would be applicable to PBPK models of other drugs and formulations. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Margareta Bego
- Agency for Medicinal Products and Medical Devices (HALMED), Zagreb, Croatia. .,Centre for Applied Pharmacokinetic Research (CAPKR), School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikunjkumar Patel
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PL, UK.,Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
37
|
Moradi M, Jouyban A. Study of naproxen dissolution in the mixtures of a choline-based deep eutectic solvent + water at different temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Cámara-Martinez I, Blechar JA, Ruiz-Picazo A, Garcia-Arieta A, Calandria C, Merino-Sanjuan V, Langguth P, Gonzalez-Alvarez M, Bermejo M, Al-Gousous J, Gonzalez-Alvarez I. Level A IVIVC for immediate release tablets confirms in vivo predictive dissolution testing for ibuprofen. Int J Pharm 2021; 614:121415. [PMID: 34973409 DOI: 10.1016/j.ijpharm.2021.121415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
A bioequivalence study comparing two fixed dose combination tablets containing 200 mg ibuprofen and 30 mg pseudoephedrine hydrochloride showed bioequivalence for pseudoephedrine AUC and Cmax, but the reference product showed higher Cmax than the test product in fasted conditions. The main difference between products was the presence of tribasic calcium phosphate in the reference tablet, resulting in an increased surface pH of the dissolving ibuprofen particles under gastric and intestinal conditions and, consequently, higher solubility of ibuprofen. A mechanistic model based on mass balance and ionization equilibria was used to calculate the pH of the particle surface under different buffer conditions. The discrepancies in surface pH between test and reference tablet were pronounced in 0.1 M and 0.01 M hydrochloric acid and in diluted maleate 7 mM pH 6.5 and phosphate 5 mM pH 6.7 buffers (but negligible in compendial phosphate buffer pH 6.8. Only those dissolution tests using pre-treatment in acidic conditions could be used to build a one-step in vitro-in vivo correlation (IVIVC). This work shows the potential of these discriminatory and in vivo predictive dissolution methods to obtain IVIVCs for BCS class IIa drugs and for extending BCS biowaivers to BCS class IIa drugs.
Collapse
Affiliation(s)
- I Cámara-Martinez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain; Pharmacy, Pharmaceutical Technology and Parasitology Area, University of Valencia. Spain
| | - J A Blechar
- Institute of Pharmacy and Biomedical Science, Johannes Gutenberg University, Mainz, Germany
| | - A Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - A Garcia-Arieta
- Area of Pharmacokinetics and Generic Medicines, Division of Pharmacology and Clinical Evaluation, Department of Human Use Medicines. Spanish Agency for Medicines and Health Care Products, Spain.
| | | | - V Merino-Sanjuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, USA
| | - P Langguth
- Institute of Pharmacy and Biomedical Science, Johannes Gutenberg University, Mainz, Germany
| | - M Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - M Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain.
| | - J Al-Gousous
- Institute of Pharmacy and Biomedical Science, Johannes Gutenberg University, Mainz, Germany; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, USA
| | - I Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| |
Collapse
|
39
|
Li X, Liang E, Hong X, Han X, Li C, Wang Y, Wang Z, Zheng A. In Vitro and In Vivo Bioequivalence Study of 3D-Printed Instant-Dissolving Levetiracetam Tablets and Subsequent Personalized Dosing for Chinese Children Based on Physiological Pharmacokinetic Modeling. Pharmaceutics 2021; 14:pharmaceutics14010020. [PMID: 35056916 PMCID: PMC8779920 DOI: 10.3390/pharmaceutics14010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Recently, the development of Binder Jet 3D printing technology has promoted the research and application of personalized formulations, which are especially useful for children’s medications. Additionally, physiological pharmacokinetic (PBPK) modeling can be used to guide drug development and drug dose selection. Multiple technologies can be used in combination to increase the safety and effectiveness of drug administration. In this study, we performed in vivo pharmacokinetic experiments in dogs with preprepared 3D-printed levetiracetam instant-dissolving tablets (LEV-IDTs). Bioequivalence analysis showed that the tablets were bioequivalent to commercially available preparations (Spritam®) for dogs. Additionally, we evaluated the bioequivalence of 3D-printed LEV-IDTs with Spritam® by a population-based simulation based on the established PBPK model of levetiracetam for Chinese adults. Finally, we established a PBPK model of oral levetiracetam in Chinese children by combining the physiological parameters of children, and we simulated the PK (pharmacokinetics) curves of Chinese children aged 4 and 6 years that were administered the drug to provide precise guidance on adjusting the dose according to the effective dose range of the drug. Briefly, utilizing both Binder jet 3D printing technology and PBPK models is a promising route for personalized drug delivery with various age groups.
Collapse
Affiliation(s)
- Xianfu Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
| | - En Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
- Department Pharmaceut, School Pharm, Yantai University, 32th Qingquan Road, Laishan District, Yantai 264005, China
| | - Xiaoxuan Hong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
| | - Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
| | - Conghui Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
| | - Yuxi Wang
- Shanghai PharmoGo Co., Ltd., 3F, Block B, Weitai Building, No. 58, Lane 91, Eshan Road, Shanghai 200127, China;
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
- Correspondence: (Z.W.); (A.Z.); Tel.: +86-(0)10-668-74665 (Z.W.); +86-(0)10-669-31694 (A.Z.)
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (X.L.); (E.L.); (X.H.); (X.H.); (C.L.)
- Correspondence: (Z.W.); (A.Z.); Tel.: +86-(0)10-668-74665 (Z.W.); +86-(0)10-669-31694 (A.Z.)
| |
Collapse
|
40
|
Abrahamsson B, Butler J, Cristofoletti R, Kostewicz E, Saal C, Reppas C. Jennifer Dressman - 40 years of Oral Drug Absorption. J Pharm Sci 2021; 111:14-17. [PMID: 34699841 DOI: 10.1016/j.xphs.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, Hertfordshire SG12 0DP, UK
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Edmund Kostewicz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Germany
| | - Christoph Saal
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou, Greece.
| |
Collapse
|
41
|
Physiologically Based Biopharmaceutics Modeling to Demonstrate Virtual Bioequivalence and Bioequivalence Safe-space for Ribociclib which has Permeation Rate-controlled Absorption. J Pharm Sci 2021; 111:274-284. [PMID: 34678270 DOI: 10.1016/j.xphs.2021.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
A physiologically based biopharmaceutics model (PBBM) was developed to support formulation development of ribociclib, an orally bioavailable selective CDK4/6 inhibitor. Ribociclib is a weak base with moderate permeability and complete in vitro dissolution under stomach pH. GastroPlus™ was used to simulate the pharmacokinetics (PK) in healthy volunteers after capsule dosing. Simulations showed rapid, complete dissolution in human stomach without intestinal precipitation and with permeation-controlled absorption. Permeability was identified as controlling the systemic exposure. PBBM predicted bioequivalence (BE) between capsule and tablet in healthy volunteers, despite non-similarity between in vitro dissolution kinetics (f2<50). BE was verified in a clinical study. Then virtual bioequivalence (VBE) simulations predicted comparable PK in cancer patients between capsule and tablet of commercial batch, which was also confirmed in a clinical study. Finally, virtual trial simulations using virtual batches with slower dissolution were used to define an in vitro BE safe-space for tablets, where BE is expected. PBBM can identify drugs with permeability-controlled absorption for which formulation optimization can focus more on manufacturability rather than dissolution. PBBM can be used to predict BE study outcomes, define clinically relevant specification and BE safe-space, superseding dissolution similarity f2 criteria.
Collapse
|
42
|
A Bayesian population physiologically based pharmacokinetic absorption modeling approach to support generic drug development: application to bupropion hydrochloride oral dosage forms. J Pharmacokinet Pharmacodyn 2021; 48:893-908. [PMID: 34553275 DOI: 10.1007/s10928-021-09778-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
We propose a Bayesian population modeling and virtual bioequivalence assessment approach to establishing dissolution specifications for oral dosage forms. A generalizable semi-physiologically based pharmacokinetic absorption model with six gut segments and liver, connected to a two-compartment model of systemic disposition for bupropion hydrochloride oral dosage forms was developed. Prior information on model parameters for gut physiology, bupropion physicochemical properties, and drug product properties were obtained from the literature. The release of bupropion hydrochloride from immediate-, sustained- and extended-release oral dosage forms was described by a Weibull function. In vitro dissolution data were used to assign priors to the in vivo release properties of the three bupropion formulations. We applied global sensitivity analysis to identify the influential parameters for plasma bupropion concentrations and calibrated them. To quantify inter- and intra-individual variability, plasma concentration profiles in healthy volunteers that received the three dosage forms, each at two doses, were used. The calibrated model was in good agreement with both in vitro dissolution and in vivo exposure data. Markov Chain Monte Carlo samples from the joint posterior parameter distribution were used to simulate virtual crossover clinical trials for each formulation with distinct drug dissolution profiles. For each trial, an allowable range of dissolution parameters ("safe space") in which bioequivalence can be anticipated was established. These findings can be used to assure consistent product performance throughout the drug product life-cycle and to support manufacturing changes. Our framework provides a comprehensive approach to support decision-making in drug product development.
Collapse
|
43
|
Tsakalozou E, Alam K, Babiskin A, Zhao L. Physiologically-Based Pharmacokinetic Modeling to Support Determination of Bioequivalence for Dermatological Drug Products: Scientific and Regulatory Considerations. Clin Pharmacol Ther 2021; 111:1036-1049. [PMID: 34231211 DOI: 10.1002/cpt.2356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling and simulation provides mechanism-based predictions of the pharmacokinetics of an active ingredient following its administration in humans. Dermal PBPK models describe the skin permeation and disposition of the active ingredient following the application of a dermatological product on the skin of virtual healthy and diseased human subjects. These models take into account information on product quality attributes, physicochemical properties of the active ingredient and skin (patho)physiology, and their interplay with each other. Regulatory and product development decision makers can leverage these quantitative tools to identify factors impacting local and systemic exposure. In the realm of generic drug products, the number of US Food and Drug Administratioin (FDA) interactions that use dermal PBPK modeling to support alternative bioequivalence (BE) approaches is increasing. In this report, we share scientific considerations on the development, verification and validation (V&V), and application of PBPK models within the context of a virtual BE assessment for dermatological drug products. We discuss the challenges associated with model V&V for these drug products stemming from the fact that target-site active ingredient concentrations are typically not measurable. Additionally, there are no established relationships between local and systemic PK profiles, when the latter are quantifiable. To that end, we detail a multilevel model V&V approach involving validation for the model of the drug product of interest coupled with the overall assessment of the modeling platform in use while leveraging in vitro and in vivo data related to local and systemic bioavailability.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Khondoker Alam
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
44
|
Moradi M, Sayari H, Martinez F, Zhao H, Hanaee J, Rahimpour E, Jouyban A. Dissolution thermodynamic study of naproxen in the mixtures of ethylene glycol and water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
In Silico Modeling and Simulation to Guide Bioequivalence Testing for Oral Drugs in a Virtual Population. Clin Pharmacokinet 2021; 60:1373-1385. [PMID: 34191255 DOI: 10.1007/s40262-021-01045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Model-informed drug discovery and development (MID3) shows great advantages in facilitating drug development. A physiologically based pharmacokinetic model is one of the powerful computational approaches of MID3, and the emerging field of virtual bioequivalence is well recognized to be the future of the physiologically based pharmacokinetic model. Based on the translational link between in vitro, in silico, and in vivo, virtual bioequivalence study can evaluate the similarity and potential difference of pharmacokinetic and clinical performance between test and reference formulations. With the aid of virtual bioequivalence study, the pivotal information of clinical trials can be provided to streamline the development for both new and generic drugs. However, a regulatory framework of virtual bioequivalence study has not reached its full maturity. Therefore, this article aims to present an overview of the current status of bioequivalence study, identify the framework of virtual bioequivalence studies for oral drugs, and also discuss the future opportunities of virtual bioequivalence in supporting the waiver and optimization of in vivo clinical trials.
Collapse
|
46
|
Wu F, Cristofoletti R, Zhao L, Rostami‐Hodjegan A. Scientific considerations to move towards biowaiver for biopharmaceutical classification system class III drugs: How modeling and simulation can help. Biopharm Drug Dispos 2021; 42:118-127. [DOI: 10.1002/bdd.2274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Fang Wu
- Division of Quantitative Methods and Modeling Office of Research and Standards Office of Generic Drugs Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics Center for Pharmacometrics and Systems Pharmacology College of Pharmacy University of Florida Orlando Florida USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling Office of Research and Standards Office of Generic Drugs Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic Research University of Manchester Manchester UK
- Certara UK Limited Sheffield UK
| |
Collapse
|
47
|
Kambayashi A, Yomota C. Exploring clinically relevant dissolution specifications for oral solid dosage forms of weak acid drugs using an in silico modeling and simulation approach. Eur J Pharm Sci 2021; 159:105728. [DOI: 10.1016/j.ejps.2021.105728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/27/2020] [Accepted: 01/17/2021] [Indexed: 01/30/2023]
|
48
|
Tsakalozou E, Babiskin A, Zhao L. Physiologically-based pharmacokinetic modeling to support bioequivalence and approval of generic products: A case for diclofenac sodium topical gel, 1. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:399-411. [PMID: 33547863 PMCID: PMC8129718 DOI: 10.1002/psp4.12600] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Establishing bioequivalence (BE) for dermatological drug products by conducting comparative clinical end point studies can be costly and the studies may not be sufficiently sensitive to detect certain formulation differences. Quantitative methods and modeling, such as physiologically‐based pharmacokinetic (PBPK) modeling, can support alternative BE approaches with reduced or no human testing. To enable PBPK modeling for regulatory decision making, models should be sufficiently verified and validated (V&V) for the intended purpose. This report illustrates the US Food and Drug Administration (FDA) approval of a generic diclofenac sodium topical gel that was based on a totality of evidence, including qualitative and quantitative sameness and physical and structural similarity to the reference product, an in vivo BE study with PK end points, and, more importantly, for the purposes of this report, a virtual BE assessment leveraging dermal PBPK modeling and simulation instead of a comparative clinical end point study in patients. The modeling approach characterized the relationship between systemic (plasma) and local (skin and synovial fluid) diclofenac exposure and demonstrated BE between the generic and reference products at the presumed site of action. Based on the fit‐for‐purpose modeling principle, the V&V process involved assessing observed data of diclofenac concentrations in skin tissues and plasma, and the overall performance of the modeling platform for relevant products. Using this case as an example, this report provides current scientific considerations on good practices for model V&V and the establishment of BE for dermatological drug products when leveraging PBPK modeling and simulation for regulatory decision making.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
49
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
50
|
Statelova M, Holm R, Fotaki N, Reppas C, Vertzoni M. Factors Affecting Successful Extrapolation of Ibuprofen Exposure from Adults to Pediatric Populations After Oral Administration of a Pediatric Aqueous Suspension. AAPS JOURNAL 2020; 22:146. [DOI: 10.1208/s12248-020-00522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
|