1
|
Nawaz MZ, Khalid HR, Mirza MU, Xu L, Haider SZ, Al-Ghanim KA, Barceló D, Zhu D. Elucidating the bioremediation potential of laccase and peroxidase enzymes from Bacillus ligniniphilus L1 in antibiotic degradation: A computationally guided study. BIORESOURCE TECHNOLOGY 2024; 413:131520. [PMID: 39321942 DOI: 10.1016/j.biortech.2024.131520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
This study showcased the antibiotic degradation abilities of laccase and catalase-peroxidase from Bacillus ligniniphilus L1, an extremophile, against 18 common antibiotics using computationally guided approach. Molecular docking and simulation identified six enzyme-antibiotic complexes for laccase and four for catalase-peroxidase, demonstrating significant binding affinity and stability. Enzyme activity assays corroborated computational results, indicating both enzymes could degrade all tested antibiotics with varying efficiencies. L1 laccase outperformed commercial laccase against five antibiotics, notably vancomycin, levofloxacin, tobramycin, linezolid, and rifamycin, with enhanced degradation potential upon ABTS addition. Catalase-peroxidase from L1 exhibited superior degradation efficiency over commercial peroxidase against vancomycin, linezolid, tobramycin, and clindamycin. Overall, this study underscores the computational approach's utility in understanding enzyme-mediated antibiotic degradation, offering insights into environmental contaminant remediation.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hafiz Rameez Khalid
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Lingxia Xu
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Zeeshan Haider
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Daochen Zhu
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Rostom MM, El-Zohairy MA, Marzouk MA, Berger MR, Schols D, Assal RA, Mandour YM, Adwan H, Zlotos DP. N-[4-(Benzyloxy)-3-methoxybenzyl)]adamantane-1-amine (DZH2), a dual CCR5 and CXCR4 inhibitor as a potential agent against triple negative breast cancer. Arch Pharm (Weinheim) 2024:e2400146. [PMID: 39468982 DOI: 10.1002/ardp.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
DZH2, a dual inhibitor of the chemokine receptors CCR5 and CXCR4, was discovered from virtual screening for CCR5 antagonists. In specific Ca2+ chemokine signaling assays, DZH2 displayed low micromolar IC50 values at both chemokine receptors. Its binding to intracellular allosteric binding sites of CCR5 and CXCR4 was confirmed by MD simulations and binding free-energy calculations. DZH2 is superior to the CCR5 antagonist maraviroc in terms of its inhibitory activity on the growth of two breast cancer cell lines. In MCF7 and MDA-MB-231 cells, DZH2 was a >100-fold more potent inhibitor of cell viability compared to maraviroc. DZH2 (6.7 µM) reduced migration of MDA-MB-231 cells to 4% compared to 50% inhibition of migration caused by maraviroc (780 µM). Also, DZH2 was a significantly more potent inhibitor of colony formation in MDA-MB-231 cells than maraviroc. In MCF10 cells, DZH2 caused no alteration in the gene expression with respect to cellular pathways mediating cell death, indicating its selectivity to breast cancer cells.
Collapse
Affiliation(s)
- Monica M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mariam A El-Zohairy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Marzouk
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Reem A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Hassan Adwan
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
3
|
Dogan B, Durdağı S. Investigating the Effect of GLU283 Protonation State on the Conformational Heterogeneity of CCR5 by Molecular Dynamics Simulations. J Chem Inf Model 2024. [PMID: 39435878 DOI: 10.1021/acs.jcim.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
CCR5 is a class A GPCR and serves as one of the coreceptors facilitating HIV-1 entry into host cells. This receptor has vital roles in the immune system and is involved in the pathogenesis of different diseases. Various studies were conducted to understand its activation mechanism, including structural studies in which inactive and active states of the receptor were determined in complex with various binding partners. These determined structures provided opportunities to perform molecular dynamics (MD) simulations and to analyze conformational changes observed in the protein structures. The atomic-level dynamic studies allow us to explore the effects of ionizable residues on the receptor. Here, our aim was to investigate the conformational changes in CCR5 when it forms a complex with either the inhibitor maraviroc (MRV), an approved anti-HIV drug, or HIV-1 envelope protein GP120, and compare these changes to the receptor's apo form. In our simulations, we considered both ionized and protonated states of ionizable binding site residue GLU2837.39 in CCR5 as the protonation state of this residue was considered ambiguously in previous studies. Our molecular simulations results suggested that in fact, the change in the protonation state of GLU2837.39 caused interaction profiles to be different between CCR5 and its binding partners, GP120 or MRV. We observed that when the protonated state of GLU2837.39 was considered in complex with the envelope protein GP120, there were substantial structural changes in CCR5, indicating that it adopts a more active-like conformation. On the other hand, CCR5 in complex with MRV always adopted an inactive conformation regardless of the protonation state. Hence, the CCR5 coreceptor displays conformational heterogeneity not only depending on its binding partner but also influenced by the protonation state of the binding site binding site residue GLU2837.39. This outcome is also in accordance with some studies showing that GP120 binding could activate signaling pathways. This outcome could also have significant implications for discovering novel CCR5 inhibitors as anti-HIV drugs using in silico methods such as molecular docking, as it may be necessary to consider the protonated state of GLU2837.39.
Collapse
Affiliation(s)
- Berna Dogan
- Department of Biochemistry, School of Medicine, Bahcesehir University, Istanbul 34353, Türkiye
- Deparment of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Türkiye
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, Istanbul 34353, Türkiye
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul 34353, Türkiye
| |
Collapse
|
4
|
Iman K, Mirza MU, Sadia F, Froeyen M, Trant JF, Chaudhary SU. Pharmacophore-Assisted Covalent Docking Identifies a Potential Covalent Inhibitor for Drug-Resistant Genotype 3 Variants of Hepatitis C Viral NS3/4A Serine Protease. Viruses 2024; 16:1250. [PMID: 39205224 PMCID: PMC11359326 DOI: 10.3390/v16081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.
Collapse
Affiliation(s)
- Kanzal Iman
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Muhammad Usman Mirza
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Fazila Sadia
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven—University of Leuven, B-3000 Leuven, Belgium;
| | - John F. Trant
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Safee Ullah Chaudhary
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| |
Collapse
|
5
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Di Marino D, Conflitti P, Motta S, Limongelli V. Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nat Commun 2023; 14:6439. [PMID: 37833254 PMCID: PMC10575954 DOI: 10.1038/s41467-023-42082-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are prominent drug targets responsible for extracellular-to-intracellular signal transduction. GPCRs can form functional dimers that have been poorly characterized so far. Here, we show the dimerization mechanism of the chemokine receptors CCR5 and CXCR4 by means of an advanced free-energy technique named coarse-grained metadynamics. Our results reproduce binding events between the GPCRs occurring in the minute timescale, revealing a symmetric and an asymmetric dimeric structure for each of the three investigated systems, CCR5/CCR5, CXCR4/CXCR4, and CCR5/CXCR4. The transmembrane helices TM4-TM5 and TM6-TM7 are the preferred binding interfaces for CCR5 and CXCR4, respectively. The identified dimeric states differ in the access to the binding sites of the ligand and G protein, indicating that dimerization may represent a fine allosteric mechanism to regulate receptor activity. Our study offers structural basis for the design of ligands able to modulate the formation of CCR5 and CXCR4 dimers and in turn their activity, with therapeutic potential against HIV, cancer, and immune-inflammatory diseases.
Collapse
Affiliation(s)
- Daniele Di Marino
- Department of Life and Environmental Sciences - New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paolo Conflitti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Vittorio Limongelli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland.
| |
Collapse
|
7
|
Ahmad S, Mirza MU, Trant JF. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study. J Pharm Anal 2023; 13:523-534. [PMID: 37275125 PMCID: PMC10104786 DOI: 10.1016/j.jpha.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Peptide-based therapeutics are increasingly pushing to the forefront of biomedicine with their promise of high specificity and low toxicity. Although noncanonical residues can always be used, employing only the natural 20 residues restricts the chemical space to a finite dimension allowing for comprehensive in silico screening. Towards this goal, the dataset comprising all possible di-, tri-, and tetra-peptide combinations of the canonical residues has been previously reported. However, with increasing computational power, the comprehensive set of pentapeptides is now also feasible for screening as the comprehensive set of cyclic peptides comprising four or five residues. Here, we provide both the complete and prefiltered libraries of all di-, tri-, tetra-, and penta-peptide sequences from 20 canonical amino acids and their homodetic (N-to-C-terminal) cyclic homologues. The FASTA, simplified molecular-input line-entry system (SMILES), and structure-data file (SDF)-three dimension (3D) libraries can be readily used for screening against protein targets. We also provide a simple method and tool for conducting identity-based filtering. Access to this dataset will accelerate small peptide screening workflows and encourage their use in drug discovery campaigns. As a case study, the developed library was screened against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease to identify potential small peptide inhibitors.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, Ontario, Canada
- Binary Star Research Services, LaSalle N9J 3X8, Ontario, Canada
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, Ontario, Canada
- Binary Star Research Services, LaSalle N9J 3X8, Ontario, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, Ontario, Canada
- Binary Star Research Services, LaSalle N9J 3X8, Ontario, Canada
| |
Collapse
|
8
|
Kalsi D, Louis Anandaraj SJ, Durai M, Weidenthaler C, Emondts M, Nolan SP, Bordet A, Leitner W. One-Pot Multicomponent Synthesis of Allyl and Alkylamines Using a Catalytic System Composed of Ruthenium Nanoparticles on Copper N-Heterocyclic Carbene-Modified Silica. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Deepti Kalsi
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Savarithai J. Louis Anandaraj
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Manisha Durai
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
9
|
Hybrid Molecules as Potential Drugs for the Treatment of HIV: Design and Applications. Pharmaceuticals (Basel) 2022; 15:ph15091092. [PMID: 36145313 PMCID: PMC9502546 DOI: 10.3390/ph15091092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major problem for humanity because HIV is constantly changing and developing resistance to current drugs. This necessitates the development of new anti-HIV drugs that take new approaches to combat an ever-evolving virus. One of the promising alternatives to combination antiretroviral therapy (cART) is the molecular hybrid strategy, in which two or more pharmacophore units of bioactive scaffolds are combined into a single molecular structure. These hybrid structures have the potential to have higher efficacy and lower toxicity than their parent molecules. Given the potential advantages of the hybrid molecular approach, the development and synthesis of these compounds are of great importance in anti-HIV drug discovery. This review focuses on the recent development of hybrid compounds targeting integrase (IN), reverse transcriptase (RT), and protease (PR) proteins and provides a brief description of their chemical structures, structure–activity relationship, and binding mode.
Collapse
|
10
|
Yero A, Shi T, Routy JP, Tremblay C, Durand M, Costiniuk CT, Jenabian MA. FoxP3+ CD8 T-cells in acute HIV infection and following early antiretroviral therapy initiation. Front Immunol 2022; 13:962912. [PMID: 35967314 PMCID: PMC9372390 DOI: 10.3389/fimmu.2022.962912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
ObjectivesBesides CD4 regulatory T-cells (Tregs), immunosuppressor FoxP3+ CD8 T-cells are emerging as an important subset of Tregs, which contribute to immune dysfunction and disease progression in HIV infection. However, FoxP3+ CD8 T-cell dynamics in acute HIV infection and following early antiretroviral therapy (ART) initiation remain understudied.MethodsSubsets of FoxP3+ CD8 T-cells were characterized both prospectively and cross-sectionally in PBMCs from untreated acute (n=26) and chronic (n=10) HIV-infected individuals, early ART-treated in acute infection (n=10, median of ART initiation: 5.5 months post-infection), ART-treated in chronic infection (n=10), elite controllers (n=18), and HIV-uninfected controls (n=21).ResultsAcute and chronic infection were associated with increased total, effector memory, and terminally differentiated FoxP3+ CD8 T-cells, while early ART normalized only the frequencies of total FoxP3+ CD8 T-cells. We observed an increase in FoxP3+ CD8 T-cell immune activation (HLADR+/CD38+), senescence (CD57+/CD28-), and PD-1 expression during acute and chronic infection, which were not normalized by early ART. FoxP3+ CD8 T-cells in untreated participants expressed higher levels of immunosuppressive LAP(TGF-β1) and CD39 than uninfected controls, whereas early ART did not affect their expression. The expression of gut-homing markers CCR9 and Integrin-β7 by total FoxP3+ CD8 T-cells and CD39+ and LAP(TGF-β1)+ FoxP3+ CD8 T-cells increased in untreated individuals and remained higher than in uninfected controls despite early ART. Elite controllers share most of the FoxP3+ CD8 T-cell characteristics in uninfected individuals.ConclusionsAlthough early ART normalized total FoxP3+ CD8 T-cells frequencies, it did not affect the persistent elevation of the gut-homing potential of CD39+ and LAP(TGF-β1)+ FoxP3+ CD8 T-cell, which may contribute to immune dysfunction.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Mohammad-Ali Jenabian,
| |
Collapse
|
11
|
Fatima I, Ahmad S, Alamri MA, Mirza MU, Tahir Ul Qamar M, Rehman A, Shahid F, Alatawi EA, Alkhayl FFA, Al-Megrin WA, Almatroudi A. Discovery of Rift Valley fever virus natural pan-inhibitors by targeting its multiple key proteins through computational approaches. Sci Rep 2022; 12:9260. [PMID: 35662263 PMCID: PMC9163866 DOI: 10.1038/s41598-022-13267-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
The Rift Valley fever virus (RVFV) is a zoonotic arbovirus and pathogenic to both humans and animals. Currently, no proven effective RVFV drugs or licensed vaccine are available for human or animal use. Hence, there is an urgent need to develop effective treatment options to control this viral infection. RVFV glycoprotein N (GN), glycoprotein C (GC), and nucleocapsid (N) proteins are attractive antiviral drug targets due to their critical roles in RVFV replication. In present study, an integrated docking-based virtual screening of more than 6000 phytochemicals with known antiviral activities against these conserved RVFV proteins was conducted. The top five hit compounds, calyxin C, calyxin D, calyxin J, gericudranins A, and blepharocalyxin C displayed optimal binding against all three target proteins. Moreover, multiple parameters from the molecular dynamics (MD) simulations and MM/GBSA analysis confirmed the stability of protein-ligand complexes and revealed that these compounds may act as potential pan-inhibitors of RVFV replication. Our computational analyses may contribute toward the development of promising effective drugs against RVFV infection.
Collapse
Affiliation(s)
- Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | | | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, 51418, Saudi Arabia
| | - Wafa Abdullah Al-Megrin
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| |
Collapse
|
12
|
Alamri MA, Mirza MU, Adeel MM, Ashfaq UA, Tahir ul Qamar M, Shahid F, Ahmad S, Alatawi EA, Albalawi GM, Allemailem KS, Almatroudi A. Structural Elucidation of Rift Valley Fever Virus L Protein towards the Discovery of Its Potential Inhibitors. Pharmaceuticals (Basel) 2022; 15:659. [PMID: 35745579 PMCID: PMC9228520 DOI: 10.3390/ph15060659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans. The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral replication and is thus an appealing drug target because no effective and specific vaccine against this virus is available. The current study reported the structural elucidation of the RVFV-L protein by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds) was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also performed. Besides, the binding mechanism and stability of identified compounds were confirmed by a 50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations. Homology modeling determined a stable multi-domain structure of L protein. An analysis of known L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into the binding mechanism and reveals key residues of the L protein binding pocket. The screening results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the present study determined potential compounds that may aid in the rational design of novel inhibitors of the RVFV L protein as anti-RVFV drugs.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia;
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Muhammad Muzammal Adeel
- 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ghadah M. Albalawi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| |
Collapse
|
13
|
Mirza MU, Alanko I, Vanmeert M, Muzzarelli KM, Salo-Ahen OMH, Abdullah I, Kovari IA, Claes S, De Jonghe S, Schols D, Schinazi RF, Kovari LC, Trant JF, Ahmad S, Froeyen M. The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. Eur J Pharm Sci 2022; 175:106220. [PMID: 35618201 DOI: 10.1016/j.ejps.2022.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease. The top hits were selected based on various binding free energy calculations followed by per-residue decomposition analysis. The selected hits were then evaluated for their biological potential with ZIKV protease inhibition assay and antiviral activity. Among 26 selected compounds, 8 compounds showed promising activity against ZIKV protease with a percentage inhibition of greater than 25 and 3 compounds displayed ∼50% at 10 µM, which indicates an enrichment rate of approximately 36% (threshold IC50 < 10 µM) in the ZIKV-NS2B-NS3 protease inhibition assay. Of these, only one compound (23) produced whole-cell anti-ZIKV activity, and the binding mode of 23 was extensively analyzed through long-run molecular dynamics simulations. The current study provides a promising starting point for the further development of novel compounds against ZIKV.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium; Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Ida Alanko
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium
| | - Kendall M Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iulia A Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Sandra Claes
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta 30322, GA, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Sarfraz Ahmad
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium.
| |
Collapse
|
14
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|
15
|
Daoud S, Taha M. Ligand-Based Modeling of CXC Chemokine Receptor 4 and Identification of Inhibitors of Novel Chemotypes as Potential Leads towards New Anti-COVID-19 Treatments. Med Chem 2022; 18:871-883. [PMID: 35040417 DOI: 10.2174/1573406418666220118153541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemokines are involved in several human diseases and in different stages of COVID-19 infection and play critical role in the pathophysiology of the associated acute respiratory disease syndrome, a major complication leading to death among COVID-19 patients. In particular, CXC chemokine receptor 4 (CXCR4) was found to be highly expressed in COVID-19 patients. METHODS We herein describe a computational workflow based on combining pharmacophore modeling and QSAR analysis towards the discovery of novel CXCR4 inhibitors. Subsequent virtual screening identified two promising CXCR4 inhibitors from the National Cancer Institute (NCI) list of compounds. The most active hit showed in vitro IC50 value of 24.4 µM. RESULTS AND CONCLUSION These results prove the validity of the QSAR model and associated pharmacophore models as means to screen virtual databases towards new CXCR4 inhibitors as leads for the development of new COVID-19 therapies.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
16
|
Nwagha TU, Ugwu AO, Nweke M. Does Sickle Cell Disease Protect against HIV Infection: A Systematic Review. Med Princ Pract 2022; 31:516-523. [PMID: 36096094 PMCID: PMC9841758 DOI: 10.1159/000526993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The aim of this systematic review was to investigate whether sickle cell disease (SCD) protects against human immunodeficiency virus (HIV) infection by determining the association between SCD and the incidence and virulence of HIV infection. METHODS This is a systematic review that used MEDLINE, PubMed, CINAHL, and Academic Search Complete as data sources. Articles describing the relationship of SCD with HIV infection were included in this review. The effect measures were converted to correlation coefficients and synthesized accordingly to examine the putative protective role of SCD against HIV infection. Independent full-text screening and data extraction were conducted on all eligible studies. The risk of bias was assessed using the mixed methods appraisal tool. We employed a random-effects model of meta-analysis to estimate the pooled prevalence. We computed Cochrane's Q statistics, I2, and prediction interval to quantify effect size heterogeneity. RESULTS SCD reduces the risk of HIV infection by 75% (odds ratio [OR] = 0.25; r = -0.36, p < 0.001; I2 = 71.65). There was no publication bias (Egger's t value = 0.411; p = 0.721). Similarly, risk of HIV virulence was reduced by 77% (OR = 0.23; r = -0.38; p < 0.001; I2 = 63.07). The mechanisms implicated in the protective influence of SCD include autosplenectomy, reduced CCR5 expression, and increased expression of heme and iron-regulated genes. CONCLUSIONS SCD appears to protect against HIV infection and slows HIV progression.
Collapse
Affiliation(s)
- Theresa Ukamaka Nwagha
- Department of Haematology and Immunology, Faculty of Medicine, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Angela Ogechukwu Ugwu
- Department of Haematology and Immunology, Faculty of Medicine, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
- *Angela Ogechukwu Ugwu,
| | - Martins Nweke
- Fledgelight Evidence Consult, Enugu, Nigeria
- Physiotherapy Department, Evangel University Akaeze, Ebonyi State, Nigeria
| |
Collapse
|
17
|
Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. Int J Mol Sci 2021; 22:13009. [PMID: 34884813 PMCID: PMC8658039 DOI: 10.3390/ijms222313009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| |
Collapse
|
18
|
Tahir Ul Qamar M, Ahmad S, Khan A, Mirza MU, Ahmad S, Abro A, Chen LL, Almatroudi A, Wei DQ. Structural probing of HapR to identify potent phytochemicals to control Vibrio cholera through integrated computational approaches. Comput Biol Med 2021; 138:104929. [PMID: 34655900 DOI: 10.1016/j.compbiomed.2021.104929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy < -11 kcal/mol) and as such two compounds: Strychnogucine A and Galluflavanone were filtered. Both the compounds were found favourably binding to the conserved dimerization interface of HapR. One rare binding conformation of Strychnogucine A was noticed docked at the elongated cavity formed by α1, α4 and α6 (binding energy of -12.5 kcal/mol). The binding stability of both top leads at dimer interface and elongated cavity was further estimated using long run of molecular dynamics simulations, followed by MMGB/PBSA binding free energy calculations to define the dominance of different binding energies. In a nutshell, this study presents computational evidence on antibacterial potential of phytochemicals capable of directly targeting bacterial virulence and highlight their great capacity to be utilized in the future experimental studies to stop the evolution of antibiotic resistance evolution.
Collapse
Affiliation(s)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Asma Abro
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences, Quetta, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, PR China.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
19
|
Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg Chem 2021; 114:105076. [PMID: 34157555 DOI: 10.1016/j.bioorg.2021.105076] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
N-heterocycles are important, not only because of their abundance, but above all because of their chemical, biological and technical significance. They play an important role in biological investigation such as anticancer, antiinflammatory, antibacterial, antiviral, anti-tumor, antidiabetic, etc. In this study, we focused on examining synthesized some 5- or 6-ring N-heterocyclic compounds that showed the antiviral activity in last 5 years, and investigation of these compounds structure-activity relationship studies. This review will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
|
20
|
Alamri MA, Tahir Ul Qamar M, Afzal O, Alabbas AB, Riadi Y, Alqahtani SM. Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking and molecular dynamics simulation. J Mol Liq 2021; 330:115699. [PMID: 33867606 PMCID: PMC8040153 DOI: 10.1016/j.molliq.2021.115699] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Middle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CLpro) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CLpro in complex with two covalently bound inhibitors. In silico screening of covalent chemical database having 31,642 compounds led to the identification of 378 compounds that fulfils the pharmacophore queries. Lipinski rules of five were then applied to select only compounds with the best physiochemical properties for orally bioavailable drugs. 260 compounds were obtained and subjected to covalent docking-based virtual screening to determine their binding energy scores. The top three candidate compounds, which were shown to adapt similar binding modes as the reported covalent ligands were selected. The mechanism and stability of binding of these compounds were confirmed by 100 ns molecular dynamic simulation followed by MM/PBSA binding free energy calculation. The identified compounds can facilitate the rational design of novel covalent inhibitors of MERS-CoV 3CLpro enzyme as anti-MERS CoV drugs.
Collapse
Affiliation(s)
- Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
21
|
Muhseen ZT, Ahmad S, Li G. Structural basis of UDP-N-acetylglucosamine pyrophosphorylase and identification of promising terpenes to control Aedes aegypti. Colloids Surf B Biointerfaces 2021; 204:111820. [PMID: 33964525 DOI: 10.1016/j.colsurfb.2021.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
According to the world health organization (WHO) 2020 report, vector borne diseases account for 17 % of all infections with reported 700 thousand death each year. They are of considerable importance to health professionals as they are posing a serious health threat and include dengue fever, Zika fever, chikungunya, yellow fever, and other disease agents. Aedes aegypti serve as a vector for transmitting several of these tropical fevers. In the present study, UDP-N-acetylglucosamine pyrophosphorylase enzyme (Aa-UAP) of A. aegypti which plays a significant contribution in chitin metabolism is targeted with natural terpenes to propose an eco-friendly and novel candidates for the development of new insecticides. The three dimensional Aa-UAP structure was constructed via a comparative homology approach and validated, followed by structure-based virtual screening against 1000 terpenes collected from natural MDP3 and NPACT databases. Top hits were subjected to molecular dynamics (MD) simulations and binding free energies analysis to elucidate complex intermolecular stability and affinity over simulated time. The results demonstrated that Aa-UAP possesses a homodimer state and its active site residues are well conserved. Three compounds (NPACT00138, NPACT00452, and NPACT00839) were prioritized as they are establishing conserved and stable interactions with the active binding-site residues of Aa-UAP. Conclusively, the reported Aa-UAP specific terpenes could serve as promising leads in order to develop potential insecticides. Importantly, the FDA approved drug NPACT00839 (Paclitaxel) could be used further in the fast-track experimental testing pipeline for biological optimization.
Collapse
Affiliation(s)
- Ziyad Tariq Muhseen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China; School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China; School of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
22
|
El-Zohairy M, Zlotos DP, Berger MR, Adwan HH, Mandour YM. Discovery of Novel CCR5 Ligands as Anticolorectal Cancer Agents by Sequential Virtual Screening. ACS OMEGA 2021; 6:10921-10935. [PMID: 34056245 PMCID: PMC8153923 DOI: 10.1021/acsomega.1c00681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 05/07/2023]
Abstract
C-C chemokine receptor type 5 (CCR5) is a member of the G protein-coupled receptor. CCR5 and its interaction with chemokine ligands have been crucial for understanding and tackling human immunodeficiency virus (HIV)-1 entry into target cells. In recent years, the change in CCR5 expression has been related to the progression of different cancer types. Patients treated with the CCR5 ligand, maraviroc (MVC), showed a deceleration in tumor development especially for metastatic colorectal cancer. Based on the crystal structure of CCR5, we herein describe a multistage virtual screening protocol including pharmacophore screening, molecular docking, and protein-ligand interaction fingerprint (PLIF) postdocking filtration for discovery of novel CCR5 ligands. The applied virtual screening protocol led to the identification of four hits with binding modes showing access to the major and minor pockets of the MVC binding site. Compounds 2-4 showed a decrease in cellular proliferation upon testing on the metastatic colorectal cancer cell line, SW620, displaying 12, 16, and 4 times higher potency compared to MVC, respectively. Compound 3 induced apoptosis by arresting cells in the G0/G1 phase of the cell cycle similar to MVC. Further in vitro assays showed compound 3 drastically decreasing the CCR5 expression and cellular migration 48 h post treatment, indicating its ability to inhibit metastatic activity in SW620 cells. The discovered hits represent potential leads for the development of novel classes of anticolorectal cancer agents targeting CCR5.
Collapse
Affiliation(s)
- Mariam
A. El-Zohairy
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Darius P. Zlotos
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Martin R. Berger
- Toxicology
and Chemotherapy Unit, German Cancer Research
Centre (DKFZ), 69120 Heidelberg, Germany
| | - Hassan H. Adwan
- Pharmacology
and Toxicology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Yasmine M. Mandour
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578 Cairo, Egypt
| |
Collapse
|
23
|
Muhseen ZT, Hameed AR, Al-Hasani HMH, Tahir Ul Qamar M, Li G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J Mol Liq 2020; 320:114493. [PMID: 33041407 PMCID: PMC7538380 DOI: 10.1016/j.molliq.2020.114493] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
The spike protein receptor binding domain (S-RBD) is a necessary corona-viral protein for binding and entry of coronaviruses (COVs) into the host cells. Hence, it has emerged as an attractive antiviral drug target. Therefore, present study was aimed to target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-RBD with novel bioactive compounds to retrieve potential candidates that could serve as anti-coronavirus disease 2019 (COVID-19) drugs. In this paper, computational approaches were employed, especially the structure-based virtual screening followed by molecular dynamics (MD) simulation as well as binding energy analysis for the computational identification of specific terpenes from the medicinal plants, which can block SARS-CoV-2 S-RBD binding to Human angiotensin-converting enzyme 2 (H-ACE2) and can act as potent anti-COVID-19 drugs after further advancements. The screening of focused terpenes inhibitors database composed of ~1000 compounds with reported therapeutic potential resulted in the identification of three candidate compounds, NPACT01552, NPACT01557 and NPACT00631. These three compounds established conserved interactions, which were further explored through all-atom MD simulations, free energy calculations, and a residual energy contribution estimated by MM-PB(GB)SA method. All these compounds showed stable conformation and interacted well with the hot-spot residues of SARS-CoV-2 S-RBD. Conclusively, the reported SARS-CoV-2 S-RBD specific terpenes could serve as seeds for developing potent anti-COVID-19 drugs. Importantly, the experimentally tested glycyrrhizin (NPACT00631) against SARS-CoV could be used further in the fast-track drug development process to help curb COVID-19.
Collapse
Affiliation(s)
- Ziyad Tariq Muhseen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Alaa R Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad, Iraq
| | - Halah M H Al-Hasani
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | | | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|