1
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
2
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
3
|
Haddadzadegan S, To D, Matteo Jörgensen A, Wibel R, Laffleur F, Bernkop-Schnürch A. Comparative Analysis of PEG-Free and PEG-Based Self-Emulsifying Drug Delivery Systems for Enhanced Oral Bioavailability of Therapeutic (Poly) Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307618. [PMID: 38308358 DOI: 10.1002/smll.202307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Wibel R, van Hoogevest P, Drescher S. The role of phospholipids in drug delivery formulations - Recent advances presented at the Researcher's Day 2023 Conference of the Phospholipid Research Center Heidelberg. Eur J Pharm Biopharm 2024; 197:114215. [PMID: 38350530 DOI: 10.1016/j.ejpb.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
This Focus on Meetings contribution summarizes recent advances in the research on phospholipids and their applications for drug delivery and analytical purposes that have been presented at the hybrid Researcher's Day 2023 Conference of the Phospholipid Research Center (PRC), held on July 3-5, 2023, in Bad Dürkheim, Germany. The PRC is a non-profit organization focused on expanding and sharing scientific and technological knowledge of phospholipids in pharmaceutical and other applications. This is accomplished by, e.g., funding doctoral and postdoctoral research projects. The progress made with these projects is presented at the Researcher's Day Conference every two years. Four main topics were presented and discussed in various lectures: (1) formulation of phospholipid-based nanocarriers, (2) therapeutic applications of phospholipids and phospholipid-based nanocarriers, (3) phospholipids as excipients in oral, dermal, and parenteral dosage forms, and (4) interactions of phospholipids and phospholipid-based vesicles in biological environment and their use as analytical platforms.
Collapse
Affiliation(s)
- Richard Wibel
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Peter van Hoogevest
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
6
|
Barfar A, Alizadeh H, Masoomzadeh S, Javadzadeh Y. Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies. Curr Drug Deliv 2024; 21:887-900. [PMID: 37202888 DOI: 10.2174/1567201820666230518161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed. INTRODUCTION One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms. METHODS Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results. RESULTS According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing. CONCLUSION Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.
Collapse
Affiliation(s)
- Ashkan Barfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helia Alizadeh
- Pharm.D Student, Pharmacy Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Spleis H, Federer C, Claus V, Sandmeier M, Bernkop-Schnürch A. Hydrophobic Ion Pairing of Small Molecules: How to Minimize Premature Drug Release from SEDDS and Reach the Absorption Membrane in Intact Form. ACS Biomater Sci Eng 2023; 9:1450-1459. [PMID: 36786693 PMCID: PMC10015432 DOI: 10.1021/acsbiomaterials.2c01504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The present work aimed to form hydrophobic ion pairs (HIPs) of a small molecule remaining inside the oily droplets of SEDDS to a high extent. HIPs of ethacridine and various surfactants classified by functional groups of phosphates, sulfates, and sulfonates were formed and precipitation efficiency, log Dn-octanol/water, and solubility in different excipients were investigated. Most lipophilic HIPs were incorporated into SEDDS and evaluated regarding drug release. Docusate HIPs showed the highest increase in lipophilicity with a precipitation efficiency of 100%, a log Dn-octanol/water of 2.66 and a solubility of 132 mg/mL in n-octanol, 123 mg/mL in oleyl alcohol, and 40 mg/mL in medium chain triglycerides. Docusate HIPs were incorporated into three SEDDS of increasing lipophilicity (F1 < F2 < F3) based on medium chain triglycerides, oleyl alcohol, Kolliphor EL, and Tween 80 (F1: 1 + 5 + 2 + 2; F2: 3 + 3 + 2 + 2; F3: 5 + 1 + 4 + 0). Highest achievable payloads ranged from 74.49 mg/mL (F3) to 97.13 mg/mL (F1) and log DSEDDS/RM increased by at least 7.5 units (4.99, F1). Drug release studies via the diffusion membrane method confirmed minor release of docusate HIPs from all SEDDS (<2.7% within 4 h). In conclusion, highly lipophilic HIPs remain inside the oily phase of SEDDS and likely reach the absorption membrane in intact form.
Collapse
Affiliation(s)
- Helen Spleis
- Thiomatrix
Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020Innsbruck, Austria
| | - Christoph Federer
- Thiomatrix
Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020Innsbruck, Austria
| | - Victor Claus
- Thiomatrix
Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020Innsbruck, Austria
| | - Matthias Sandmeier
- Thiomatrix
Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Thiomatrix
Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020Innsbruck, Austria
- Department
of Pharmaceutical Technology, University
of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innrain 80/82, 6020Innsbruck, Austria
- . Phone: +43-512-507-58-600
| |
Collapse
|
8
|
In situ rearranged multifunctional lipid nanoparticles via synergistic potentiation for oral insulin delivery. Int J Pharm 2023; 636:122811. [PMID: 36894044 DOI: 10.1016/j.ijpharm.2023.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Oral administration of therapeutic peptides/proteins (TPPs) is confronted with multiple gastrointestinal (GI) barriers such as mucus and intestinal epithelium, and the first-pass metabolism in the liver is also responsible for low bioavailability. In situ rearranged multifunctional lipid nanoparticles (LNs) were developed to overcome these obstacles via synergistic potentiation for oral insulin delivery. After the reverse micelles of insulin (RMI) containing functional components were gavaged, LNs formed in situ under the hydration effect of GI fluid. The nearly electroneutral surface generated by the rearrangement of sodium deoxycholate (SDC) and chitosan (CS) on the reverse micelle core facilitated LNs (RMI@SDC@SB12-CS) to overcome mucus barrier and the sulfobetaine 12 (SB12) modification further promoted epithelial uptake of LNs. Subsequently, chylomicron-like particles formed by the lipid core in the intestinal epithelium were easily transported to the lymphatic circulation and then into the systemic circulation, thus avoiding hepatic first-pass metabolism. Eventually, RMI@SDC@SB12-CS achieved a high pharmacological bioavailability of 13.7% in diabetic rats. In conclusion, this study provides a versatile platform for enhanced oral insulin delivery.
Collapse
|
9
|
Xin J, Qin M, Ye G, Gong H, Li M, Sui X, Liu B, Fu Q, He Z. Hydrophobic ion pairing-based self-emulsifying drug delivery systems: a new strategy for improving the therapeutic efficacy of water-soluble drugs. Expert Opin Drug Deliv 2023; 20:1-11. [PMID: 36408589 DOI: 10.1080/17425247.2023.2150758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are formulations consisting of oil phase, emulsifiers, and co-emulsifiers, which can be spontaneously emulsified in the body to form O/W microemulsion. Traditionally, SEDDS are used commercially for the improvement of oral absorption and in vivo performances for poorly water-soluble drugs. However, SEDDS formulations were rarely reported for the delivery of water-soluble drugs. Recent studies have found that SEDDS have the potential for water-soluble macromolecular drugs by the application of the hydrophobic ion pairing (HIP) technology. AREAS COVERED This review summarized the characteristics of HIP complexes in SEDDS and introduced their advantages and discussed the future prospects of HIP-based SEDDS in drug delivery. EXPERT OPINION Hydrophobic ion pairing (HIP) is a technology that combines lipophilic structures on polar counterions to increase the lipophilicity through electrostatic interaction. Recent studies showed that HIP-based SEDDS offer an effective way to increase the mucosal permeability and improve the chemical stability for antibiotics, proteases, DNA-based drugs, and other water-soluble macromolecular drugs. It is believed that HIP-based SEDDS offer a potential and attractive method capable of delivering hydrophilic macromolecules with ionizable groups for oral administration.
Collapse
Affiliation(s)
- Jinghan Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Genyang Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
10
|
Debotton N, Grasiani S, Cohen Y, Dahan A. Enabling Oral Delivery of Antiviral Drugs: Double Emulsion Carriers to Improve the Intestinal Absorption of Zanamivir. Int J Pharm 2022; 629:122392. [DOI: 10.1016/j.ijpharm.2022.122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
11
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
12
|
Shahzadi I, Fürst A, Knoll P, Bernkop-Schnürch A. Nanostructured Lipid Carriers (NLCs) for Oral Peptide Drug Delivery: About the Impact of Surface Decoration. Pharmaceutics 2021; 13:1312. [PMID: 34452273 PMCID: PMC8399745 DOI: 10.3390/pharmaceutics13081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study was aimed to evaluate the impact of surfactants used for nanostructured lipid carriers (NLCs) to provide enzymatic protection for incorporated peptides. Insulin as a model peptide was ion paired with sodium dodecyl sulfate to improve its lipophilicity. Three NLC formulations containing polyethylene glycol ester (PEG-ester), polyethylene glycol ether (PEG-ether), and polyglycerol ester (PG-ester) surfactants were prepared by solvent diffusion method. NLCs were characterized regarding particle size, polydispersity index, and zeta potential. Biocompatibility of NLCs was assessed on Caco-2 cells via resazurin assay. In vitro lipolysis study was performed using a standard lipid digestion method. Proteolytic studies were performed in simulated gastric fluid containing pepsin and simulated intestinal fluid containing pancreatin. Lipophilicity of insulin in terms of log Poctanol/water was improved from -1.8 to 2.1. NLCs were in the size range of 64-217 nm with a polydispersity index of 0.2-0.5 and exhibited a negative surface charge. PG-ester NLCs were non-cytotoxic up to a concentration of 0.5%, PEG-ester NLCs up to a concentration of 0.25% and PEG-ether NLC up to a concentration of 0.125% (w/v). The lipolysis study showed the release of >90%, 70%, and 10% of free fatty acids from PEG-ester, PG-ester, and PEG-ether NLCs, respectively. Proteolysis results revealed the highest protective effect of PEG-ether NLCs followed by PG-ester and PEG-ester NLCs for incorporated insulin complex. Findings suggest that NLCs bearing substructures less susceptible to degrading enzymes on their surface can provide higher protection for incorporated peptides toward gastrointestinal proteases.
Collapse
Affiliation(s)
| | | | | | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (P.K.)
| |
Collapse
|
13
|
Verma S, Goand UK, Husain A, Katekar RA, Garg R, Gayen JR. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev Res 2021; 82:927-944. [PMID: 33988872 DOI: 10.1002/ddr.21832] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Advancement in biotechnology provided a notable expansion of peptide and protein therapeutics, used as antigens, vaccines, hormones. It has a prodigious potential to treat a broad spectrum of diseases such as cancer, metabolic disorders, bone disorders, and so forth. Protein and peptide therapeutics are administered parenterally due to their poor bioavailability and stability, restricting their use. Hence, research focuses on the oral delivery of peptides and proteins for the ease of self-administration. In the present review, we first address the main obstacles in the oral delivery system in addition to approaches used to enhance the stability and bioavailability of peptide/protein. We describe the physiochemical parameters of the peptides and proteins influencing bioavailability in the systemic circulation. It encounters, many barriers affecting its stability, such as poor cellular membrane permeability at the GIT site, enzymatic degradation (various proteases), and first-pass hepatic metabolism. Then describe the current approaches to overcome the challenges mentioned above by the use of absorption enhancers or carriers, structural modification, formulation and advance technology.
Collapse
Affiliation(s)
- Saurabh Verma
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Umesh K Goand
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Athar Husain
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Roshan A Katekar
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Garg
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
14
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
15
|
Gong Y, Mohd S, Wu S, Liu S, Pei Y, Luo X. pH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. ACS OMEGA 2021; 6:2734-2741. [PMID: 33553891 PMCID: PMC7860066 DOI: 10.1021/acsomega.0c04946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Functional modified cellulose microsphere (CMs) materials exhibit great application potential in drug various fields. Here, we designed pH-responsive carboxylated cellulose microspheres (CCMs) by the citric/hydrochloric acid hydrolysis method to enhance oral bioavailability of insulin by a green route. The CMs were high purity cellulose that dissolved and regenerated from a green solvent by the green sol-gel method. The prepared microspheres were characterized by spectroscopic techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XPS), etc. The spherical porous structure and carboxylation of cellulose were confirmed by FESEM and FT-IR, respectively. Insulin was loaded into the CCMs by electrostatic interactions, and the insulin release was controlled through ionization of carboxyl groups and proton balance. In vitro insulin release profiles demonstrated the suppression of insulin release in artificial gastric fluid (AGF), while a significant increase at artificial intestinal fluid (AIF) was observed. The insulin release profile was fitted in Korsmeyer-Peppas kinetic model, and insulin release was governed by the Fickian diffusion mechanism. The stability of the secondary structure of insulin was studied by dichroism circular. Excellent biocompatibility and no cytotoxicity of designed CCMs cast them as a potential oral insulin carrier.
Collapse
Affiliation(s)
- Yaqi Gong
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shabbir Mohd
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Simei Wu
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shilin Liu
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, 430205 Hubei Province, China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
| | - Ying Pei
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- . Tel.: +86-182-39907053
| | - Xiaogang Luo
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- ; . Tel.: +86-139-86270668
| |
Collapse
|
16
|
Drescher S, van Hoogevest P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12121235. [PMID: 33353254 PMCID: PMC7766331 DOI: 10.3390/pharmaceutics12121235] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the research on phospholipids and their use for drug delivery related to the Phospholipid Research Center Heidelberg (PRC). The focus is on projects that have been approved by the PRC since 2017 and are currently still ongoing or have recently been completed. The different projects cover all facets of phospholipid research, from basic to applied research, including the use of phospholipids in different administration forms such as liposomes, mixed micelles, emulsions, and extrudates, up to industrial application-oriented research. These projects also include all routes of administration, namely parenteral, oral, and topical. With this review we would like to highlight possible future research directions, including a short introduction into the world of phospholipids.
Collapse
|
17
|
Abou Assi R, M. Abdulbaqi I, Seok Ming T, Siok Yee C, A. Wahab H, Asif SM, Darwis Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as Carriers for the Oral Delivery of Azithromycin: Optimization, In Vitro Characterization and Stability Assessment. Pharmaceutics 2020; 12:E1052. [PMID: 33158058 PMCID: PMC7693798 DOI: 10.3390/pharmaceutics12111052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.
Collapse
Affiliation(s)
- Reem Abou Assi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Ibrahim M. Abdulbaqi
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- The Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun kupri, Kirkuk 36001, Iraq
| | - Toh Seok Ming
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Chan Siok Yee
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Habibah A. Wahab
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| | - Shaik Mohammed Asif
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
- Pharma Research, Wockhardt Research Center, Aurangabad 431002, India
| | - Yusrida Darwis
- The Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (R.A.A.); (I.M.A.); (T.S.M.); (S.M.A.)
| |
Collapse
|
18
|
Liu J, Werner U, Funke M, Besenius M, Saaby L, Fanø M, Mu H, Müllertz A. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats. Int J Pharm 2019; 560:377-384. [PMID: 30790612 DOI: 10.1016/j.ijpharm.2019.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
To face the challenges of oral delivery of peptide and protein (P/P) drugs, self-emulsifying drug delivery systems (SEDDSs) containing monoacyl phosphatidylcholine (MAPC), Labrasol (LAB) and medium-chain (MC) monoglycerides as permeation enhancers (PEs) were evaluated for their effect on intestinal absorption of insulin. In this study, insulin was complexed with phosphatidylcholine (SPC) to form an insulin-SPC complex (ins-SPC) with increased lipophilicity. The following three SEDDSs: MCT(MAPC) (MC triglycerides and MAPC included), MCT(RH40) (MC triglycerides and Kolliphor® RH40 included) and LCT(MAPC) (long-chain triglycerides and MAPC included) were loading with ins-SPC (4% or 8% w/w of SPC). Three SEDDSs generated emulsions with droplet sizes between 50 and 470 nm and with zeta potentials between -5 to -25 mV in a simulated intestinal medium. Mucus-secreting Caco-2/HT29-MTX-E12 co-culture and Caco-2 monolayers were used as in vitro cell transport models to investigate insulin permeability. In comparison to insulin HBSS solution, MCT(MAPC) significantly increased the insulin permeability across co-culture and Caco-2 monolayers (2.0-2.5 × 10-7 cm/s). In an intra-jejunal (i.j.) instillation model in rats, MCT(RH40) significantly decreased the rat blood glucose after 0.5 h by 17.0 ± 2.5% and for MCT(MAPC), it was 23.6 ± 10.6%. Furthermore, a lipase inhibitor orlistat was incorporated into MCT(MAPC) to evaluate the effect of lipid digestion on insulin absorption. Results indicated that the incorporation of orlistat did not significantly alter the in vivo insulin absorption. Overall, the SEDDS MCT(MAPC) composed of natural PEs (MAPC and MC glycerides) and synthetic PE (LAB) significantly increased the intestinal absorption of insulin upon i.j. instillation. Although it is not possible to conclude if a single PE is dominating the intestinal absorption of insulin, MCT(MAPC) seems to have the potential for oral insulin delivery.
Collapse
Affiliation(s)
- Jingying Liu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ulrich Werner
- Diabetes Division in Research and Development, Sanofi-Aventis Deutschland GmbH, K703 65926 Frankfurt, Germany
| | - Mario Funke
- Diabetes Division in Research and Development, Sanofi-Aventis Deutschland GmbH, K703 65926 Frankfurt, Germany
| | - Melissa Besenius
- Diabetes Division in Research and Development, Sanofi-Aventis Deutschland GmbH, K703 65926 Frankfurt, Germany
| | - Lasse Saaby
- Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathias Fanø
- Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|