1
|
Prakash H, Chahal S, Sindhu J, Tyagi P, Sharma D, Guin M, Srivastava N, Singh K. Diastereomeric pure pyrazolyl-indolyl dihydrofurans: Unveiling isomeric selectivity in antibacterial action via in vitro and in silico insights. Bioorg Med Chem Lett 2024; 114:130005. [PMID: 39454968 DOI: 10.1016/j.bmcl.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Developing pure diastereoisomeric molecular hybrids for the selective inhibition of bacterial growth opened new avenues for combating the ever-increasing microbial resistance. Considering this, a series of diastereoisomeric pure pyrazolyl-dihydrofurans (7a-7y) were synthesized and characterized using NMR, LCMS, and X-ray crystallography. DFT based method was used to explore the configurational stability of cis over trans isomeric form. Considering 7a and 8a as representative isomeric forms with same structural framework, the difference in their bio-efficacy against bacterial and fungal strains was assessed using serial dilution method. The relatively high inhibition of bacterial growth by the cis isomeric form (7a) (MIC = 1.562 µg/mL), amoxicillin (MIC = 3.125 µg/mL) inspired us to broaden the substrate scope for synthesizing a series of pure diastereoisomeric cis forms as selective anti-bacterial agents. However, both the isomers displayed antifungal activity less than the standard drug (Fluconazole) employed in the study. All the reactions proceeded smoothly and yielded a diverse array of dihydrofuran derivatives. The developed synthetics were found to be non-cytotoxic against mouse fibroblast cells and didn't affect the seed germination of Brassica nigra seeds when treated at 1 mg/mL concentration. The experimentally determined in vitro results were further validated using in silico molecular docking and dynamics studies.
Collapse
Affiliation(s)
- Hari Prakash
- Jubilant Biosys Ltd., Knowledge Park-II, Greater Noida 201310, Uttar Pradesh, India; Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
| | - Sandhya Chahal
- Department of Chemistry, Chaudhary Ranbir Singh University, Jind, Haryana 126102, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Prateek Tyagi
- Department of Chemistry, Zakir Husain Delhi College, New Delhi, Delhi 110002, India
| | - Deepansh Sharma
- Department of Life Sciences, J.C. Bose University, Science and Technology, YMCA, Faridabad 126001, India
| | - Mridula Guin
- Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India
| | - Noopur Srivastava
- Department of Chemistry, Sharda School of Basic Sciences & Research, Sharda University, Knowledge Park-III, Greater Noida 201310, Uttar Pradesh, India.
| | - Kuldeep Singh
- Jubilant Biosys Ltd., Knowledge Park-II, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
2
|
Murugan R, Selvam M, Haridevamuthu B, Ashok K, Chagaleti BK, Priya D, Rajagopal R, Alfarhan A, Kumaradoss KM, Arockiaraj J. 1,5- diaryl pyrazole-loaded chitosan nanoparticles as COX-2 inhibitors, mitigate neoplastic growth by regulating NF-κB pathway in-vivo zebrafish model. Int J Biol Macromol 2024:137599. [PMID: 39542324 DOI: 10.1016/j.ijbiomac.2024.137599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been researched for their capacity to reduce cancer incidence, primarily due to their COX-2 inhibition properties. However, concerns have arisen regarding the precision of their targeting abilities. Nanoparticle approaches are revolutionizing cancer treatment by enabling targeted drug delivery, which enhances the efficacy and reduces the toxicity of chemotherapy. Particularly, chitosan-based nanoparticles are noteworthy for their biocompatibility, biodegradability, and ability to improve drug delivery. In this study, we synthesized folic acid-conjugated, 1,5-diaryl pyrazole-loaded chitosan (FA-CS-DP) nanoparticles using the ionic gelation method. The bioavailability and anti-neoplastic effects in a 7,12-dimethylbenzanthracene (DMBA)-exposed zebrafish model was investigated. MTT assay showed dose-dependent cytotoxicity of FA-CS-DP nanoparticles against MCF-7 breast cancer. The nanoparticles showed no toxicity to zebrafish embryos up to 100 μg/mL. The nanoparticle reduced oxidative stress and enhanced apoptosis in zebrafish exposed to DMBA. The morphological examination suggests that tumor growth was prevented in the zebrafish's surface and internal regions. The gene expression analysis confirmed the decrease in the expression of anti-inflammatory genes, such as cox-2 and nf-κb, and apoptosis inhibitor genes, such as bcl-2 and mdm2. By regulating the anti-inflammatory and apoptosis inhibitor genes, FA-CS-DP nanoparticle prevents neoplastic growth in the zebrafish model.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Kumar Ashok
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM, College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Balaha M, Cataldi A, Ammazzalorso A, Cacciatore I, De Filippis B, Di Stefano A, Maccallini C, Rapino M, Korona-Glowniak I, Przekora A, di Giacomo V. CAPE derivatives: Multifaceted agents for chronic wound healing. Arch Pharm (Weinheim) 2024; 357:e2400165. [PMID: 39054610 DOI: 10.1002/ardp.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chronic wounds significantly impact the patients' quality of life, creating an urgent interdisciplinary clinical challenge. The development of novel agents capable of accelerating the healing process is essential. Caffeic acid phenethyl ester (CAPE) has demonstrated positive effects on skin regeneration. However, its susceptibility to degradation limits its pharmaceutical application. Chemical modification of the structure improves the pharmacokinetics of this bioactive phenol. Hence, two novel series of CAPE hybrids were designed, synthesized, and investigated as potential skin regenerative agents. To enhance the stability and therapeutic efficacy, a caffeic acid frame was combined with quinolines or isoquinolines by an ester (1a-f) or an amide linkage (2a-f). The effects on cell viability of human gingival fibroblasts (HGFs) and HaCaT cells were evaluated at different concentrations; they are not cytotoxic, and some proved to stimulate cell proliferation. The most promising compounds underwent a wound-healing assay in HGFs and HaCaT at the lowest concentrations. Antimicrobial antioxidant properties were also explored. The chemical and thermal stabilities of the best compounds were assessed. In silico predictions were employed to anticipate skin penetration capabilities. Our findings highlight the therapeutic potential of caffeic acid phenethyl ester (CAPE) derivatives 1a and 1d as skin regenerative agents, being able to stimulate cell proliferation, control bacterial growth, regulate ROS levels, and being thermally and chemically stable. An interesting structure-activity relationship was discussed to suggest a promising multitargeted approach for enhanced wound healing.
Collapse
Affiliation(s)
- Marwa Balaha
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Lublin, Poland
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Abdallah AM, Naiem AHA, Abdelraheim SR, Mohafez OM, Abdelghany HM, Elsayed SA, Gomaa W, Marey H. Pyrazole derivatives ameliorate synovial inflammation in collagen-induced arthritis mice model via targeting p38 MAPK and COX-2. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03290-6. [PMID: 39073417 DOI: 10.1007/s00210-024-03290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The type II collagen-induced arthritis (CIA) model and human rheumatoid arthritis exhibit similar characteristics. Both diseases involve the production of inflammatory cytokines and other mediators, triggering an inflammatory cascade linked to bone and cartilage damage. Recently, new pyrazole compounds with various pharmacological activities, including antimicrobial, anticancer, anti-inflammatory, and analgesic agents, have been reported. Our aim is to evaluate the therapeutic effectiveness of two newly synthesized pyrazole derivatives, M1E and M1G, in reducing inflammation and oxidative stress in a mouse model of collagen-induced arthritis. Arthritis was induced in DBA/1J mice, and the therapeutic effect of the M1E and M1G is assessed by measuring the arthritic index, quantifying the expression of inflammatory genes such as p38 MAPK, COX-2, IL1β, MMP3, and TNF-α using real-time PCR and analyzing protein expression using western blotting for phosphorylated p38 MAPK and COX-2. Oxidative stress markers and hind paws joint histopathology were also evaluated. Treatment with the two pyrazole derivatives significantly (p < 0.001) improved the arthritic score; downregulated the expression of inflammatory genes p38 MAPK, COX-2, IL1β, MMP3, and TNF-α; and reduced the protein expression of phosphorylated p3 MAPK and COX-2. In addition, both compounds ameliorated oxidative stress by increasing the activities of SOD and reducing the formation of MDA in the paw tissue homogenates. Both M1E and M1G significantly (p < 0.001) improved the pathological features of synovitis. The pyrazole derivatives, M1E and M1G, significantly reduced the arthritic score and the inflammatory cytokine expression, improved synovitis histopathology, and ameliorated oxidative stress in the CIA mice model.
Collapse
Affiliation(s)
- Ahlam M Abdallah
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Amany H Abdel Naiem
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Salama R Abdelraheim
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Omar M Mohafez
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hend M Abdelghany
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Sahar A Elsayed
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Wafaey Gomaa
- Department of Pathology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Heba Marey
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| |
Collapse
|
5
|
Khadri MJN, Ramu R, Simha NA, Khanum SA. Synthesis, molecular docking, analgesic, anti-inflammatory, and ulcerogenic evaluation of thiophene-pyrazole candidates as COX, 5-LOX, and TNF-α inhibitors. Inflammopharmacology 2024; 32:693-713. [PMID: 37985602 DOI: 10.1007/s10787-023-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
The thiophene bearing pyrazole derivatives (7a-j) were synthesized and examined for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities followed by the in vivo analgesic, anti-inflammatory, and ulcerogenic evaluations. The synthesized series (7a-j) were characterized using 1H NMR, 13C NMR, FT-IR, and mass spectral analysis. Initially, the compounds (7a-j) were evaluated for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities and the compound (7f) with two phenyl substituents in the pyrazole ring and chloro substituent in the thiophene ring and the compound (7g) with two phenyl substituents in the pyrazole ring and bromo substituent in the thiophene ring were observed as potent compounds among the series. The compounds (7f and 7g) with effective in vitro potentials were further analyzed for analgesic, anti-inflammatory, and ulcerogenic evaluations. Also, to ascertain the binding affinities of compounds (7a-j), docking assessments were carried out and the ligand (7f) with the highest binding affinity was docked to know the interactions of the ligand with amino acids of target proteins.
Collapse
Affiliation(s)
- M J Nagesh Khadri
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - N Akshaya Simha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
6
|
Kachi OG, Pawar HR, Chabukswar AR, Jagdale S, Swamy V, Vinayak K, Hingane D, Shinde M, Pawar N. Design, Synthesis and Evaluation of Antifungal Activity of Pyrazoleacetamide Derivatives. Med Chem 2024; 20:957-968. [PMID: 38867538 DOI: 10.2174/0115734064300961240417063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Fungal infections have posed a big challenge in the management of their treatment. Due to the resistance and toxicity of existing drug molecules in the light of pandemic infections, like COVID-19, there is an urgent need to find newer derivatives of active molecules, which can be effective in fungal infections. OBJECTIVE In the present study, we aimed to design pyrazole derivatives using molecular modeling studies against target 1EA1 and synthesize 10 molecules of pyrazole derivatives using a multi-step synthesis approach. METHODS Designed pyrazole derivatives were synthesized by conventional organic methods. The newly synthesized pyrazole molecules were characterized by using FT-IR, 1HNMR, 13CNMR, and LC-MS techniques. Molecular docking studies were also performed. The antifungal activity of newly synthesized compounds was assessed in vitro against Candida albicans and Aspergillus niger using the well plate method. RESULTS Two of the compounds, OK-7 and OK-8, have been found to show significant docking interaction with target protein 1EA1. These two compounds have also been found to show significant anti-fungal activity against Candida albicans and Aspergillus nigra when compared to the standard fluconazole. The Minimum Inhibitory Concentration (MIC) value of these two compounds has been found to be 50 μg/ml. CONCLUSION Pyrazole derivatives with -CH3, CH3O-, and -CN groups have been found to be active against tested fungi and can be further explored for their potential as promising anti-fungal agents for applications in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Onkar G Kachi
- Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune, 411 004, India
| | - Hari R Pawar
- Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune, 411 004, India
| | - Anuruddha R Chabukswar
- Department Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, MS, India
| | - Swati Jagdale
- Department Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, MS, India
| | | | - Kadam Vinayak
- Department of Chemistry, MGVS Arts Commerce & Science College, Surgana, Nashik, 422211, India
| | - Dattatray Hingane
- Department of Chemistry, Mahatma Phule College, Pimpri, Pune, 411017, India
| | - Mahadev Shinde
- Department of Chemistry, Arts, Science and Commerce College, Indapur, Maharashtra 413106, India
| | - Nagesh Pawar
- Department of Chemistry, B.K. Birla College, Kalyan. Kalyan West, Maharashtra, 421301, India
| |
Collapse
|
7
|
Mohamed MAA, Kadry AM, Bekhit SA, Abourehab MAS, Amagase K, Ibrahim TM, El-Saghier AMM, Bekhit AA. Spiro heterocycles bearing piperidine moiety as potential scaffold for antileishmanial activity: synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2023; 38:330-342. [PMID: 36444862 PMCID: PMC11003478 DOI: 10.1080/14756366.2022.2150763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
New spiro-piperidine derivatives were synthesised via the eco-friendly ionic liquids in a one-pot fashion. The in vitro antileishmanial activity against Leishmania major promastigote and amastigote forms highlighted promising antileishmanial activity for most of the derivatives, with superior activity compared to miltefosine. The most active compounds 8a and 9a exhibited sub-micromolar range of activity, with IC50 values of 0.89 µM and 0.50 µM, respectively, compared to 8.08 µM of miltefosine. Furthermore, the antileishmanial activity reversal of these compounds via folic and folinic acids displayed comparable results to the positive control trimethoprim. This emphasises that their antileishmanial activity is through the antifolate mechanism via targeting DHFR and PTR1. The most active compounds showed superior selectivity and safety profile compared to miltefosine against VERO cells. Moreover, the docking experiments of 8a and 9a against Lm-PTR1 rationalised the observed in vitro activities. Molecular dynamics simulations confirmed a stable and high potential binding to Lm-PTR1.
Collapse
Affiliation(s)
| | - Asmaa M. Kadry
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Salma A. Bekhit
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | | | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir, Kingdom of Bahrain
| |
Collapse
|
8
|
Ameziane El Hassani I, Altay A, Karrouchi K, Yeniçeri E, Türkmenoğlu B, Assila H, Boukharssa Y, Ramli Y, Ansar M. Novel Pyrazole-Based Benzofuran Derivatives as Anticancer Agents: Synthesis, Biological Evaluation, and Molecular Docking Investigations. Chem Biodivers 2023; 20:e202301145. [PMID: 37781955 DOI: 10.1002/cbdv.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
In this work, the design, synthesis, and mechanistic studies of novel pyrazole-based benzofuran derivatives 1-8 as anticancer agents were discussed. Cytotoxic potency of the title compounds was evaluated against the lung carcinoma A-549, human-derived colorectal adenocarcinoma HT-29, breast adenocarcinoma MCF-7 cells as well as mouse fibroblast 3T3-L1 cells using XTT assay. Anticancer mechanistic studies were carried out with flow cytometry. XTT results revealed that all compounds exhibited dose-dependent anti-proliferative activity against the tested cancer cells, and especially compound 2 showed the strongest anti-proliferative activity with an IC50 value of 7.31 μM and the highest selectivity (15.74) on MCF-7 cells. Flow cytometry results confirmed that the cytotoxic power of compound 2 on MCF-7 cells is closely related to mitochondrial membrane damage, caspase activation, and apoptosis orientation. Finally, molecular docking studies were applied to determine the interactions between compound 2 and caspase-3 via in-silico approaches. By molecular docking studies, free binding energy (ΔGBind), docking score, Glide score values as well as amino acid residues in the active binding site were determined. Consequently, these results constitute preliminary data for in vivo anticancer studies and have the potential as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Issam Ameziane El Hassani
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Esma Yeniçeri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Hamza Assila
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Youness Boukharssa
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| |
Collapse
|
9
|
Anwer KE, Sayed GH, Essa BM, Selim AA. Green synthesis of highly functionalized heterocyclic bearing pyrazole moiety for cancer-targeted chemo/radioisotope therapy. BMC Chem 2023; 17:139. [PMID: 37853452 PMCID: PMC10585773 DOI: 10.1186/s13065-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
New derivatives of heterocyclic bearing pyrazole moiety were synthesized (eight new compounds from 2 to 9) via green synthesis methods (microwave-assisted and grinding techniques). 4,6-Diamino-1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (2) shows high anti-cancer activity against both HepG2 and HCT-116 with IC50 of 9.2 ± 2.8 and 7.7 ± 1.8 µM, respectively, which referenced to 5-Fu which is showing activity of 7.86 ± 0.5 and 5.35 ± 0.3 against both HepG2 and HCT-116, respectively. The cytotoxic activity against HCT-116 and HepG2 was slightly decreased and slightly increased, respectively, by a different pyrazole moiety (compound 5). Pharmacokinetics of compound 2 was carried out using the radioiodination technique in tumour-bearing Albino mice which shows good uptake at the tumour site. The biodistribution showed high accumulation in tumour tissues with a ratio of 13.7% ID/g organ after one hour in comparison with 2.97% ID/g organ at normal muscle at the same time point. As I-131 has maximum beta and gamma energies of 606.3 and 364.5 keV, respectively, therefore the newly synthesized compound 2 may be used for chemotherapy and TRT.
Collapse
Affiliation(s)
- Kurls E Anwer
- Heterocyclic Synthesis Lab, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Galal H Sayed
- Heterocyclic Synthesis Lab, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | - Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
10
|
Abd El-Karim SS, Mahmoud AH, Al-Mokaddem AK, Ibrahim NE, Alkahtani HM, Zen AA, Anwar MM. Development of a New Benzofuran-Pyrazole-Pyridine-Based Molecule for the Management of Osteoarthritis. Molecules 2023; 28:6814. [PMID: 37836657 PMCID: PMC10574112 DOI: 10.3390/molecules28196814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a substantial burden for patients with the disease. The known medications for the disease target the mitigation of the disease's symptoms. So, drug development for the management of osteoarthritis represents an important challenge in the medical field. This work is based on the development of a new benzofuran-pyrazole-pyridine-based compound 8 with potential anti-inflammatory and anti-osteoarthritis properties. Microanalytical and spectral data confirmed the chemical structure of compound 8. The biological assays indicated that compound 8 produces multifunctional activity as an anti-osteoarthritic candidate via inhibition of pro-inflammatory mediators, including RANTES, CRP, COMP, CK, and LPO in OA rats. Histopathological and pharmacokinetic studies confirmed the safety profile of the latter molecule. Accordingly, compound 8 is considered a promising anti-osteoarthritis agent and deserves deeper investigation in future trials.
Collapse
Affiliation(s)
- Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Asmaa K. Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
| | - Noha E. Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
11
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem 2023; 256:115458. [PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
13
|
Basha NJ. Small Molecules as Anti‐inflammatory Agents: Molecular Mechanisms and Heterocycles as Inhibitors of Signaling Pathways. ChemistrySelect 2023. [DOI: 10.1002/slct.202204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru Karnataka-560043 India
| |
Collapse
|
14
|
Zeyrek CT, Akman S, Ilhan IO, Kökbudak Z, Sarıpınar E, Akkoc S. Experimental and theoretical studies on 3-(4-chlorophenyl)-5-(4-ethoxyphenyl)-4,5-dihydropyrazole-1-carbonitrile: DFT quantum mechanical calculation, vibrational band analysis, prediction of activity spectra, and molecular docking. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Chalkha M, Ameziane el Hassani A, Nakkabi A, Tüzün B, Bakhouch M, Benjelloun AT, Sfaira M, Saadi M, Ammari LE, Yazidi ME. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248708. [PMID: 36557840 PMCID: PMC9780894 DOI: 10.3390/molecules27248708] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Pyrazole, an important pharmacophore and a privileged scaffold of immense significance, is a five-membered heterocyclic moiety with an extensive therapeutic profile, viz., anti-inflammatory, anti-microbial, anti-anxiety, anticancer, analgesic, antipyretic, etc. Due to the expansion of pyrazolecent red pharmacological molecules at a quicker pace, there is an urgent need to put emphasis on recent literature with hitherto available information to recognize the status of this scaffold for pharmaceutical research. The reported potential pyrazole-containing compounds are highlighted in the manuscript for the treatment of cancer and inflammation, and the results are mentioned in % inhibition of inflammation, % growth inhibition, IC50, etc. Pyrazole is an important heterocyclic moiety with a strong pharmacological profile, which may act as an important pharmacophore for the drug discovery process. In the struggle to cultivate suitable anti-inflammatory and anticancer agents, chemists have now focused on pyrazole biomolecules. This review conceals the recent expansion of pyrazole biomolecules as anti-inflammatory and anticancer agents with an aim to provide better correlation among different research going around the world.
Collapse
|
17
|
Bekhit AA, Lodebo ET, Hymete A, Ragab HM, Bekhit SA, Amagase K, Batubara A, Abourehab MAS, Bekhit AEDA, Ibrahim TM. New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. J Enzyme Inhib Med Chem 2022; 37:2320-2333. [PMID: 36036155 PMCID: PMC9427035 DOI: 10.1080/14756366.2022.2117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Promising inhibitory activities of the parasite multiplication were obtained upon evaluation of in vivo antimalarial activities of new pyrazolylpyrazoline derivatives against Plasmodium berghei infected mice. Further evaluation of 5b and 6a against chloroquine-resistant strain (RKL9) of P. falciparum showed higher potency than chloroquine. In vitro antileishmanial activity testing against Leishmania aethiopica promastigote and amastigote forms indicated that 5b, 6a and 7b possessed promising activity compared to miltefosine and amphotericin B deoxycholate. Moreover, antileishmanial activity reversal of the active compounds via folic and folinic acids showed comparable results to the positive control trimethoprim, indicating an antifolate mechanism via targeting leishmanial DHFR and PTR1. The compounds were non-toxic at 125, 250 and 500 mg/kg. In addition, docking of the most active compound against putative malarial target Pf-DHFR-TS and leishmanial PTR1 rationalised the observed activities. Molecular dynamics simulations confirmed a stable and high potential binding of 7a against leishmanial PTR1.
Collapse
Affiliation(s)
- Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Kingdom of Bahrain.,Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eskedar T Lodebo
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Chemistry, Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Ariaya Hymete
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma A Bekhit
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Afnan Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qurra University, Makkah, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
18
|
Domiati SA, Abd El Galil KH, Abourehab MAS, Ibrahim TM, Ragab HM. Structure-guided approach on the role of substitution on amide-linked bipyrazoles and its effect on their anti-inflammatory activity. J Enzyme Inhib Med Chem 2022; 37:2179-2190. [PMID: 35950562 PMCID: PMC9377232 DOI: 10.1080/14756366.2022.2109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A structure-guided modelling approach using COX-2 as a template was used to investigate the effect of replacing the chloro atom located at the chlorophenyl ring of amide-linked bipyrazole moieties, aiming at attaining better anti-inflammatory effect with a good safety profile. Bromo, fluoro, nitro, and methyl groups were revealed to be ideal candidates. Consequently, new bipyrazole derivatives were synthesised. The in vitro inhibitory COX-1/COX-2 activity of the synthesised compounds exhibited promising selectivity. The fluoro and methyl derivatives were the most active candidates. The in vivo formalin-induced paw edoema model confirmed the anti-inflammatory activity of the synthesised compounds. All the tested derivatives had a good ulcerogenic safety profile except for the methyl substituted compound. In silico molecular dynamics simulations of the fluoro and methyl poses complexed with COX-2 for 50 ns indicated stable binding to COX-2. Generally, our approach delivers a fruitful matrix for the development of further amide-linked bipyrazole anti-inflammatory candidates.
Collapse
Affiliation(s)
- Souraya A Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Khaled H Abd El Galil
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University
| | - Mohammed A S Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Shaker AM, Shahin MI, AboulMagd AM, Abdel Aleem SA, Abdel-Rahman HM, Abou El Ella DA. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2. Bioorg Chem 2022; 129:106143. [DOI: 10.1016/j.bioorg.2022.106143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/20/2022]
|
20
|
Kobelevskaya VА, Larina LI, Popov AV. A Regioselective Synthesis of 5-chloro-1-vinyl- and 3-alkenyl-5-chloro-1H-pyrazoles. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Hosseini Nasab N, Han Y, Hassan Shah F, Vanjare BD, Kim SJ. Synthesis, biological evaluation, migratory inhibition and docking study of Indenopyrazolones as potential anticancer agents. Chem Biodivers 2022; 19:e202200399. [PMID: 35977918 DOI: 10.1002/cbdv.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Some bioactive derivatives of indeno[1,2- c ]pyrazolones were synthesized through the reaction of phenylhydrazine, different aldehydes and indan-1,2,3-trione at room temperature in acetonitrile. Analytical and spectroscopic studies have confirmed the structural characteristics of the synthesized compounds. In addition, the target compounds were screened for the in-vitro antiproliferative properties against the B16F10 melanoma cancer cell line by the standard MTT assay. The effect on inflammatory marker cyclooxygenase 2 and matrix metalloproteinase 2, 9 was also checked to determine the anti-inflammatory and anti-cell migratory properties of these compounds. The final compounds were also tested for their tyrosinase inhibitory activity. Among all compounds, screened for anticancer activity, three compounds 4e , 4f and 4h reduced the cell proliferation significantly comparable to that of the positive standard drug erlotinib (IC 50 = 418.9±1.54 µM) with IC 50 values ranging from 20.72-29.35 µM. The compounds 4c-4h decreased the COX-2 expression whereas the MMP 2, 9 expressions were significantly reduced by 4a , 4b and 4h . This was confirmed by molecular docking studies, as 4e , 4f and 4h displayed good interactions with the active site of BRAF protein. The compounds 4b , 4f and 4h exhibited moderate tyrosinase inhibition effect as compared to α-MSH. Collectively, compound 4h can be considered as a candidate for further optimization in the development of anticancer therapies based on the results of biological investigations in this study.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Yohan Han
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Fahad Hassan Shah
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Balasaheb D Vanjare
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Song Ja Kim
- Kongju National University, Biological Science, 56 GongjuDaehak-Ro, 32588, Gongju, KOREA, REPUBLIC OF
| |
Collapse
|
22
|
Central Composite Design (CCD) for the Optimisation of Ethosomal Gel Formulation of Punica granatum Extract: In Vitro and In Vivo Evaluations. Gels 2022; 8:gels8080511. [PMID: 36005111 PMCID: PMC9407133 DOI: 10.3390/gels8080511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
This research manuscript’s objective was to develop the Punica granatum extract ethosome gel. The use of nanotechnology can improve transdermal drug delivery permeation of its major bioactive compound β-sitosterol. The optimised and developed formulations were further studied in vitro and in vivo. The assessment of the anti-inflammatory activity of the gel was performed in Albino rats. Methanolic extract was prepared and developed into an ethosome suspension and an ethosome gel. To optimise the formulation’s response in terms of particle size (nm) and entrapment efficiency (%), the central composite design (CCD) was used in 22 levels. The effects of factors such as lecithin (%) and ethanol (mL) in nine formulations were observed. Characterisation of ethosome gel was performed and the results showed the particle size (516.4 nm) and mean zeta potential (−45.4 mV). Evaluations of the gel formulation were performed. The results were good in terms of pH (7.1), viscosity (32,158 cps), spreadability (31.55 g cm/s), and no grittiness. In an in vitro study, the percentages of β-sitosterol release of ethosome gel (91.83%), suspension (82.74%), and extracts (68.15%) at 279 nm were recorded. The effects of the formulated gel on formalin-induced oedema in Albino rats showed good results in terms of anti-inflammatory activity. The comparative anti-inflammatory activity of Punica granatum extract and gel showed that the gel action was good for their topical application.
Collapse
|
23
|
Lara LDS, Lechuga GC, Orlando LMR, Ferreira BS, Souto BA, dos Santos MS, Pereira MCDS. Bioactivity of Novel Pyrazole-Thiazolines Scaffolds against Trypanosoma cruzi: Computational Approaches and 3D Spheroid Model on Drug Discovery for Chagas Disease. Pharmaceutics 2022; 14:995. [PMID: 35631581 PMCID: PMC9146228 DOI: 10.3390/pharmaceutics14050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
Chagas disease, a century-old disease that mainly affects the impoverished population in Latin America, causes high morbidity and mortality in endemic countries. The available drugs, benznidazole (Bz) and nifurtimox, have limited effectiveness and intense side effects. Drug repurposing, and the development of new chemical entities with potent activity against Trypanosoma cruzi, are a potential source of therapeutic options. The present study describes the biological activity of two new series of pyrazole-thiazoline derivatives, based on optimization of a hit system 5-aminopyrazole-imidazoline previously identified, using structure−activity relationship exploration, and computational and phenotype-based strategies. Promising candidates, 2c, 2e, and 2i derivatives, showed good oral bioavailability and ADMET properties, and low cytotoxicity (CC50 > 100 µM) besides potent activity against trypomastigotes (0.4−2.1 µM) compared to Bz (19.6 ± 2.3 µM). Among them, 2c also stands out, with greater potency against intracellular amastigotes (pIC50 = 5.85). The selected pyrazole-thiazoline derivatives showed good permeability and effectiveness in the 3D spheroids system, but did not sustain parasite clearance in a washout assay. The compounds’ mechanism of action is still unknown, since the treatment neither increased reactive oxygen species, nor reduced cysteine protease activity. This new scaffold will be targeted to optimize in order to enhance its biological activity to identify new drug candidates for Chagas disease therapy.
Collapse
Affiliation(s)
- Leonardo da Silva Lara
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.d.S.L.); (G.C.L.); (L.M.R.O.)
| | - Guilherme Curty Lechuga
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.d.S.L.); (G.C.L.); (L.M.R.O.)
| | - Lorraine Martins Rocha Orlando
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.d.S.L.); (G.C.L.); (L.M.R.O.)
| | - Byanca Silva Ferreira
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química, Universidade Federal de Itajubá, Avenida BPS, 1303, Pinheirinho, Itajubá 37500-903, Brazil; (B.S.F.); (B.A.S.); (M.S.d.S.)
| | - Bernardo Araújo Souto
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química, Universidade Federal de Itajubá, Avenida BPS, 1303, Pinheirinho, Itajubá 37500-903, Brazil; (B.S.F.); (B.A.S.); (M.S.d.S.)
| | - Maurício Silva dos Santos
- Laboratório de Síntese de Sistemas Heterocíclicos (LaSSH), Instituto de Física e Química, Universidade Federal de Itajubá, Avenida BPS, 1303, Pinheirinho, Itajubá 37500-903, Brazil; (B.S.F.); (B.A.S.); (M.S.d.S.)
| | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.d.S.L.); (G.C.L.); (L.M.R.O.)
| |
Collapse
|