1
|
Xie S, Ran Y, Wang X, Zhang Y, Fu Q, Ren Y, Liu J, Teng Z, Cheng J. Diagnostic potential of routine brain MRI and high-resolution, multi-contrast vessel wall imaging in the detection of internal carotid artery dissection. Front Neurol 2023; 14:1165453. [PMID: 37251240 PMCID: PMC10213939 DOI: 10.3389/fneur.2023.1165453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Cervical artery dissection (CAD) is one of the major causes of stroke and most commonly occurs at the site of the extracranial internal carotid artery (ICA). This study aimed to assess the value of routine brain MRI, clinical information, and high-resolution, multi-contrast vessel wall MR imaging (hrVWI) for the timely detection of ICA dissection. Methods A total of 105 patients with CAD and 105 without CAD were recruited for this study. The lesion type in the patients was determined based on images from different modalities, including brain MRI, magnetic resonance angiography (MRA), computed tomography angiography (CTA), digital subtraction angiography (DSA), ultrasonography, and hrVWI and clinical information. Each lesion was reviewed to determine the type following a stepwise procedure by referring to (1) brain MRI only; (2) brain MRI and clinical information; (3) hrVWI only; and (4) hrVWI, CTA, DSA, and clinical information. Results Typical clinical presentations of patients with potential CAD include headache, neck pain, and/or Horner's syndrome. Representative imaging signs in the brain MRI included a crescentic or circular iso- or hyperintensity around the lumen, a curvilinear and isointense line crossing the lumen, or aneurysmal vessel dilation. Based on brain MRI alone, 54.3% (57/105) of the patients with CAD were correctly classified, and the accuracy increased to 73.3% (77/105) when clinical information was combined (P < 0.001) with high specificity and low sensitivity. Further analysis showed that hrVWI had the superior capability in detecting CAD, with a sensitivity and a specificity of 95.1% and 97.0%, respectively. Conclusion The combination of brain MRI and clinical information could be used for the diagnosis of CAD; however, hrVWI should be sought for uncertain cases.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuncai Ran
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qichang Fu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Ren
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanfang Liu
- Department of Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Taqueti VR, Di Carli MF, Jerosch-Herold M, Sukhova GK, Murthy VL, Folco EJ, Kwong RY, Ozaki CK, Belkin M, Nahrendorf M, Weissleder R, Libby P. Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging 2014; 7:920-9. [PMID: 25170063 DOI: 10.1161/circimaging.114.002113] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Studies have shown the feasibility of imaging plaques with 2-deoxy-2-[(18)F]fluoroglucose (FDG) positron emission tomography and dynamic contrast-enhanced magnetic resonance imaging with inconsistent results. We sought to investigate the relationship between markers of inflammatory activation, plaque microvascularization, and vessel wall permeability in subjects with carotid plaques using a multimodality approach combining FDG positron emission tomography, dynamic contrast-enhanced magnetic resonance imaging, and histopathology. METHODS AND RESULTS Thirty-two subjects with carotid stenoses underwent noninvasive imaging with FDG positron emission tomography and dynamic contrast-enhanced magnetic resonance imaging, 46.9% (n=15) before carotid endarterectomy. We measured FDG uptake (target:background ratio [TBR]) by positron emission tomography and K(trans) (reflecting microvascular permeability and perfusion) by magnetic resonance imaging and correlated imaging with immunohistochemical markers of macrophage content (CD68), activated inflammatory cells (major histocompatibility complex class II), and microvessels (CD31) in plaque and control regions. TBR and K(trans) correlated significantly with tertiles of CD68(+) (P=0.009 and P=0.008, respectively), major histocompatibility complex class II(+) (P=0.003 and P<0.001, respectively), and CD31(+) (P=0.004 and P=0.008, respectively). Regions of plaques were associated with increased CD68(+) (P=0.002), major histocompatibility complex class II(+) (P=0.002), CD31(+) (P=0.02), TBR (P<0.0001), and K(trans) (P<0.0001), as compared with those without plaques. Microvascularization correlated with macrophage content (rs=0.52; P=0.007) and inflammatory activity (rs=0.68; P=0.0001) and TBR correlated with K(trans) (rs=0.53; P<0.0001). In multivariable mixed linear regression modeling, TBR remained independently associated with K(trans) (β[SE], 2.68[0.47]; P<0.0001). CONCLUSIONS Plaque regions with active inflammation, as determined by macrophage content and major histocompatibility complex class II expression, showed increased FDG uptake, which correlated with increased K(trans) and microvascularization. The correlation between K(trans) and TBR was moderate, direct, highly significant, and independent of clinical symptoms and plaque luminal severity.
Collapse
Affiliation(s)
- Viviany R Taqueti
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Marcelo F Di Carli
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Michael Jerosch-Herold
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Galina K Sukhova
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Venkatesh L Murthy
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Eduardo J Folco
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Raymond Y Kwong
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - C Keith Ozaki
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Michael Belkin
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Matthias Nahrendorf
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Ralph Weissleder
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.)
| | - Peter Libby
- From the Heart and Vascular Institute (V.R.T., M.F.D.C., G.K.S., E.J.F., R.Y.K., C.K.O., M.B., P.L.), Noninvasive Cardiovascular Imaging Program, Nuclear Medicine and Molecular Imaging Division, Department of Radiology (V.R.T., M.F.D.C., M.J.-H., R.Y.K.), Brigham and Women's Hospital, and Center for Systems Biology, Massachusetts General Hospital (M.N., R.W.), Harvard Medical School, Boston, MA; and Divisions of Nuclear Medicine, Cardiothoracic Imaging, and Cardiovascular Medicine, Departments of Medicine and Radiology, University of Michigan, Ann Arbor (V.L.M.).
| |
Collapse
|