1
|
Hinojosa J, Becerra V, Candela-Cantó S, Alamar M, Culebras D, Valencia C, Valera C, Rumiá J, Muchart J, Aparicio J. Extra-temporal pediatric low-grade gliomas and epilepsy. Childs Nerv Syst 2024; 40:3309-3327. [PMID: 39191974 DOI: 10.1007/s00381-024-06573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Low-grade gliomas, especially glioneuronal tumors, are a common cause of epilepsy in children. Seizures associated with low-grade pediatric tumors are medically refractory and present a significant burden to patients. Often, morbidity and patients´ quality of life are determined rather by the control of seizures than the oncological process itself and the resolution of epilepsy represents an important part in the treatment of LGGs. The pathogenesis of tumor-related seizures in focal LGG tumors is multifactorial, and mechanisms differ probably among patients and tumor types. Pediatric low-grade tumors associated with epilepsy include a series of neoplasms that have a pure astrocytic or glioneuronal lineage. They are usually benign tumors with a neocortical localization typically in the temporal lobes, but also in other supratentorial locations. Gangliogliomas and dysembryoplastic neuroepithelial tumors (DNET) are the most common entities together with astrocytic gliomas (pilocytic astrocytomas and pleomorphic xanthoastrocytoma) and angiocentric gliomas, and dual pathology is found in up to 40% of glioneuronal tumors. The treatment of low-grade gliomas and associated epilepsy is based mainly on resection and the extent of surgery is the main predictor of postoperative seizure control in patients with a LGG. Long-term epilepsy-associated tumors (LEATs) tend to be well-circumscribed, and therefore, the chances for a complete resection and epilepsy control with a safe approach are very high. New treatments have emerged as alternatives to open microsurgical approaches, including laser thermal ablation or the use of BRAF inhibitors. Future advances in identifying seizure-related biomarkers and molecular tumor pathways will facilitate targeted treatment strategies that will have a deep impact both in oncologic and epilepsy outcomes.
Collapse
Affiliation(s)
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
| | - Victoria Becerra
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Santiago Candela-Cantó
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Mariana Alamar
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Diego Culebras
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valencia
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valera
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Rumiá
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic Barcelona, C. de Villarroel, 170 08036, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Muchart
- Department of Neuroradiology, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Javier Aparicio
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| |
Collapse
|
2
|
Dabecco R, Gigliotti MJ, Mao G, Myers D, Xu L, Lee P, Ranjan T, Aziz K, Yu A. Laser interstitial thermal therapy (LITT) for intracranial lesions: a single-institutional series, outcomes, and review of the literature. Br J Neurosurg 2024; 38:632-638. [PMID: 34240676 DOI: 10.1080/02688697.2021.1947972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Laser interstitial thermal therapy (LITT) is a minimally invasive treatment method in managing primary brain neoplasms, brain metastases, radiation necrosis, and epileptogenic lesions, many of which are located in operative corridors that would be difficult to address. Although the use of lasers is not a new concept in neurosurgery, advances in technology have enabled surgeons to perform laser treatment with the aid of real-time MRI thermography as a guide. In this report, we present our institutional series and outcomes of patients treated with LITT. METHODS We retrospectively evaluated 19 patients (age range, 28-77 years) who underwent LITT at one or more targets from 2015 to 2019. Primary endpoint observed was mean progression free survival (PFS) and overall survival (OS). RESULTS Seven patients with glial neoplasms and 12 patients with metastatic disease were reviewed. Average hospitalization was 2.4 days. Median PFS was 7 and 4 months in the metastatic group and primary glial neoplasm group, respectively (p = 0.01). Median OS from time of diagnosis was 41 and 32 months (p = 0.02) and median OS after LITT therapy was 25 and 24 months (p = 0.02) for the metastatic and primary glial neoplasm groups, respectively. One patient experienced immediate post-procedural morbidity secondary to increased intracerebral edema peri-lesionally while one patient experienced post-operative mortality and expired secondary to hemorrhage 1-month post-procedure. Median follow-up was 10 months. CONCLUSION Laser interstitial thermal therapy (LITT) is a safe, minimally invasive treatment method that provides surgeons with cytoreductive techniques to treat neurosurgical conditions. Both PFS and OS appear to be more favorable after LITT in patients with metastatic disease. In properly selected patients, this modality offers improved survival outcomes in conjunction with other salvage therapies.
Collapse
Affiliation(s)
- Rocco Dabecco
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Michael J Gigliotti
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Gordon Mao
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Daniel Myers
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Linda Xu
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Philip Lee
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Tulika Ranjan
- Department of Radiology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Khaled Aziz
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Alexander Yu
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
4
|
Reese JC, Fadel HA, Pawloski JA, Samir M, Haider S, Komatar RJ, Luther E, Morell AA, Ivan ME, Robin AM, Kalkanis SN, Lee IY. Laser interstitial thermal therapy for deep-seated perivascular brain tumors is not associated with distal ischemia. J Neurooncol 2024; 166:265-272. [PMID: 38243083 DOI: 10.1007/s11060-023-04546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Laser interstitial thermal therapy (LITT) is a minimally invasive cytoreductive treatment option for brain tumors with a risk of vascular injury from catheter placement or thermal energy. This may be of concern with deep-seated tumors that have surrounding end-artery perforators and critical microvasculature. The purpose of this study was to assess the risk of distal ischemia following LITT for deep-seated perivascular brain tumors. METHODS A retrospective review of a multi-institution database was used to identify patients who underwent LITT between 2013 and 2022 for tumors located within the insula, thalamus, basal ganglia, and anterior perforated substance. Demographic, clinical and volumetric tumor characteristics were collected. The primary outcome was radiographic evidence of distal ischemia on post-ablation magnetic resonance imaging (MRI). RESULTS 61 LITT ablations for deep-seated perivascular brain tumors were performed. Of the tumors treated, 24 (39%) were low-grade gliomas, 32 (52%) were high-grade gliomas, and 5 (8%) were metastatic. The principal location included 31 (51%) insular, 14 (23%) thalamic, 13 (21%) basal ganglia, and 3 (5%) anterior perforated substance tumors. The average tumor size was 19.6 cm3 with a mean ablation volume of 11.1 cm3. The median extent of ablation was 92% (IQR 30%, 100%). Two patients developed symptomatic intracerebral hemorrhage after LITT. No patient had radiographic evidence of distal ischemia on post-operative diffusion weighted imaging. CONCLUSION We demonstrate that LITT for deep-seated perivascular brain tumors has minimal ischemic risks and is a feasible cytoreductive treatment option for otherwise difficult to access intracranial tumors.
Collapse
Affiliation(s)
- Jared C Reese
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA.
| | - Hassan A Fadel
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Jacob A Pawloski
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Mariam Samir
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Sameah Haider
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA
- University of Miami, Miami, FL, USA
| | | | | | | | | | - Adam M Robin
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health, 2799 West Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|
5
|
Brandel MG, Kunwar N, Alattar AA, Kang KM, Forseth KJ, Rennert RC, Shih JJ, Ben-Haim S. A cost analysis of MR-guided laser interstitial thermal therapy for adult refractory epilepsy. Epilepsia 2023; 64:2286-2296. [PMID: 37350343 DOI: 10.1111/epi.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE MR-guided laser interstitial thermal therapy (LITT) is used increasingly for refractory epilepsy. The goal of this investigation is to directly compare cost and short-term adverse outcomes for adult refractory epilepsy treated with temporal lobectomy and LITT, as well as to identify risk factors for increased costs and adverse outcomes. METHODS The National Inpatient Sample (NIS) was queried for patients who received LITT between 2012 and 2019. Patients with adult refractory epilepsy were identified. Multivariable mixed-effects models were used to analyze predictors of cost, length of stay (LOS), and complications. RESULTS LITT was associated with reduced LOS and overall cost relative to temporal lobectomy, with a statistical trend toward lower incidence of postoperative complications. High-volume surgical epilepsy centers had lower LOS overall. Longer LOS was a significant driver of increased cost for LITT, and higher comorbidity was associated with non-routine discharge. SIGNIFICANCE LITT is an affordable alternative to temporal lobectomy for adult refractory epilepsy with an insignificant reduction in inpatient complications. Patients may benefit from expanded access to this treatment modality for both its reduced LOS and lower cost.
Collapse
Affiliation(s)
- Michael G Brandel
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Nikhita Kunwar
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Ali A Alattar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keiko M Kang
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | - Kiefer J Forseth
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| | - Robert C Rennert
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jerry J Shih
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Sharona Ben-Haim
- Department of Neurosurgery, University of California San Diego, San Diego, California, USA
| |
Collapse
|
6
|
Choi SW, Duclos S, Camelo-Piragua S, Chaudhary N, Sukovich J, Hall T, Pandey A, Xu Z. Histotripsy Treatment of Murine Brain and Glioma: Temporal Profile of Magnetic Resonance Imaging and Histological Characteristics Post-treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1882-1891. [PMID: 37277304 DOI: 10.1016/j.ultrasmedbio.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Currently, there is a knowledge gap in our understanding of the magnetic resonance imaging (MRI) characteristics of brain tumors treated with histotripsy to evaluate treatment response as well as treatment-related injuries. Our aim was to bridge this gap by investigating and correlating MRI with histological analysis after histotripsy treatment of mouse brain with and without brain tumors and evaluating the evolution of the histotripsy ablation zone on MRI over time. METHODS An eight-element, 1 MHz histotripsy transducer with a focal distance of 32.5 mm was used to treat orthotopic glioma-bearing mice and normal mice. The tumor burden at the time of treatment was ∼5 mm3. T2, T2*, T1 and T1-gadolinium (Gd) MR images and histology of the brain were acquired on days 0, 2 and 7 for tumor-bearing mice and days 0, 2, 7, 14, 21 and 28 post-histotripsy for normal mice. RESULTS T2 and T2* sequences most accurately correlated with histotripsy treatment zone. The treatment-induced blood products, T1 along with T2, revealed blood product evolution from oxygenated, de-oxygenated blood and methemoglobin to hemosiderin. And T1-Gd revealed the state of the blood-brain barrier arising from the tumor or histotripsy ablation. Histotripsy leads to minor localized bleeding, which resolves within the first 7 d as evident on hematoxylin and eosin staining. By day 14, the ablation zone could be distinguished only by the macrophage-laden hemosiderin, which resides around the ablation zone, rendering the treated zone hypo-intense on all MR sequences. CONCLUSION These results provide a library of radiological features on MRI sequences correlated to histology, thus allowing for non-invasive evaluation of histotripsy treatment effects in in vivo experiments.
Collapse
Affiliation(s)
- Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Sarah Duclos
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Neeraj Chaudhary
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Patel PD, Patel NV, Danish SF. The Evolution of Laser-Induced Thermal Therapy for the Treatment of Gliomas. Neurosurg Clin N Am 2023; 34:199-207. [PMID: 36906327 DOI: 10.1016/j.nec.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Laser-induced thermal therapy (LITT) has evolved over the past two decades to treat a number of intracranial pathologies. Although it initially emerged as a salvage treatment of surgically inoperable tumors or recurrent lesions that had exhausted more conventional treatments, it is now being used as a primary, first-line treatment in certain instances with outcomes comparable to traditional surgical resection. The authors discuss the evolution of LITT in the treatment of gliomas and future directions, which may further enhance the efficacy of this procedure.
Collapse
Affiliation(s)
- Purvee D Patel
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health - Jersey Shore University Medical Center, Nutley, NJ 07110, USA; Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753, USA
| | - Nitesh V Patel
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health - Jersey Shore University Medical Center, Nutley, NJ 07110, USA; Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753, USA
| | - Shabbar F Danish
- Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health - Jersey Shore University Medical Center, Nutley, NJ 07110, USA; Department of Neurosurgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Jersey Shore University Hospital, Jersey Shore University Medical Center, 19 Davis Avenue, Hope Tower 4th Floor, Neptune, NJ 07753, USA.
| |
Collapse
|
8
|
Prajapati HP, Ansari A. Updates in the Management of Recurrent Glioblastoma Multiforme. J Neurol Surg A Cent Eur Neurosurg 2023; 84:174-187. [PMID: 35772723 DOI: 10.1055/s-0042-1749351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is almost universal even after all primary standard treatments. This article aims to review the literature and update the standard treatment strategies for patients with recurrent glioblastoma. METHODS A systematic search was performed with the phrase "recurrent glioblastoma and management" as a search term in PubMed central, Medline, and Embase databases to identify all the articles published on the subject till December 2020. The review included peer-reviewed original articles, clinical trials, review articles, and keywords in title and abstract. RESULTS Out of 513 articles searched, 73 were included in this review after screening for eligibility. On analyzing the data, most of the studies report a median overall survival (OS) of 5.9 to 11.4 months after re-surgery and 4.7 to 7.6 months without re-surgery. Re-irradiation with stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) result in a median OS of 10.2 months (range: 7.0-12 months) and 9.8 months (ranged: 7.5-11.0 months), respectively. Radiation necrosis was found in 16.6% (range: 0-24.4%) after SRS. Chemotherapeutic agents like nitrosourea (carmustine), bevacizumab, and temozolomide (TMZ) rechallenge result in a median OS in the range of 5.1 to 7.5, 6.5 to 9.2, and 5.1-13.0 months and six months progression free survival (PFS-6) in the range of 13 to 17.5%, 25 to 42.6%, and 23 to 58.3%, respectively. Use of epithelial growth factor receptor (EGFR) inhibitors results in a median OS in the range of 2.0 to 3.0 months and PFS-6 in 13%. CONCLUSION Although recurrent glioblastoma remains a fatal disease with universal mortality, the literature suggests that a subset of patients may benefit from maximal treatment efforts.
Collapse
Affiliation(s)
- Hanuman Prasad Prajapati
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India
| | - Ahmad Ansari
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Safai, Uttar Pradesh, India
| |
Collapse
|
9
|
The use of stereotactic MRI-guided laser interstitial thermal therapy for the treatment of pediatric cavernous malformations: the SUNY Upstate Golisano Children's Hospital experience. Childs Nerv Syst 2023; 39:417-424. [PMID: 36416952 DOI: 10.1007/s00381-022-05701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Cavernous malformations (CM) are central nervous system lesions characterized by interlaced vascular sinusoids coated with endothelial cells without intervening parenchyma. Magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) is a minimally invasive treatment modality that can precisely treat pathologic cerebral tissue, making it an effective alternative for the management of cavernomas. We describe the outcomes of a series of pediatric patients with cavernous brain malformations treated with MRIgLITT between 2014 and 2018 at our institution. METHODS We retrospectively analyzed 11 cavernomas in 6 pediatric patients treated with MRIgLITT. Both the Visualase System® and/or Neuroblate® systems were used. A variation of the surgical technique on the application of the laser was developed. Post-ablation MRIs were obtained to assess ablated areas. RESULTS A total of 11 cavernomas in 6 patients were treated with MRIgLITT. Median age was 15 years (12 to 17 years); 75% were males. Presenting symptoms were headache (75%) and seizures (25%). Two patients presented with multiple CMs. All lesions in this study were supratentorial (cerebral hemispheres 81.8%, corpus callosum 9.1%, basal ganglia 9.1%). Our surgical technique was well-tolerated, with no significant adverse events observed. Hospital stay for all patients was less than 48 hours. CONCLUSION MRIgLITT is an effective minimally invasive technique for the treatment of pediatric CMs. It represents a useful and safe tool, when other therapeutic alternatives may represent a greater risk of surgical morbidity.
Collapse
|
10
|
Cardia A, Cannizzaro D, Stefini R, Chibbaro S, Ganau M, Zaed I. The efficacy of laser interstitial thermal therapy in the management of spinal metastases: a systematic review of the literature. Neurol Sci 2023; 44:519-528. [PMID: 36181543 DOI: 10.1007/s10072-022-06432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In the last years, laser interstitial thermal therapy (LITT) has started to be used also in neurosurgical setting. Its efficacy for intracranial pathologies, namely, tumors and epilepsy, has been widely demonstrated. However, the literature evidences about the use of LITT for spinal lesions are recent, and it is still a topic of discussion regarding its efficacy. Here, the authors sought to present a systematic review of the literature investigating the utility of LITT for spinal lesions. METHODS Using PubMed, Scopus, and the Cochrane Library, the authors performed a systematic review of the literature focused on the use of spinal laser interstitial thermal therapy (sLITT). Included in the search were randomized controlled trials, cohort studies, and clinical series. Two independent reviewers conducted the study appraisal, data abstraction, and quality assessments of the studies. RESULTS Out of the initial 134 studies, 6 met the inclusion criteria for the systematic review, resulting in a total of 206 patients. All the patients have been treated with sLITT for compressive spinal metastases. Most of the lesions were thoracic (88.8%). All the studies reported an effective local control of the disease with a reduction of epidural compression at 30 days. Complication rate was 12.6%, but most of them were transient conditions, and only 3.4% patients needed a revision surgery. CONCLUSION sLITT is safe and provides effective local control for epidural compression from metastases, particularly in the thoracic spine. The authors propose considering sLITT as an alternative to open surgery in selected patients with spinal metastases.
Collapse
Affiliation(s)
- Andrea Cardia
- Department of Neurosurgery, Neurocenter of South Switzerland, EOC, Lugano, Switzerland
| | - Delia Cannizzaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Department of Neurosurgery, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Roberto Stefini
- Department of Neurosurgery, Azienda Socio Sanitaria Territoriale (ASST) Ovest Milanese - Legnano Hospital, Milan, Italy
| | - Salvatore Chibbaro
- Department of Neurosurgery, Strasbourg University Hospital, Strasbourg, France
| | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ismail Zaed
- Department of Neurosurgery, Neurocenter of South Switzerland, EOC, Lugano, Switzerland. .,Department of Neurosurgery, Legnano Hospital, Legnano, Italy.
| |
Collapse
|
11
|
Vetkas A, Germann J, Boutet A, Samuel N, Sarica C, Yamamoto K, Santyr B, Cheyuo C, Conner CR, Lang SM, Lozano AM, Ibrahim GM, Valiante T, Kongkham PN, Kalia SK. Laser interstitial thermal therapy for the treatment of insular lesions: A systematic review. Front Neurol 2023; 13:1024075. [PMID: 36686528 PMCID: PMC9845884 DOI: 10.3389/fneur.2022.1024075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Background The surgical treatment of insular lesions has been historically associated with high morbidity. Laser interstitial thermal therapy (LITT) has been increasingly used in the treatment of insular lesions, commonly neoplastic or epileptogenic. Stereotaxis is used to guide laser probes to the insula where real-time magnetic resonance thermometry defines lesion creation. There is an absence of previously published reviews on insular LITT, despite a rapid uptake in use, making further study imperative. Methods Here we present a systematic review of the PubMed and Scopus databases, examining the reported clinical indications, outcomes, and adverse effects of insular LITT. Results A review of the literature revealed 10 retrospective studies reporting on 53 patients (43 pediatric and 10 adults) that were treated with insular LITT. 87% of cases were for the treatment of epilepsy, with 89% of patients achieving seizure outcomes of Engle I-III following treatment. The other 13% of cases reported on insular tumors and radiological improvement was seen in all cases following treatment. All but one study reported adverse events following LITT with a rate of 37%. The most common adverse events were transient hemiparesis (29%) and transient aphasia (6%). One patient experienced an intracerebral hemorrhage, which required a decompressive hemicraniectomy, with subsequent full recovery. Conclusion This systematic review highlights the suitability of LITT for the treatment of both insular seizure foci and insular tumors. Despite the growing use of this technique, prospective studies remain absent in the literature. Future work should directly evaluate the efficacy of LITT with randomized and controlled trials.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Neurology Clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Christopher R. Conner
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Stefan M. Lang
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - George M. Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul N. Kongkham
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
12
|
Schupper AJ, Chanenchuk T, Racanelli A, Price G, Hadjipanayis CG. Laser hyperthermia: Past, present, and future. Neuro Oncol 2022; 24:S42-S51. [PMID: 36322099 PMCID: PMC9629480 DOI: 10.1093/neuonc/noac208] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging-guided laser interstitial thermal therapy (LITT) is an ablative procedure using heat from a laser to provide cytoreduction in tissue. It is a minimally invasive procedure that has been used in intracranial pathologies such as high-grade gliomas, metastatic lesions, epilepsy, and other lesions. While LITT may offer a more acceptable complication profile compared to open surgery, the role of laser therapy for intracranial lesions in current treatment paradigms continues to evolve. This review will focus on the background and application of LITT, the current evidence for its use, and future directions for the technology.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Tori Chanenchuk
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Anna Racanelli
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine, Mount Sinai Downtown Union Square, Mount Sinai Health System, New York, New York, USA
| |
Collapse
|
13
|
Fadel HA, Haider S, Pawloski JA, Zakaria HM, Macki M, Bartlett S, Schultz L, Robin AM, Kalkanis SN, Lee IY. Laser Interstitial Thermal Therapy for First-Line Treatment of Surgically Accessible Recurrent Glioblastoma: Outcomes Compared With a Surgical Cohort. Neurosurgery 2022; 91:701-709. [PMID: 35986677 DOI: 10.1227/neu.0000000000002093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) for glioblastoma (GBM) has been reserved for poor surgical candidates and deep "inoperable" lesions. We present the first reported series of LITT for surgically accessible recurrent GBM (rGBM) that would otherwise be treated with surgical resection. OBJECTIVE To evaluate the use of LITT for unifocal, lobar, first-time rGBM compared with a similar surgical cohort. METHODS A retrospective institutional database was used to identify patients with unifocal, lobar, first-time rGBM who underwent LITT or resection between 2013 and 2020. Clinical and volumetric lesional characteristics were compared between cohorts. Subgroup analysis of patients with lesions ≤20 cm 3 was also completed. Primary outcomes were overall survival and progression-free survival. RESULTS Of the 744 patients with rGBM treated from 2013 to 2020, a LITT cohort of 17 patients were compared with 23 similar surgical patients. There were no differences in baseline characteristics, although lesions were larger in the surgical cohort (7.54 vs 4.37 cm 3 , P = .017). Despite differences in lesion size, both cohorts had similar extents of ablation/resection (90.7% vs 95.1%, P = .739). Overall survival (14.1 vs 13.8 months, P = .578) and progression-free survival (3.7 vs 3.3 months, P = 0. 495) were similar. LITT patients had significantly shorter hospital stays (2.2 vs 3.0 days, P = .004). Subgroup analysis of patients with lesions ≤20 cm 3 showed similar outcomes, with LITT allowing for significantly shorter hospital stays. CONCLUSION We found no difference in survival outcomes or morbidity between LITT and repeat surgery for surgically accessible rGBM while LITT resulted in shorter hospital stays and more efficient postoperative care.
Collapse
Affiliation(s)
- Hassan A Fadel
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Sameah Haider
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Jacob A Pawloski
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Hesham M Zakaria
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Mohamed Macki
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Seamus Bartlett
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Adam M Robin
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
14
|
Surgical Treatment of Glioblastoma: State-of-the-Art and Future Trends. J Clin Med 2022; 11:jcm11185354. [PMID: 36143001 PMCID: PMC9505564 DOI: 10.3390/jcm11185354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive disease and is associated with poor prognosis despite treatment advances in recent years. Surgical resection of tumor remains the main therapeutic option when approaching these patients, especially when combined with adjuvant radiochemotherapy. In the present study, we conducted a comprehensive literature review on the state-of-the-art and future trends of the surgical treatment of GBM, emphasizing topics that have been the object of recent study.
Collapse
|
15
|
Role of Laser Interstitial Thermal Therapy in the Management of Primary and Metastatic Brain Tumors. Curr Treat Options Oncol 2021; 22:108. [PMID: 34687357 DOI: 10.1007/s11864-021-00912-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Laser interstitial thermal therapy (LITT) is a minimally invasive treatment option for brain tumors including glioblastoma, other primary central nervous system (CNS) neoplasms, metastases, and radiation necrosis. LITT employs a fiber optic coupled laser delivery probe stabilized via stereotaxis to deliver thermal energy that induces coagulative necrosis in tumors to achieve effective cytoreduction. LITT complements surgical resection, radiation treatment, tumor treating fields, and systemic therapy, especially in patients who are high risk for surgical resection due to tumor location in eloquent regions or poor functional status. These factors must be balanced with the increased rate of cerebral edema post LITT compared to surgical resection. LITT has also been shown to induce transient disruption of the blood-brain barrier (BBB), especially in the peritumoral region, which allows for enhanced CNS delivery of anti-neoplastic agents, thus greatly expanding the armamentarium against brain tumors to include highly effective anti-neoplastic agents that have poor BBB penetration. In addition, hyperthermia-induced immunogenic cell death is another secondary side effect of LITT that opens up immunotherapy as an attractive adjuvant treatment for brain tumors. Numerous large studies have demonstrated the safety and efficacy of LITT against various CNS tumors and as the literature continues to grow on this novel technique so will its indications.
Collapse
|
16
|
Malcolm JG, Douglas JM, Greven A, Rich C, Dawoud RA, Hu R, Reisner A, Barrow DL, Gross RE, Willie JT. Feasibility and Morbidity of Magnetic Resonance Imaging-Guided Stereotactic Laser Ablation of Deep Cerebral Cavernous Malformations: A Report of 4 Cases. Neurosurgery 2021; 89:635-644. [PMID: 34270738 DOI: 10.1093/neuros/nyab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRgLITT) has been used successfully to treat epileptogenic cortical cerebral cavernous malformations (CCM). It is unclear whether MRgLITT would be as feasible or safe for deep CCMs. OBJECTIVE To describe our experience with MRgLITT for symptomatic deep CCMs. METHODS Patients' records were reviewed retrospectively. MRgLITT was carried out using a commercially available system in an interventional MRI suite with efforts to protect adjacent brain structures. Immediate postoperative imaging was used to judge ablation adequacy. Delayed postoperative MRI was used to measure lesion volume changes during follow-up. RESULTS Four patients with CCM in the thalamus, putamen, midbrain, or subthalamus presented with persistent and disabling neurological symptoms. A total of 2 patients presented with disabling headaches and sensory disturbances and 2 with recurrent symptomatic hemorrhages, of which 1 had familial CCM. Patients were considered by vascular neurosurgeons to be poor candidates for open surgery or had refused it. Multiple trajectories were used in most cases. Adverse events included device malfunction with leakage of saline causing transient mass effect in one patient, and asymptomatic tract hemorrhage in another. One patient suffered an expected mild but persistent exacerbation of baseline deficits. All patients showed improvement from a previously aggressive clinical course with lesion volume decreased by 20% to 73% in follow-up. CONCLUSION MRgLITT is feasible in the treatment of symptomatic deep CCM but may carry a high risk of complications without the benefit of definitive resection. We recommend cautious patient selection, low laser power settings, and conservative temperature monitoring in surrounding brain parenchyma.
Collapse
Affiliation(s)
- James G Malcolm
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Alex Greven
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Reem A Dawoud
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ranliang Hu
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew Reisner
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurosurgery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Chen YW, Hanak BW, Yang TC, Wilson TA, Hsia JM, Walsh HE, Shih HC, Nagatomo KJ. Computer-assisted surgery in medical and dental applications. Expert Rev Med Devices 2021; 18:669-696. [PMID: 33539198 DOI: 10.1080/17434440.2021.1886075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Computer-assisted surgery (CAS) is a broad surgical methodology that utilizes computer technology to both plan and execute surgical intervention. CAS is widespread in both medicine and dentistry as it allows for minimally invasive and precise surgical procedures. Key innovations in volumetric imaging, virtual surgical planning software, instrument tracking, and robotics have assisted in facilitating the transfer of surgical plans to precise execution of surgical procedures. CAS has long been used in certain medical specialties including neurosurgery, cardiology, orthopedic surgery, otolaryngology, and interventional radiology, and has since expanded to oral and maxillofacial application, particularly for computer-assisted implant surgery. AREAS COVERED This review provides an updated overview of the most current research for CAS in medicine and dentistry, with a focus on neurosurgery and dental implant surgery. The MEDLINE electronic database was searched and relevant original and review articles from 2005 to 2020 were included. EXPERT OPINION Recent literature suggests that CAS performs favorably in both neurosurgical and dental implant applications. Computer-guided surgical navigation is well entrenched as standard of care in neurosurgery. Whereas static computer-assisted implant surgery has become established in dentistry, dynamic computer-assisted navigation is newly poised to trend upward in dental implant surgery.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Brian W Hanak
- Department of Neurosurgery, Loma Linda University Health Loma Linda, 92354, CA, USA
| | - Tzu-Chian Yang
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Taylor A Wilson
- Department of Neurosurgery, Loma Linda University Health Loma Linda, 92354, CA, USA
| | - Jenovie M Hsia
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Hollie E Walsh
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Huai-Che Shih
- Department of Restorative Dentistry, University of Washington School of Dentistry Seattle,98195, WA, USA
| | - Kanako J Nagatomo
- Department of Periodontics, University of Washington School of Dentistry Seattle,98195 WA,USA
| |
Collapse
|
18
|
Shan W, Mao X, Wang X, Hogan RE, Wang Q. Potential surgical therapies for drug-resistant focal epilepsy. CNS Neurosci Ther 2021; 27:994-1011. [PMID: 34101365 PMCID: PMC8339538 DOI: 10.1111/cns.13690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Drug-resistant focal epilepsy (DRFE), defined by failure of two antiepileptic drugs, affects 30% of epileptic patients. Epilepsy surgeries are alternative options for this population. Preoperative evaluation is critical to include potential candidates, and to choose the most appropriate procedure to maximize efficacy and simultaneously minimize side effects. Traditional procedures involve open skull surgeries and epileptic focus resection. Alternatively, neuromodulation surgeries use peripheral nerve or deep brain stimulation to reduce the activities of epileptogenic focus. With the advanced improvement of laser-induced thermal therapy (LITT) technique and its utilization in neurosurgery, magnetic resonance-guided LITT (MRgLITT) emerges as a minimal invasive approach for drug-resistant focal epilepsy. In the present review, we first introduce drug-resistant focal epilepsy and summarize the indications, pros and cons of traditional surgical procedures and neuromodulation procedures. And then, focusing on MRgLITT, we thoroughly discuss its history, its technical details, its safety issues, and current evidence on its clinical applications. A case report on MRgLITT is also included to illustrate the preoperational evaluation. We believe that MRgLITT is a promising approach in selected patients with drug-resistant focal epilepsy, although large prospective studies are required to evaluate its efficacy and side effects, as well as to implement a standardized protocol for its application.
Collapse
Affiliation(s)
- Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| | - Xuewei Mao
- Shandong Key Laboratory of Industrial Control TechnologySchool of AutomationQingdao UniversityQingdaoChina
| | - Xiu Wang
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
| | - Robert E. Hogan
- Departments of Neurology and NeurosurgerySchool of MedicineWashington University in St. LouisSt. LouisMOUSA
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Center for Clinical Medicine of Neurological DiseasesBeijingChina
- Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Neuro‐modulationBeijingChina
| |
Collapse
|
19
|
Munoz-Casabella A, Alvi MA, Rahman M, Burns TC, Brown DA. Laser Interstitial Thermal Therapy for Recurrent Glioblastoma: Pooled Analyses of Available Literature. World Neurosurg 2021; 153:91-97.e1. [PMID: 34087459 DOI: 10.1016/j.wneu.2021.05.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE/BACKGROUND The efficacy of laser interstitial thermal therapy (LITT) in recurrent glioblastoma (rGBM) is unknown. The goal of this study was to conduct a systematic review and pooled analysis of the literature for outcomes on patients with rGBM undergoing LITT. METHODS A literature search was performed to retrieve all studies investigating overall survival, postprocedure survival, and progression-free survival outcomes of patients with rGBM undergoing LITT. Statistics were pooled together by meta-analysis of mean using a weighted random-effects or fixed-effect model. RESULTS Eleven studies were included in the final cohort, representing a total of 134 patients with rGBM. The pooled mean age of the cohort at the time of recurrence was 56.7 ± 4.56 years; 41% of the cohort were female. For delivery of LITT, 2 studies used neodymium-yttrium aluminum-garnet laser (Nd:YAG laser), 3 studies used the Visualase system, 5 studies used the NeuroBlate system, and 1 study used both the NeuroBlate and the Visualase system. A total of 8 studies with 107 patients had available data for overall median survival. The pooled overall survival was found to be 18.6 months (95% confidence interval [CI] 16.2-21.1). A total of 6 studies with 93 patients had available data for post-LITT survival. The pooled post-LITT survival was found to be 10.1 months (95% CI 8.8-11.6). A total of 8 studies with 119 patients had available data for progression-free survival. Pooled progression free survival was found to be 6 months (95% CI 5.3-6.7). CONCLUSIONS LITT is a novel minimally invasive procedure which, when used with optimal adjuvant therapy, may confer survival benefit for patients with rGBM.
Collapse
Affiliation(s)
| | - Mohammed Ali Alvi
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Masum Rahman
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Desmond A Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Avecillas-Chasin JM, Atik A, Mohammadi AM, Barnett GH. Laser thermal therapy in the management of high-grade gliomas. Int J Hyperthermia 2021; 37:44-52. [PMID: 32672121 DOI: 10.1080/02656736.2020.1767807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive therapy that have been used for brain tumors, epilepsy, chronic pain, and other spine pathologies. This therapy is performed under imaging and stereotactic guidance to precisely direct the probe and ablate the area of interest using real-time magnetic resonance (MR) thermography. LITT has gained popularity as a treatment for glioma because of its minimally invasive nature, small skin incision, repeatability, shorter hospital stay, and the possibility of receiving adjuvant therapy shortly after surgery instead of several weeks as required after open surgical resection. Several reports have demonstrated the usefulness of LITT in the treatment of newly-diagnosed and recurrent gliomas. In this review, we will summarize the recent evidence of this therapy in the field of glioma surgery and the future perspectives of the use of LITT combined with other treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet Atik
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Bianchi L, Korganbayev S, Orrico A, De Landro M, Saccomandi P. Quasi-distributed fiber optic sensor-based control system for interstitial laser ablation of tissue: theoretical and experimental investigations. BIOMEDICAL OPTICS EXPRESS 2021; 12:2841-2858. [PMID: 34168905 PMCID: PMC8194627 DOI: 10.1364/boe.419541] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 05/08/2023]
Abstract
This work proposes the quasi-distributed real-time monitoring and control of laser ablation (LA) of liver tissue. To confine the thermal damage, a pre-planning stage of the control strategy based on numerical simulations of the bioheat-transfer was developed to design the control parameters, then experimentally assessed. Fiber Bragg grating (FBG) sensors were employed to design the automatic thermometry system used for temperature feedback control for interstitial LA. The tissue temperature was maintained at a pre-set value, and the influence of different sensor locations (on the direction of the beam propagation and backward) on the thermal outcome was evaluated in comparison with the uncontrolled case. Results show that the implemented computational model was able to properly describe the temperature evolution of the irradiated tissue. Furthermore, the realized control strategy allowed for the accurate confinement of the laser-induced temperature increase, especially when the temperature control was actuated by sensors located in the direction of the beam propagation, as confirmed by the calculated fractions of necrotic tissues (e.g., 23 mm3 and 53 mm3 for the controlled and uncontrolled LA, respectively).
Collapse
|
22
|
Traylor JI, Patel R, Muir M, de Almeida Bastos DC, Ravikumar V, Kamiya-Matsuoka C, Rao G, Thomas JG, Kew Y, Prabhu SS. Laser Interstitial Thermal Therapy for Glioblastoma: A Single-Center Experience. World Neurosurg 2021; 149:e244-e252. [PMID: 33610872 DOI: 10.1016/j.wneu.2021.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Surgical resection has been shown to prolong survival in patients with glioblastoma multiforme (GBM), although this benefit has not been demonstrated for reoperation following tumor recurrence. Laser interstitial thermal therapy (LITT) is a minimally invasive ablation technique that has been shown to effectively reduce tumor burden in some patients with intracranial malignancy. The aim of this study was to describe the safety and efficacy of LITT for recurrent and newly diagnosed GBM at a large tertiary referral center. METHODS Patients with GBM receiving LITT were retrospectively analyzed. Overall survival from the time of LITT was the primary end point measured. RESULTS There were 69 patients identified for inclusion in this study. The median age of the cohort was 56 years (range, 15-77 years). Median tumor volume was 10.4 cm3 (range, 1.0-64.0 cm3). A Kaplan-Meier estimate of median overall survival for the series from the time of LITT was 12 months (95% confidence interval 8-16 months). Median progression-free survival for the cohort from LITT was 4 months (95% confidence interval 3-7 months). Adjuvant chemotherapy significantly prolonged progression-free survival and overall survival (P < 0.01 for both) in the cohort. Gross total ablation was not significantly associated with progression-free survival (P = 0.09). CONCLUSIONS LITT can safely reduce intracranial tumor burden in patients with GBM who have exhausted other adjuvant therapies or are poor candidates for conventional resection techniques.
Collapse
Affiliation(s)
- Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rajan Patel
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan G Thomas
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yvonne Kew
- Department of Neurology, Baylor St. Luke's Medical Center, Houston, Texas, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
23
|
Chen C, Lee I, Tatsui C, Elder T, Sloan AE. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review. J Neurooncol 2021; 151:429-442. [PMID: 33611709 PMCID: PMC7897607 DOI: 10.1007/s11060-020-03652-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Laser Interstitial Thermotherapy (LITT; also known as Stereotactic Laser Ablation or SLA), is a minimally invasive treatment modality that has recently gained prominence in the treatment of malignant primary and metastatic brain tumors and radiation necrosis and studies for treatment of spinal metastasis has recently been reported. METHODS Here we provide a brief literature review of the various contemporary uses for LITT and their reported outcomes. RESULTS Historically, the primary indication for LITT has been for the treatment of recurrent glioblastoma (GBM). However, indications have continued to expand and now include gliomas of different grades, brain metastasis (BM), radiation necrosis (RN), other types of brain tumors as well as spine metastasis. LITT is emerging as a safe, reliable, minimally invasive clinical approach, particularly for deep seated, focal malignant brain tumors and radiation necrosis. The role of LITT for treatment of other types of tumors of the brain and for spine tumors appears to be evolving at a small number of centers. While the technology appears to be safe and increasingly utilized, there have been few prospective clinical trials and most published studies combine different pathologies in the same report. CONCLUSION Well-designed prospective trials will be required to firmly establish the role of LITT in the treatment of lesions of the brain and spine.
Collapse
Affiliation(s)
- Clark Chen
- University of Minnesotta, Minneapolis, USA
| | - Ian Lee
- Henry Ford Hospitals, Detroit, USA
| | | | - Theresa Elder
- Seidman Cancer Center, University Hospitals, Shaker Heights, USA
| | - Andrew E Sloan
- Seidman Cancer Center, University Hospitals, Shaker Heights, USA.
- Case Comprehensive Cancer Center, Cleveland, USA.
| |
Collapse
|
24
|
Mirza FA, Mitha R, Shamim MS. Current Role of Laser Interstitial Thermal Therapy in the Treatment of Intracranial Tumors. Asian J Neurosurg 2020; 15:800-808. [PMID: 33708647 PMCID: PMC7869293 DOI: 10.4103/ajns.ajns_185_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is gaining popularity in the treatment of both primary and secondary intracranial tumors. The goal of LITT is to deliver thermal energy in a predictable, controlled, and minimally invasive fashion. It can be particularly valuable in patients with recurrent tumors who, due to previous radiation or surgery, may have a potentially higher risk of wound breakdown or infection with repeat craniotomy. Deep-seated lesions that are often inaccessible through open approaches (thalamus, hypothalamus, mesial basal temporal lobe, brainstem) may also be suitable targets. The experience and data published thus far on this modality is limited but growing. This review highlights the use of LITT as a primary treatment method in a variety of intracranial tumors, as well as its application as an adjunct to established surgical techniques.
Collapse
Affiliation(s)
- Farhan A Mirza
- Department of Neurosurgery, The Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurosurgery, Kentucky Neuroscience Institute, University of Kentucky, Lexington, KY, USA
| | - Rida Mitha
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Shahzad Shamim
- Department of Surgery, Section of Neurosurgery, The Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
25
|
Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release 2020; 330:49-60. [PMID: 33340564 DOI: 10.1016/j.jconrel.2020.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action. A high energy level is required to generate MBs through the focused continuous laser, which can be harmful to healthy tissues. As an alternative, plasmonic light-responsive nanoparticles, such as gold nanoparticles (AuNPs), are preferably used with continuous laser to decrease the energy threshold and reduce the bubbles area of action. It is also well-known that the utilization of the pulsed lasers instead of the continuous lasers decreases the needed AuNPs doses as well as laser power threshold. When well-confined bubbles are generated in biological environments, they play their own unique mechanical and optical roles. The collapse of a bubble can mechanically affect its surrounding area. Such a capability can be used for cargo delivery to cancer cells and cell surgery, destruction, and transfection. Moreover, the excellent ability of light scattering makes the bubbles suitable for cancer imaging. This review firstly provides an overview of the fundamental aspects of AuNPs-mediated bubbles and then their emerging applications in the field of cancer nanotechnology will be reviewed. Although the pre-clinical studies on the AuNP-mediated bubbles have shown promising data, it seems that this technique would not be applicable to every kind of cancer. The clinical application of this technique may basically be limited to the good accessible lesions like the superficial, intracavity and intraluminal tumors. The other essential challenges against the clinical translation of AuNP-mediated bubbles are also discussed.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hajar Zareyi
- Department of Solid State, Faculty of Physics, K.N. Toosi University of Technology, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, University of Mons, Mons B-7000, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Gosselies 6041, Belgium
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Korganbayev S, Orrico A, Bianchi L, De Landro M, Wolf A, Dostovalov A, Saccomandi P. Closed-Loop Temperature Control Based on Fiber Bragg Grating Sensors for Laser Ablation of Hepatic Tissue. SENSORS 2020; 20:s20226496. [PMID: 33203048 PMCID: PMC7697476 DOI: 10.3390/s20226496] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Laser ablation (LA) of cancer is a minimally invasive technique based on targeted heat release. Controlling tissue temperature during LA is crucial to achieve the desired therapeutic effect in the organs while preserving the healthy tissue around. Here, we report the design and implementation of a real-time monitoring system performing closed-loop temperature control, based on fiber Bragg grating (FBG) spatial measurements. Highly dense FBG arrays (1.19 mm length, 0.01 mm edge-to-edge distance) were inscribed in polyimide-coated fibers using the femtosecond point-by-point writing technology to obtain the spatial resolution needed for accurate reconstruction of high-gradient temperature profiles during LA. The zone control strategy was implemented such that the temperature in the laser-irradiated area was maintained at specific set values (43 and 55 °C), in correspondence to specific radii (2 and 6 mm) of the targeted zone. The developed control system was assessed in terms of measured temperature maps during an ex vivo liver LA. Results suggest that the temperature-feedback system provides several advantages, including controlling the margins of the ablated zone and keeping the maximum temperature below the critical values. Our strategy and resulting analysis go beyond the state-of-the-art LA regulation techniques, encouraging further investigation in the identification of the optimal control-loop.
Collapse
Affiliation(s)
- Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano Milan, 20133 Milano MI, Italy; (A.O.); (L.B.); (M.D.L.); (P.S.)
- Correspondence: ; Tel.: +39-348-776-1649
| | - Annalisa Orrico
- Department of Mechanical Engineering, Politecnico di Milano Milan, 20133 Milano MI, Italy; (A.O.); (L.B.); (M.D.L.); (P.S.)
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano Milan, 20133 Milano MI, Italy; (A.O.); (L.B.); (M.D.L.); (P.S.)
| | - Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano Milan, 20133 Milano MI, Italy; (A.O.); (L.B.); (M.D.L.); (P.S.)
| | - Alexey Wolf
- Laboratory of Fiber Optics, Institute of Automation and Electrometry SB RAS, Novosibirsk 630090, Russia; (A.W.); (A.D.)
| | - Alexander Dostovalov
- Laboratory of Fiber Optics, Institute of Automation and Electrometry SB RAS, Novosibirsk 630090, Russia; (A.W.); (A.D.)
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano Milan, 20133 Milano MI, Italy; (A.O.); (L.B.); (M.D.L.); (P.S.)
| |
Collapse
|
27
|
Abstract
This article discusses intraoperative imaging techniques used during high-grade glioma surgery. Gliomas can be difficult to differentiate from surrounding tissue during surgery. Intraoperative imaging helps to alleviate problems encountered during glioma surgery, such as brain shift and residual tumor. There are a variety of modalities available all of which aim to give the surgeon more information, address brain shift, identify residual tumor, and increase the extent of surgical resection. The article starts with a brief introduction followed by a review of with the latest advances in intraoperative ultrasound, intraoperative MRI, and intraoperative computed tomography.
Collapse
Affiliation(s)
- Thomas Noh
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Hawaii Pacific Health, John A Burns School of Medicine, Honolulu, Hawaii, USA
| | - Martina Mustroph
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Lahiff MN, Ghali MGZ. The Ethical Dilemma in the Surgical Management of Low Grade Gliomas According to the Variable Availability of Resources and Surgeon Experience. Asian J Neurosurg 2020; 15:266-271. [PMID: 32656117 PMCID: PMC7335147 DOI: 10.4103/ajns.ajns_296_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/20/2019] [Indexed: 11/04/2022] Open
Abstract
Low grade gliomas (LGGs) affect young individuals in the prime of life. Management may alternatively include biopsy and observation or surgical resection. Recent evidence strongly favors maximal and supramaximal resection of LGGs in optimizing survival metrics. Awake craniotomy with cortical mapping and electrical stimulation along with other preoperative and intraoperative surgical adjuncts, including intraoperative magnetic resonance and diffusion tensor imaging, facilitates maximization of resection and eschews precipitating neurological deficits. Intraoperative imaging permits additional resection of identified residual to be completed within the same surgical session, improving extent of resection and consequently progression free and overall survival. These resources are available in only a few centers throughout the United States, raising an ethical dilemma as to where patients harboring LGGs should most appropriately be treated.
Collapse
Affiliation(s)
- Marshall Norman Lahiff
- School of Law, University of Miami, Miami, Florida, USA.,Walton Lantaff Schoreder and Carson LLP, Miami, Florida, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, Philadelphia, Pennsylvania, USA.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
30
|
Montemurro N, Anania Y, Cagnazzo F, Perrini P. Survival outcomes in patients with recurrent glioblastoma treated with Laser Interstitial Thermal Therapy (LITT): A systematic review. Clin Neurol Neurosurg 2020; 195:105942. [PMID: 32470780 DOI: 10.1016/j.clineuro.2020.105942] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the role of laser interstitial thermal therapy in recurrent glioblastoma and to assess its effect in the overall survival and in progression-free survival. METHODS A MEDLINE and Pubmed search was performed for the key words "laser interstitial thermal therapy", "LITT" and "glioblastoma". Studies investigating overall survival and progression-free survival of recurrent glioblastoma after laser interstitial thermal therapy were selected. RESULTS A total of 17 studies met the selection criteria, accounting for 203 patients with recurrent glioblastoma who underwent 219 laser interstitial thermal therapy treatments. The median age was 57.4 years and there was male predominance (65.8 % male Vs 34.2 % female). The most common location resulted frontal lobe (29 %), followed by temporal (23.9 %), parietal (21.4 %) and occipital lobes (2.6 %). Additional locations included thalamus, corpus callosum and cerebellum (23.1 %). Pre-treatment median tumor size was 8.9 cm3. Morbidity was 6.4 % with a median hospital stay of 3.5 days. The most common complications were seizures (2%), motor deficits (1.5 %), wound infection (1.5 %), transient hemiparesis (1%) and hemorrhage (0.5 %). No deaths were reported due to LITT procedure. The median progression-free survival and the median overall survival after laser interstitial thermal therapy resulted 5.6 months and 10.2 months, respectively. The median overall survival from diagnosis was 14.7 months. All patients underwent adjuvant chemotherapy after treatment. CONCLUSION Laser interstitial thermal therapy provides an effective treatment with low morbidity for selected patients harboring recurrent glioblastoma. Laser interstitial thermal therapy should be included in the armamentarium of neurosurgical oncologist for treatment of recurrent glioblastomas.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Yury Anania
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy
| | - Federico Cagnazzo
- Neuroradiology Department, CHRU Gui de Chauliac, Montpellier, France
| | - Paolo Perrini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Bourdillon P, Ferrand-Sorbet S, Apra C, Chipaux M, Raffo E, Rosenberg S, Bulteau C, Dorison N, Bekaert O, Dinkelacker V, Le Guérinel C, Fohlen M, Dorfmüller G. Surgical treatment of hypothalamic hamartomas. Neurosurg Rev 2020; 44:753-762. [PMID: 32318922 DOI: 10.1007/s10143-020-01298-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Hypothalamic hamartomas are aberrant masses, composed of abnormally distributed neurons and glia. Along endocrine and cognitive symptoms, they may cause epileptic seizures, including the specific gelastic and dacrystic seizures. Surgery is the treatment of drug-resistant hamartoma epilepsy, with associated positive results on endocrine, psychiatric, and cognitive symptoms. Recently, alternatives to open microsurgical treatment have been proposed. We review these techniques and compare their efficacy and safety. Open resection or disconnection of the hamartoma, either through pterional, transcallosal, or transventricular approach, leads to good epileptological control, but its high complication rate, up to 30%, limits its indications. The purely cisternal peduncular forms remain the only indication of open, pterional approach, while other strategies have been developed to overcome the neurological, endocrine, behavioral, or cognitive complications. Laser and radiofrequency thermocoagulation-based disconnection through robot-guided stereo-endoscopy has been proposed as an alternative to open microsurgical resection and stereotactic destruction. The goal is to allow safe and complete disconnection of a possibly complex attachment zone, through a single intraparenchymal trajectory which allows multiple laser or radiofrequency probe trajectory inside the ventricle. The efficacy was high, with 78% of favorable outcome, and the overall complication rate was 8%. It was especially effective in patients with isolated gelastic seizures and pure intraventricular hamartomas. Stereotactic radiosurgery has proved as efficacious and safer than open microsurgery, with around 60% of seizure control and a very low complication rate. Multiple stereotactic thermocoagulation showed very interesting results with 71% of seizure freedom and 2% of permanent complications. Stereotactic laser interstitial thermotherapy (LiTT) seems as effective as open microsurgery (from 76 to 81% of seizure freedom) but causes up to 20% of permanent complications. This technique has however been highly improved by targeting only the epileptogenic onset zone in the hamartoma, as shown on preoperative functional MRI, leading to an improvement of epilepsy control by 45% (92% of seizure freedom) with no postoperative morbidity. All these results suggest that the impact of the surgical procedure does not depend on purely technical matters (laser vs radiofrequency thermocoagulation or stereotactic vs robot-guided stereo-endoscopy) but relies on the understanding of the epileptic network, including inside the hamartoma, the aim being to plan an effective disconnection or lesion of the epileptogenic part while sparing the adjacent functional structures.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurosurgery, Rothschild Foundation Hospital, 29 Rue Manin, 75019, Paris, France. .,Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France. .,Sorbonne Université, Paris, France. .,INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Paris, France.
| | - S Ferrand-Sorbet
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - C Apra
- Sorbonne Université, Paris, France.,INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Paris, France.,Department of Neurosurgery, Pitié-Salpêtrière Hospital, Paris, France
| | - M Chipaux
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - E Raffo
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France.,Université de Lorraine, Nancy, France
| | - S Rosenberg
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - C Bulteau
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France.,Université de Paris, Paris, France
| | - N Dorison
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - O Bekaert
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - V Dinkelacker
- Department of Neurology, Rothschild Foundation Hospital, Paris, France
| | - C Le Guérinel
- Department of Neurosurgery, Rothschild Foundation Hospital, 29 Rue Manin, 75019, Paris, France
| | - M Fohlen
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - G Dorfmüller
- Department of Pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
32
|
Shao J, Radakovich NR, Grabowski M, Borghei-Razavi H, Knusel K, Joshi KC, Muhsen BA, Hwang L, Barnett GH, Mohammadi AM. Lessons Learned in Using Laser Interstitial Thermal Therapy for Treatment of Brain Tumors: A Case Series of 238 Patients from a Single Institution. World Neurosurg 2020; 139:e345-e354. [PMID: 32298824 DOI: 10.1016/j.wneu.2020.03.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a novel, minimally invasive alternative to craniotomy, and as with any new technology, comes with a learning curve. OBJECTIVE We present our experience detailing the evolution of this technology in our practice in one of the largest patient cohorts to date regarding LITT in neuro-oncology. METHODS We reviewed 238 consecutive patients with brain tumor treated with LITT at our institution. Data on patient, surgery and tumor characteristics, and follow-up were collected. Patients were categorized into 2 cohorts: early (<2014, 100 patients) and recent (>2015, 138 patients). Median follow-up for the entire cohort was 8.4 months. RESULTS The indications for LITT included gliomas (70.2%), radiation necrosis (21.0%), and metastasis (8.8%). Patient demographics stayed consistent between the 2 cohorts, with the exception of age (early, 54.3; recent, 58.4; P = 0.04). Operative time (6.6 vs. 3.5; P < 0.001) and number of trajectories (53.1% vs. 77.9% with 1 trajectory; P < 0.001) also decreased in the recent cohort. There was a significant decrease in permanent motor deficits over time (15.5 vs. 4.4%; P = 0.005) and 30-day mortality (4.1% vs. 1.5%) also decreased (not statistically significant) in the recent cohort. In terms of clinical outcomes, poor preoperative Karnofsky Performance Status (≤70) were significantly correlated with increased permanent deficits (P = 0.001) and decreased overall survival (P < 0.001 for all time points). CONCLUSIONS We observed improvement in operative efficiency and permanent deficits over time and also patients with poor preoperative Karnofsky Performance Status achieved suboptimal outcomes with LITT. As many other treatment modalities, patient selection is important in this procedure.
Collapse
Affiliation(s)
- Jianning Shao
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA; Case Western School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan R Radakovich
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA; Case Western School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthew Grabowski
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hamid Borghei-Razavi
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Konrad Knusel
- Case Western School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Krishna C Joshi
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Baha'eddin A Muhsen
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lee Hwang
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
33
|
Mohammadi AM, Sharma M, Beaumont TL, Juarez KO, Kemeny H, Dechant C, Seas A, Sarmey N, Lee BS, Jia X, Fecci PE, Baehring J, Moliterno J, Chiang VL, Ahluwalia MS, Kim AH, Barnett GH, Leuthardt EC. Upfront Magnetic Resonance Imaging-Guided Stereotactic Laser-Ablation in Newly Diagnosed Glioblastoma: A Multicenter Review of Survival Outcomes Compared to a Matched Cohort of Biopsy-Only Patients. Neurosurgery 2020; 85:762-772. [PMID: 30476325 DOI: 10.1093/neuros/nyy449] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/21/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Laser ablation (LA) is used as an upfront treatment in patients with deep seated newly diagnosed Glioblastoma (nGBM). OBJECTIVE To evaluate the outcomes of LA in patients with nGBM and compare them with a matched biopsy-only cohort. METHODS Twenty-four nGBM patients underwent upfront LA at Cleveland clinic, Washington University in St. Louis, and Yale University (6/2011-12/2014) followed by chemo/radiotherapy. Also, 24 out of 171 nGBM patients with biopsy followed by chemo/radiotherapy were matched based on age (< 70 vs ≥ 70), gender, tumor location (deep vs lobar), and volume (<11 cc vs ≥11 cc). Progression-free survival (PFS), overall survival (OS), and disease-specific PFS and OS were outcome measures. Three prognostic groups were identified based on extent of tumor ablation by thermal-damage-threshold (TDT)-lines. RESULTS The median tumor volume in LA (n = 24) and biopsy only (n = 24) groups was 9.3 cm3 and 8.2 cm3 respectively. Overall, median estimate of OS and PFS in LA cohort was 14.4 and 4.3 mo compared to 15.8 mo and 5.9 mo for biopsy only cohort. On multivariate analysis, favorable TDT-line prognostic groups were associated with lower incidence of disease specific death (P = .03) and progression (P = .05) compared to other groups including biopsy only cohort. Only age (<70 yr, P = .02) and tumor volume (<11 cc, P = .03) were favorable prognostic factors for OS. CONCLUSION The maximum tumor coverage by LA followed by radiation/chemotherapy is an effective treatment modality in patients with nGBM, compared to biopsy only cohort. The TDT-line prognostic groups were independent predictor of disease specific death and progression after LA.
Collapse
Affiliation(s)
- Alireza M Mohammadi
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Mayur Sharma
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Thomas L Beaumont
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin O Juarez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Hanna Kemeny
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Cosette Dechant
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Andreas Seas
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Nehaw Sarmey
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Bryan S Lee
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Xuefei Jia
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Joachim Baehring
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Manmeet S Ahluwalia
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gene H Barnett
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri
- Department of Mechanical Engineering and Material Science, Center for Innovation in Neuroscience and Technology, Washington University, School of Medicine, St. Louis, Missouri
| |
Collapse
|
34
|
Kamath AA, Friedman DD, Akbari SHA, Kim AH, Tao Y, Luo J, Leuthardt EC. Glioblastoma Treated With Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy: Safety, Efficacy, and Outcomes. Neurosurgery 2020; 84:836-843. [PMID: 30137606 PMCID: PMC6425465 DOI: 10.1093/neuros/nyy375] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite the multitude of available treatments, glioblastoma (GBM) remains an aggressive and uniformly fatal tumor. Laser interstitial thermal therapy (LITT) is a novel, minimally invasive treatment that holds promise for treating patients with GBM who are not candidates for traditional open craniotomy. However, due to the recent introduction of LITT into clinical practice, large series that evaluate safety and long-term outcomes after LITT are lacking. OBJECTIVE To present our institution's series of over 50 GBM patients treated with LITT, with regard to safety, efficacy, and outcomes. METHODS We performed a retrospective descriptive study of patients with histologically proven GBM who underwent LITT. Data collected included demographics, tumor location and volume, tumor genetic markers, treatment volume, perioperative complications, and long-term follow-up data. RESULTS We performed 58 LITT treatments for GBM in 54 patients over 5.5 yr. Forty-one were recurrent tumors while 17 were frontline treatments. Forty GBMs were lobar in location, while 18 were in deep structures (thalamus, insula, corpus callosum). Average tumor volume was 12.5 ± 13.4 cm3. Average percentage of tumor treated with the yellow thermal damage threshold (TDT) line (dose equivalent of 43°C for 2 min) was 93.3% ± 10.6%, and with the blue TDT line (dose equivalent of 43°C for 10 min) was 88.0% ± 14.2%. There were 7 perioperative complications (12%) and 2 mortalities (3.4%). Median overall survival after LITT for the total cohort was 11.5 mo, and median progression-free survival 6.6 mo. CONCLUSION LITT appears to be a safe and effective treatment for GBM in properly selected patients.
Collapse
Affiliation(s)
- Ashwin A Kamath
- Departments of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel D Friedman
- Departments of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - S Hassan A Akbari
- Departments of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- Departments of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Yu Tao
- Department of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Jinqin Luo
- Department of Biostatistics, Washington University School of Medicine, St. Louis, Missouri.,Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- Departments of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri.,Department of Mechanical Engineering and Materials Science, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, Missouri.,Brain Laser Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
35
|
Bozinov O, Yang Y, Oertel MF, Neidert MC, Nakaji P. Laser interstitial thermal therapy in gliomas. Cancer Lett 2020; 474:151-157. [PMID: 31991153 DOI: 10.1016/j.canlet.2020.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Laser interstitial thermal therapy (LITT) has been used for brain metastasis, epilepsy, and necrosis, as well as gliomas as a minimally invasive treatment for many years. With the improvement of the thermal monitoring and ablation precision, especially the application of magnetic resonance (MR) thermography in the procedure and the available two commercial laser systems nowadays, LITT is gradually accepted by more neurosurgical centers. Recently, some new concepts, for example the adjuvant chemotherapy or radiation following LITT, the combination of immunotherapy and LITT regarding the glioma treatment are proposed and currently being investigated. The aim of this study is to summarize the evolution of LITT especially for brain gliomas and a possible outlook of the future.
Collapse
Affiliation(s)
- Oliver Bozinov
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland.
| | - Yang Yang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Peter Nakaji
- Department of Neurosurgery, University of Arizona College of Medicine Phoenix, Banner Health, 755 East McDowell Road, Phoenix, AZ, 85006, USA
| |
Collapse
|
36
|
Bhansali AP, Gwinn RP. Ablation: Radiofrequency, Laser, and HIFU. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
38
|
Salem U, Kumar VA, Madewell JE, Schomer DF, de Almeida Bastos DC, Zinn PO, Weinberg JS, Rao G, Prabhu SS, Colen RR. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging 2019; 19:65. [PMID: 31615562 PMCID: PMC6792239 DOI: 10.1186/s40644-019-0250-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023] Open
Abstract
MRI-guided laser interstitial thermal therapy (LITT) is the selective ablation of a lesion or a tissue using heat emitted from a laser device. LITT is considered a less invasive technique compared to open surgery that provides a nonsurgical solution for patients who cannot tolerate surgery. Although laser ablation has been used to treat brain lesions for decades, recent advances in MRI have improved lesion targeting and enabled real-time accurate monitoring of the thermal ablation process. These advances have led to a plethora of research involving the technique, safety, and potential applications of LITT.LITT is a minimally invasive treatment modality that shows promising results and is associated with decreased morbidity. It has various applications, such as treatment of glioma, brain metastases, radiation necrosis, and epilepsy. It can provide a safer alternative treatment option for patients in whom the lesion is not accessible by surgery, who are not surgical candidates, or in whom other standard treatment options have failed. Our aim is to review the current literature on LITT and provide a descriptive review of the technique, imaging findings, and clinical applications for neurosurgery.
Collapse
Affiliation(s)
- Usama Salem
- Department of Radiology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Vinodh A Kumar
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John E Madewell
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donald F Schomer
- Department of Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Pascal O Zinn
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rivka R Colen
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA. .,Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
39
|
Hansson Mild K, Lundström R, Wilén J. Non-Ionizing Radiation in Swedish Health Care-Exposure and Safety Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1186. [PMID: 30987016 PMCID: PMC6479478 DOI: 10.3390/ijerph16071186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
The main aim of the study was to identify and describe methods using non-ionizing radiation (NIR) such as electromagnetic fields (EMF) and optical radiation in Swedish health care. By examining anticipated exposure levels and by identifying possible health hazards we also aimed to recognize knowledge gaps in the field. NIR is mainly used in health care for diagnosis and therapy. Three applications were identified where acute effects cannot be ruled out: magnetic resonance imaging (MRI), transcranial magnetic stimulation (TMS) and electrosurgery. When using optical radiation, such as class 3 and 4 lasers for therapy or surgical procedures and ultra-violet light for therapy, acute effects such as unintentional burns, photo reactions, erythema and effects on the eyes need to be avoided. There is a need for more knowledge regarding long-term effects of MRI as well as on the combination of different NIR exposures. Based on literature and after consulting staff we conclude that the health care professionals' knowledge about the risks and safety measures should be improved and that there is a need for clear, evidence-based information from reliable sources, and it should be obvious to the user which source to address.
Collapse
Affiliation(s)
- Kjell Hansson Mild
- Department of Radiation Sciences, Umeå University, S-90185 Umeå, Sweden.
| | - Ronnie Lundström
- Department of Radiation Sciences, Umeå University, S-90185 Umeå, Sweden.
| | - Jonna Wilén
- Department of Radiation Sciences, Umeå University, S-90185 Umeå, Sweden.
| |
Collapse
|
40
|
Willie JT, Malcolm JG, Stern MA, Lowder LO, Neill SG, Cabaniss BT, Drane DL, Gross RE. Safety and effectiveness of stereotactic laser ablation for epileptogenic cerebral cavernous malformations. Epilepsia 2019; 60:220-232. [PMID: 30653657 PMCID: PMC6365175 DOI: 10.1111/epi.14634] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Magnetic resonance (MR) thermography-guided laser interstitial thermal therapy, or stereotactic laser ablation (SLA), is a minimally invasive alternative to open surgery for focal epilepsy caused by cerebral cavernous malformations (CCMs). We examined the safety and effectiveness of SLA of epileptogenic CCMs. METHODS We retrospectively analyzed 19 consecutive patients who presented with focal seizures associated with a CCM. Each patient underwent SLA of the CCM and adjacent cortex followed by standard clinical and imaging follow-up. RESULTS All but one patient had chronic medically refractory epilepsy (median duration 8 years, range 0.5-52 years). Lesions were located in the temporal (13), frontal (five), and parietal (one) lobes. CCMs induced magnetic susceptibility artifacts during thermometry, but perilesional cortex was easily visualized. Fourteen of 17 patients (82%) with >12 months of follow-up achieved Engel class I outcomes, of which 10 (59%) were Engel class IA. Two patients who were not seizure-free from SLA alone became so following intracranial electrode-guided open resection. Delayed postsurgical imaging validated CCM involution (median 83% volume reduction) and ablation of surrounding cortex. Histopathologic examination of one previously ablated CCM following open surgery confirmed obliteration. SLA caused no detectable hemorrhages. Two symptomatic neurologic deficits (visual and motor) were predictable, and neither was permanently disabling. SIGNIFICANCE In a consecutive retrospective series, MR thermography-guided SLA was an effective alternative to open surgery for epileptogenic CCM. The approach was free of hemorrhagic complications, and clinically significant neurologic deficits were predictable. SLA presents no barrier to subsequent open surgery when needed.
Collapse
Affiliation(s)
- Jon T. Willie
- Department of Neurological Surgery, Emory University School
of Medicine. Atlanta, GA
- Department of Neurology, Emory University School of
Medicine. Atlanta, GA
| | - James G. Malcolm
- Department of Neurological Surgery, Emory University School
of Medicine. Atlanta, GA
| | - Matthew A. Stern
- Medical Scientist Training Program, Emory University School
of Medicine. Atlanta, GA
| | - Lindsay O. Lowder
- Department of Pathology, Emory University School of
Medicine. Atlanta, GA
| | - Stewart G. Neill
- Department of Pathology, Emory University School of
Medicine. Atlanta, GA
| | - Brian T. Cabaniss
- Department of Neurology, Emory University School of
Medicine. Atlanta, GA
| | - Daniel L. Drane
- Department of Neurology, Emory University School of
Medicine. Atlanta, GA
- Department of Pediatrics, Emory University School of
Medicine. Atlanta, GA
- Department of Neurology, University of Washington School of
Medicine, Seattle, WA
| | - Robert E. Gross
- Department of Neurological Surgery, Emory University School
of Medicine. Atlanta, GA
- Department of Neurology, Emory University School of
Medicine. Atlanta, GA
| |
Collapse
|
41
|
Carminucci A, Parr M, Bitar M, Danish SF. Delayed Onset Cyst Formation After Laser Interstitial Thermal Therapy: An Unreported Long-term Complication. World Neurosurg 2019; 124:219-223. [PMID: 30639484 DOI: 10.1016/j.wneu.2018.12.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/01/2022]
Abstract
The majority of complications following LITT therapy occur in the early post-operative period, with few long-term complications being reported. Here we present 2 cases of delayed onset cyst formation occurring more than 1 year following ablation, a previously unreported complication. In the first case, a 59 year-old female who previously underwent LITT for a radiation induced cavernoma developed a 2 cm cystic lesion 18 months following ablation, resulting in recurrent seizure. In the second case, 53 year-old female with a recurrent left frontal cerebral metastasis developed a large cystic lesion 30 months post ablation. Both patients required craniotomies and resection of their cystic lesions. In both cases pathology demonstrated reactive gliosis and blood vessel sclerosis. We hypothesize chronic gliosis following LITT therapy results in blood vessel sclerosis leading to blood-brain-barrier breakdown and resulting delayed cyst formation. These findings support need for long-term surveillance of patients treated with LITT.
Collapse
Affiliation(s)
- Arthur Carminucci
- Department of Neurological Surgery, Rutgers University, New Brunswick, NJ, USA
| | - Matthew Parr
- Department of Neurological Surgery, Rutgers University, New Brunswick, NJ, USA
| | - Mireille Bitar
- Department of Pathology, Rutgers-RWJMS, New Brunswick, NJ, USA
| | - Shabbar F Danish
- Department of Neurological Surgery, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
42
|
Silva D, Sharma M, Barnett GH. Laser Ablation vs Open Resection for Deep-Seated Tumors: Evidence for Laser Ablation. Neurosurgery 2018; 63 Suppl 1:15-26. [PMID: 27399359 DOI: 10.1227/neu.0000000000001289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Danilo Silva
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mayur Sharma
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gene H Barnett
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
43
|
Salehi A, Kamath AA, Leuthardt EC, Kim AH. Management of Intracranial Metastatic Disease With Laser Interstitial Thermal Therapy. Front Oncol 2018; 8:499. [PMID: 30430083 PMCID: PMC6220072 DOI: 10.3389/fonc.2018.00499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Treatment approaches for metastatic brain tumors continue to evolve, with increasing recent emphasis on focal therapies whenever possible. MRI-guided Laser Interstitial Thermal Therapy (LITT) is a minimally invasive surgical option that has broadened the capability of the neurosurgeon in treating difficult-to-treat intracranial lesions. This technology uses image-guided delivery of laser to the target lesion to generate heat and thereby ablate pathological tissue and has expanded the neurosurgical armamentarium for surgical treatment of brain metastases. In this study, we describe the indications for LITT in the management of intracranial metastatic disease and report our institutional experience with LITT.
Collapse
Affiliation(s)
- Afshin Salehi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashwin A Kamath
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
44
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|
45
|
The Safety of Bevacizumab Administered Shortly after Laser Interstitial Thermal Therapy in Glioblastoma: A Case Series. World Neurosurg 2018; 117:e588-e594. [DOI: 10.1016/j.wneu.2018.06.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022]
|
46
|
Alphandéry E, Abi Haidar D, Seksek O, Guyot F, Chebbi I. Fluorescent magnetosomes for controlled and repetitive drug release under the application of an alternating magnetic field under conditions of limited temperature increase (<2.5 °C). NANOSCALE 2018; 10:10918-10933. [PMID: 29850738 DOI: 10.1039/c8nr02164c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Therapeutic substances bound to nanoparticles have been shown to dissociate following excitation by various external sources of energies or chemical disturbance, resulting in controllable and efficient antitumor activity. Bioconjugation is used to produce magnetosomes associated with Rhodamine B (RhB), whose fluorescence is partially quenched by the presence of iron oxide and becomes strongly enhanced when RhB dissociates from the magnetosomes under the application of an alternating magnetic field. This novel approach enables the release of a RhB model molecule while monitoring the mechanism by fluorescence. The dissociation mechanism of RhB is highlighted by exposing a suspension of fluorescent magnetosomes to an alternating magnetic field, by magnetically isolating the supernatant of this suspension, and by showing fluorescence enhancement of the supernatant. Furthermore, to approach in vivo conditions, fluorescent magnetosomes are mixed with tissue or introduced in the mouse brain and exposed to the alternating magnetic field. Most interestingly, the percentages of RhB dissociation measured at the beginning of magnetic excitation (ΔR/δt) or 600 seconds afterwards (R600 s) are ΔR/δt ∼ 0.13% and R600 s ∼ 50% under conditions of limited temperature increases (<2.5 °C), larger values than those of ΔR/δt ∼ 0.02-0.11% and R600 s ∼ 13%, estimated for temperature increase larger than 2.5 °C. Furthermore, when magnetic excitations are repeated two to five times, the temperature increase becomes undetectable, but RhB dissociation continues to occur up to the fifth magnetic excitation. Since high heating temperatures may be damaging for tissues, this study paves the way towards the development of a safe theranostic dissociating nano-probe operating under conditions of limited temperature increase.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de, Cosmochimie, IMPMC, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
47
|
Carminucci A, Patel NV, Sundararajan S, Keller I, Danish S. Volumetric Trends Associated with MR-guided Stereotactic Laser Amygdalohippocampectomy in Mesial Temporal Lobe Epilepsy. Cureus 2018; 10:e2376. [PMID: 29805945 PMCID: PMC5969817 DOI: 10.7759/cureus.2376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Magnetic resonance (MR)-guided stereotactic laser amygdalohippocampectomy is a minimally invasive procedure for the treatment of refractory epilepsy in patients with mesial temporal sclerosis. Limited data exist on post-ablation volumetric trends associated with the procedure. Methods: 10 patients with mesial temporal sclerosis underwent MR-guided stereotactic laser amygdalohippocampectomy. Three independent raters computed ablation volumes at the following time points: pre-ablation (PreA), immediate post-ablation (IPA), 24 hours post-ablation (24PA), first follow-up post-ablation (FPA), and greater than three months follow-up post-ablation (>3MPA), using OsiriX DICOM Viewer (Pixmeo, Bernex, Switzerland). Statistical trends in post-ablation volumes were determined for the time points. Results: MR-guided stereotactic laser amygdalohippocampectomy produces a rapid rise and distinct peak in post-ablation volume immediately following the procedure. IPA volumes are significantly higher than all other time points. Comparing individual time points within each raters dataset (intra-rater), a significant difference was seen between the IPA time point and all others. There was no statistical difference between the 24PA, FPA, and >3MPA time points. A correlation analysis demonstrated the strongest correlations at the 24PA (r=0.97), FPA (r=0.95), and 3MPA time points (r=0.99), with a weaker correlation at IPA (r=0.92). Conclusion: MR-guided stereotactic laser amygdalohippocampectomy produces a maximal increase in post-ablation volume immediately following the procedure, which decreases and stabilizes at 24 hours post-procedure and beyond three months follow-up. Based on the correlation analysis, the lower inter-rater reliability at the IPA time point suggests it may be less accurate to assess volume at this time point. We recommend post-ablation volume assessments be made at least 24 hours post-selective ablation of the amygdalohippocampal complex (SLAH).
Collapse
Affiliation(s)
- Arthur Carminucci
- Neurosurgery, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| | - Nitesh V Patel
- Neurosurgery, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| | - Sri Sundararajan
- Radiology, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| | - Irwin Keller
- Radiology, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| | - Shabbar Danish
- Neurosurgery, Rutgers Robert Wood Johnson Medical School, Piscataway, USA
| |
Collapse
|
48
|
Mitchell D, Fahrenholtz S, MacLellan C, Bastos D, Rao G, Prabhu S, Weinberg J, Hazle J, Stafford J, Fuentes D. A heterogeneous tissue model for treatment planning for magnetic resonance-guided laser interstitial thermal therapy. Int J Hyperthermia 2018; 34:943-952. [PMID: 29343140 DOI: 10.1080/02656736.2018.1429679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We evaluated a physics-based model for planning for magnetic resonance-guided laser interstitial thermal therapy for focal brain lesions. Linear superposition of analytical point source solutions to the steady-state Pennes bioheat transfer equation simulates laser-induced heating in brain tissue. The line integral of the photon attenuation from the laser source enables computation of the laser interaction with heterogeneous tissue. Magnetic resonance thermometry data sets (n = 31) were used to calibrate and retrospectively validate the model's thermal ablation prediction accuracy, which was quantified by the Dice similarity coefficient (DSC) between model-predicted and measured ablation regions (T > 57 °C). A Gaussian mixture model was used to identify independent tissue labels on pre-treatment anatomical magnetic resonance images. The tissue-dependent optical attenuation coefficients within these labels were calibrated using an interior point method that maximises DSC agreement with thermometry. The distribution of calibrated tissue properties formed a population model for our patient cohort. Model prediction accuracy was cross-validated using the population mean of the calibrated tissue properties. A homogeneous tissue model was used as a reference control. The median DSC values in cross-validation were 0.829 for the homogeneous model and 0.840 for the heterogeneous model. In cross-validation, the heterogeneous model produced a DSC higher than that produced by the homogeneous model in 23 of the 31 brain lesion ablations. Results of a paired, two-tailed Wilcoxon signed-rank test indicated that the performance improvement of the heterogeneous model over that of the homogeneous model was statistically significant (p < 0.01).
Collapse
Affiliation(s)
- Drew Mitchell
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Samuel Fahrenholtz
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Christopher MacLellan
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Dhiego Bastos
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sujit Prabhu
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jeffrey Weinberg
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - John Hazle
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jason Stafford
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - David Fuentes
- a Department of Imaging Physics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
49
|
Laser-Induced Thermal Therapy in Neuro-Oncology: A Review. World Neurosurg 2018; 112:166-177. [PMID: 29410102 DOI: 10.1016/j.wneu.2018.01.123] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Laser therapy has become an appealing treatment modality in neurosurgery. In this review, we report on the history, physics, surgical steps, indications and uses, and complications that have been reported to date. METHODS An extensive literature search was performed for laser interstitial thermal therapy (LITT) and laser therapy in the context of glial tumors, metastatic lesions, pediatric brain tumors, and radiation necrosis. Reported complications in each series also were reviewed. RESULTS In the past decade, multiple studies have demonstrated the use, outcomes, and complications associated with LITT in neurosurgery. These same studies have consistently reported an overall benefit of LITT in cases in which traditional surgical approaches may be limited by the patient's clinical status, tumor location, or overall prognosis. However, there have been complications reported from local effects of thermal damage, technical error, and edema development. Increased experience has reduced complications and brought more promising results. CONCLUSIONS With the advent of real-time monitoring and damage estimation, LITT has gained ground in the management of intracranial tumors. Larger scale trials must be performed to develop standard protocols to define specific indications for use. Further large clinical studies for LITT in non-oncologic cases are also of interest.
Collapse
|
50
|
Perioperative and Anesthetic Considerations for Neurosurgical Laser Interstitial Thermal Therapy Ablations. J Neurosurg Anesthesiol 2018; 30:10-17. [DOI: 10.1097/ana.0000000000000376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|