1
|
Yu J, Tang X, Lei Y, Zhang Z, Li B, Bai H, Li L. A review on functional lung avoidance radiotherapy plan for lung cancer. Front Oncol 2024; 14:1429837. [PMID: 39703855 PMCID: PMC11656049 DOI: 10.3389/fonc.2024.1429837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Lung cancer is the most common malignant tumor in China. Its incidence and mortality rate increase year by year. In the synthesis treatment of lung cancer, radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has become the major limiting factor in prescription dose escalation. Conventional RT is designed to minimize radiation exposure to healthy lungs without considering the inhomogeneity of lung function, which is significantly non-uniform in most patients. In accordance with the functional and structural heterogeneity of lung tissue, functional lung avoidance RT (FLART) can reduce radiation exposure to functional lung (FL), thus reducing RILI. Meanwhile, a dose-function histogram (DFH) was proposed to describe the dose parameters of the optimized image-guided RT plan. This paper reviews lung function imaging for lung cancer RT plans. It also reviews the clinical applications of function-guided RT plans and their current problems and research directions to provide better guidance for clinical selection.
Collapse
Affiliation(s)
- Jinhui Yu
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaofeng Tang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| | - Yifan Lei
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Bo Li
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Han Bai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
- Department of Physics and Astronomy, Yunnan University, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| |
Collapse
|
2
|
Ohno Y, Ozawa Y, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Koyama H. Lung Magnetic Resonance Imaging: Technical Advancements and Clinical Applications. Invest Radiol 2024; 59:38-52. [PMID: 37707840 DOI: 10.1097/rli.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno and H.N.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ozawa and T.U.); Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.Y., D.T.); and Department of Radiology, Advanced Diagnostic Medical Imaging, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (H.K.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Niedbalski PJ, Choi J, Hall CS, Castro M. Imaging in Asthma Management. Semin Respir Crit Care Med 2022; 43:613-626. [PMID: 35211923 DOI: 10.1055/s-0042-1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation that affects more than 300 million people worldwide. Clinically, asthma has a widely variable presentation and is defined based on a history of respiratory symptoms alongside airflow limitation. Imaging is not needed to confirm a diagnosis of asthma, and thus the use of imaging in asthma has historically been limited to excluding alternative diagnoses. However, significant advances continue to be made in novel imaging methodologies, which have been increasingly used to better understand respiratory impairment in asthma. As a disease primarily impacting the airways, asthma is best understood by imaging methods with the ability to elucidate airway impairment. Techniques such as computed tomography, magnetic resonance imaging with gaseous contrast agents, and positron emission tomography enable assessment of the small airways. Others, such as optical coherence tomography and endobronchial ultrasound enable high-resolution imaging of the large airways accessible to bronchoscopy. These imaging techniques are providing new insights in the pathophysiology and treatments of asthma and are poised to impact the clinical management of asthma.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Brooke JP, Hall IP. Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:123-145. [PMID: 34019267 DOI: 10.1007/978-3-030-68748-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excessive pulmonary inflammation can lead to damage of lung tissue, airway remodelling and established structural lung disease. Novel therapeutics that specifically target inflammatory pathways are becoming increasingly common in clinical practice, but there is yet to be a similar stepwise change in pulmonary diagnostic tools. A variety of thoracic magnetic resonance imaging (MRI) tools are currently in development, which may soon fulfil this emerging clinical need for highly sensitive assessments of lung structure and function. Given conventional MRI techniques are poorly suited to lung imaging, alternate strategies have been developed, including the use of inhaled contrast agents, intravenous contrast and specialized lung MR sequences. In this chapter, we discuss technical challenges of performing MRI of the lungs and how they may be overcome. Key thoracic MRI modalities are reviewed, namely, hyperpolarized noble gas MRI, oxygen-enhanced MRI (OE-MRI), ultrashort echo time (UTE) MRI and dynamic contrast-enhanced (DCE) MRI. Finally, we consider potential clinical applications of these techniques including phenotyping of lung disease, evaluation of novel pulmonary therapeutic efficacy and longitudinal assessment of specific patient groups.
Collapse
Affiliation(s)
- Jonathan P Brooke
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| | - Ian P Hall
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
6
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
7
|
Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Overview of MRI for pulmonary functional imaging. Br J Radiol 2021; 95:20201053. [PMID: 33529053 DOI: 10.1259/bjr.20201053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphological evaluation of the lung is important in the clinical evaluation of pulmonary diseases. However, the disease process, especially in its early phases, may primarily result in changes in pulmonary function without changing the pulmonary structure. In such cases, the traditional imaging approaches to pulmonary morphology may not provide sufficient insight into the underlying pathophysiology. Pulmonary imaging community has therefore tried to assess pulmonary diseases and functions utilizing not only nuclear medicine, but also CT and MR imaging with various technical approaches. In this review, we overview state-of-the art MR methods and the future direction of: (1) ventilation imaging, (2) perfusion imaging and (3) biomechanical evaluation for pulmonary functional imaging.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| |
Collapse
|
8
|
Ohno Y, Fujisawa Y, Yoshikawa T, Takenaka D, Koyama H, Hattori H, Murayama K, Fujii K, Sugihara N, Toyama H. Inspiratory/expiratory xenon-enhanced area-detector CT: Capability for quantitative assessment of lung ventilation changes in surgically treated non-small cell lung cancer patients. Eur J Radiol 2021; 136:109574. [PMID: 33548852 DOI: 10.1016/j.ejrad.2021.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate the capability of inspiratory/expiratory Xe-enhanced ADCT for assessment of changes in pulmonary function and regional ventilation of surgically treated NSCLC patients. METHOD AND MATERIALS Forty consecutive surgically treated NSCLC patients underwent pre- and postoperative inspiratory/expiratory Xe-enhanced ADCT and pulmonary function tests. For each patient, pre- and post-operative data were analyzed and pre- and post-operative wash-in (WI) and wash-out (WO) indexes and ventilation ratio (VR=[WI-WO]/WI) maps generated by means of pixel-by-pixel analyses. Differences between pre- and postoperative WI (ΔWI), WO (ΔWO) and VR (ΔVR) were also determined. To determine the relationship between all ventilation index changes and pulmonary functional loss, Pearson's correlation was used to correlate each ventilation index change with the corresponding pulmonary functional parameter change. In addition, stepwise regression analysis was performed for all ventilation index changes and each corresponding pulmonary functional parameter change. RESULTS FEV1/FVC% change showed fair or good and significant correlations with ΔWI (r = 0.39, p = 0.01) and ΔVR (r = 0.68, p = 0.001), %FEV1 change good or moderate and significant correlations with ΔWI (r = 0.56, p = 0.0001) and ΔVR (r = 0.76, p < 0.0001), and %VC change moderate yet significant correlation with ΔWI (r = 0.65, p < 0.0001) and ΔVR (r = 0.67, p < 0.0001). Stepwise regression analysis demonstrated that FEV1/FVC% change (r2 = 0.56, p < 0.0001) significantly affected two factors, ΔVR (p < 0.0001) and ΔWI (p = 0.006), as did %FEV1 change (r2 = 0.68, p < 0.0001) [ΔVR (p < 0.0001) and ΔWI (p = 0.0001)], and %VC change (r2 = 0.63, p < 0.0001) [ΔVR (p < 0.0001) and ΔWI (p = 0.0001)]. CONCLUSION Inspiratory/expiratory Xe-enhanced ADCT has the potential to demonstrate that pre- and postoperative ventilation status of surgically treated NSCLC patients correlates with pulmonary function.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan; Joint Laboratory Research of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan; Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | - Takeshi Yoshikawa
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Radiology, Hyogo Cancer Center, Akashi, Japan
| | | | - Hisanobu Koyama
- Department of Radiology, Osaka Police Hospital, Osaka, Japan
| | - Hidetkazu Hattori
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Laboratory Research of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
9
|
Inhaled Gas Magnetic Resonance Imaging: Advances, Applications, Limitations, and New Frontiers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ohno Y, Yui M, Yoshikawa T, Seki S, Takenaka D, Kassai Y, Hattori H, Murayama K, Toyama H. 3D Oxygen-Enhanced MRI at 3T MR System: Comparison With Thin-Section CT of Quantitative Capability for Pulmonary Functional Loss Assessment and Clinical Stage Classification of COPD in Smokers. J Magn Reson Imaging 2020; 53:1042-1051. [PMID: 33205499 DOI: 10.1002/jmri.27441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Oxygen (O2 )-enhanced MRI is mainly performed by a 2D sequence using 1.5T MR systems but trying to be obtained by a 3D sequence using a 3T MR system. PURPOSE To compare the capability of 3D O2 -enhanced MRI and that of thin-section computed tomography (CT) for pulmonary functional loss assessment and clinical stage classification of chronic obstructive pulmonary disease (COPD) in smokers. STUDY TYPE Prospective study. POPULATION Fifty six smokers were included. FIELD STRENGTH/ SEQUENCE 3T, 3D O2 -enhanced MRIs were performed with a 3D T1 -weighted fast field echo pulse sequence using the multiple flip angles. ASSESSMENTS Smokers were classified into four stages ("Without COPD," "Mild COPD," "Moderate COPD," "Severe or very severe COPD"). Maps of regional changes in T1 values were generated from O2 -enhanced MR data. Regions of interest (ROIs) were then placed over the lung on all slices and averaged to determine mean T1 value change (ΔT1 ). Quantitative CT used the percentage of low attenuation areas within the entire lung (LAA%). STATISTICAL TESTS ΔT1 and LAA% were correlated with pulmonary functional parameters, and compared for four stages using Tukey's Honestly Significant Difference test. Discrimination analyses were performed and McNemar's test was used for a comparison of the accuracy of the indexes. RESULTS There were significantly higher correlations between ΔT1 and pulmonary functional parameters (-0.83 ≤ r ≤ -0.71, P < 0.05) than between LAA% and the same pulmonary functional parameters (-0.76 ≤ r ≤ -0.69, P < 0.05). ΔT1 and LAA% of the "Mild COPD" and "Moderate COPD" groups were significantly different from those of the "Severe or Very Severe COPD" group (P < 0.05). Discriminatory accuracy of ΔT1 (62.5%) and ΔT1 with LAA% (67.9%) was significantly greater than that of LAA% (48.2%, P < 0.05). DATA CONCLUSION Compared with thin-section CT, 3D O2 -enhanced MRI has a similar capability for pulmonary functional assessment but better potential for clinical stage classification in smokers. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.,Joint Laboratory Research of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Japan
| | - Takeshi Yoshikawa
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Shinichiro Seki
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | | | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Laboratory Research of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
11
|
Young HM, Eddy RL, Parraga G. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics. Clin Biomech (Bristol, Avon) 2019; 66:107-122. [PMID: 29037603 DOI: 10.1016/j.clinbiomech.2017.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. METHODS We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). FINDINGS Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth.
Collapse
Affiliation(s)
- Heather M Young
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Rachel L Eddy
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Graduate Program in Biomedical Engineering, Western University, London, Canada.
| |
Collapse
|
12
|
|
13
|
Capaldi DPI, Eddy RL, Svenningsen S, Guo F, Baxter JSH, McLeod AJ, Nair P, McCormack DG, Parraga G. Free-breathing Pulmonary MR Imaging to Quantify Regional Ventilation. Radiology 2018; 287:693-704. [PMID: 29470939 DOI: 10.1148/radiol.2018171993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose To measure regional specific ventilation with free-breathing hydrogen 1 (1H) magnetic resonance (MR) imaging without exogenous contrast material and to investigate correlations with hyperpolarized helium 3 (3He) MR imaging and pulmonary function test measurements in healthy volunteers and patients with asthma. Materials and Methods Subjects underwent free-breathing 1H and static breath-hold hyperpolarized 3He MR imaging as well as spirometry and plethysmography; participants were consecutively recruited between January and June 2017. Free-breathing 1H MR imaging was performed with an optimized balanced steady-state free-precession sequence; images were retrospectively grouped into tidal inspiration or tidal expiration volumes with exponentially weighted phase interpolation. MR imaging volumes were coregistered by using optical flow deformable registration to generate 1H MR imaging-derived specific ventilation maps. Hyperpolarized 3He MR imaging- and 1H MR imaging-derived specific ventilation maps were coregistered to quantify regional specific ventilation within hyperpolarized 3He MR imaging ventilation masks. Differences between groups were determined with the Mann-Whitney test and relationships were determined with Spearman (ρ) correlation coefficients. Statistical analyses were performed with software. Results Thirty subjects (median age: 50 years; interquartile range [IQR]: 30 years), including 23 with asthma and seven healthy volunteers, were evaluated. Both 1H MR imaging-derived specific ventilation and hyperpolarized 3He MR imaging-derived ventilation percentage were significantly greater in healthy volunteers than in patients with asthma (specific ventilation: 0.14 [IQR: 0.05] vs 0.08 [IQR: 0.06], respectively, P < .0001; ventilation percentage: 99% [IQR: 1%] vs 94% [IQR: 5%], P < .0001). For all subjects, 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation (ρ = 0.54, P = .002) and hyperpolarized 3He MR imaging-derived ventilation percentage (ρ = 0.67, P < .0001) as well as with forced expiratory volume in 1 second (FEV1) (ρ = 0.65, P = .0001), ratio of FEV1 to forced vital capacity (ρ = 0.75, P < .0001), ratio of residual volume to total lung capacity (ρ = -0.68, P < .0001), and airway resistance (ρ = -0.51, P = .004). 1H MR imaging-derived specific ventilation was significantly greater in the gravitational-dependent versus nondependent lung in healthy subjects (P = .02) but not in patients with asthma (P = .1). In patients with asthma, coregistered 1H MR imaging specific ventilation and hyperpolarized 3He MR imaging maps showed that specific ventilation was diminished in corresponding 3He MR imaging ventilation defects (0.05 ± 0.04) compared with well-ventilated regions (0.09 ± 0.05) (P < .0001). Conclusion 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation and ventilation defects seen by using hyperpolarized 3He MR imaging. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Dante P I Capaldi
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Rachel L Eddy
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Sarah Svenningsen
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Fumin Guo
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - John S H Baxter
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - A Jonathan McLeod
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Parameswaran Nair
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - David G McCormack
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Grace Parraga
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | -
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| |
Collapse
|
14
|
Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers. AJR Am J Roentgenol 2017; 210:W45-W53. [PMID: 29220212 DOI: 10.2214/ajr.17.18709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81mKr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. SUBJECTS AND METHODS Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81mKr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV1) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. RESULTS Multivariate logistic regression showed that %FEV1 was significantly affected (r = 0.77, r2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). CONCLUSION Xenon-enhanced ADCT is more effective than 81mKr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.
Collapse
|
15
|
Capaldi DP, Sheikh K, Eddy RL, Guo F, Svenningsen S, Nair P, McCormack DG, Parraga G. Free-breathing Functional Pulmonary MRI: Response to Bronchodilator and Bronchoprovocation in Severe Asthma. Acad Radiol 2017; 24:1268-1276. [PMID: 28551402 DOI: 10.1016/j.acra.2017.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 02/03/2023]
Abstract
RATIONALE AND OBJECTIVES Ventilation heterogeneity is a hallmark feature of asthma. Our objective was to evaluate ventilation heterogeneity in patients with severe asthma, both pre- and post-salbutamol, as well as post-methacholine (MCh) challenge using the lung clearance index, free-breathing pulmonary 1H magnetic resonance imaging (FDMRI), and inhaled-gas MRI ventilation defect percent (VDP). MATERIALS AND METHODS Sixteen severe asthmatics (49 ± 10 years) provided written informed consent to an ethics board-approved protocol. Spirometry, plethysmography, and multiple breath nitrogen washout to measure the lung clearance index were performed during a single visit within 15 minutes of MRI. Inhaled-gas MRI and FDMRI were performed pre- and post-bronchodilator to generate VDP. For asthmatics with forced expiratory volume in 1 second (FEV1) >70%predicted, MRI was also performed before and after MCh challenge. Wilcoxon signed-rank tests, Spearman correlations, and a repeated-measures analysis of variance were performed. RESULTS Hyperpolarized 3He (P = .02) and FDMRI (P = .02) VDP significantly improved post-salbutamol and for four asthmatics who could perform MCh (n = 4). 3He and FDMRI VDP significantly increased at the provocative concentration of MCh, resulting in a 20% decrease in FEV1 (PC20) and decreased post-bronchodilator (P = .02), with a significant difference between methods (P = .01). FDMRI VDP was moderately correlated with 3He VDP (ρ = .61, P = .01), but underestimated VDP relative to 3He VDP (-6 ± 9%). Whereas 3He MRI VDP was significantly correlated with the lung clearance index, FDMRI was not (ρ = .49, P = .06). CONCLUSIONS FDMRI VDP generated in free-breathing asthmatic patients was correlated with static inspiratory breath-hold 3He MRI VDP but underestimated VDP relative to 3He MRI VDP. Although less sensitive to salbutamol and MCh, FDMRI VDP may be considered for asthma patient evaluations at centers without inhaled-gas MRI.
Collapse
|
16
|
Triphan SMF, Jobst BJ, Anjorin A, Sedlaczek O, Wolf U, Terekhov M, Hoffmann C, Ley S, Düber C, Biederer J, Kauczor HU, Jakob PM, Wielpütz MO. Reproducibility and comparison of oxygen-enhanced T1 quantification in COPD and asthma patients. PLoS One 2017; 12:e0172479. [PMID: 28207845 PMCID: PMC5312969 DOI: 10.1371/journal.pone.0172479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
T1 maps have been shown to yield useful diagnostic information on lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma, both for native T1 and ΔT1, the relative reduction while breathing pure oxygen. As parameter quantification is particularly interesting for longitudinal studies, the purpose of this work was both to examine the reproducibility of lung T1 mapping and to compare T1 found in COPD and asthma patients using IRSnapShotFLASH embedded in a full MRI protocol. 12 asthma and 12 COPD patients (site 1) and further 15 COPD patients (site 2) were examined on two consecutive days. In each patient, T1 maps were acquired in 8 single breath-hold slices, breathing first room air, then pure oxygen. Maps were partitioned into 12 regions each to calculate average values. In asthma patients, the average T1,RA = 1206ms (room air) was reduced to T1,O2 = 1141ms under oxygen conditions (ΔT1 = 5.3%, p < 5⋅10−4), while in COPD patients both native T1,RA = 1125ms was significantly shorter (p < 10−3) and the relative reduction to T1,O2 = 1081ms on average ΔT1 = 4.2%(p < 10−5). On the second day, with T1,RA = 1186ms in asthma and T1,RA = 1097ms in COPD, observed values were slightly shorter on average in all patient groups. ΔT1 reduction was the least repeatable parameter and varied from day to day by up to 23% in individual asthma and 30% in COPD patients. While for both patient groups T1 was below the values reported for healthy subjects, the T1 and ΔT1 found in asthmatics lies between that of the COPD group and reported values for healthy subjects, suggesting a higher blood volume fraction and better ventilation. However, it could be demonstrated that lung T1 quantification is subject to notable inter-examination variability, which here can be attributed both to remaining contrast agent from the previous day and the increased dependency of lung T1 on perfusion and thus current lung state.
Collapse
Affiliation(s)
- Simon M. F. Triphan
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Experimental Physics 5, Julius-Maximilians Universität Würzburg, Würzburg, Germany
- * E-mail:
| | - Bertram J. Jobst
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Angela Anjorin
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
| | - Ursula Wolf
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Radiology, Mainz University Medical School, Mainz, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Maxim Terekhov
- Department of Radiology, Mainz University Medical School, Mainz, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christian Hoffmann
- Department of Radiology, Mainz University Medical School, Mainz, Germany
| | - Sebastian Ley
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Institute for Clinical Radiology, Ludwig Maximilians Universität München, Munich, Germany
| | - Christoph Düber
- Department of Radiology, Mainz University Medical School, Mainz, Germany
| | - Jürgen Biederer
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Radiologie Darmstadt, Department of Radiology Hospital Gross-Gerau, Gross-Gerau, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Peter M. Jakob
- Department of Experimental Physics 5, Julius-Maximilians Universität Würzburg, Würzburg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Zurek M, Sladen L, Johansson E, Olsson M, Jackson S, Zhang H, Mayer G, Hockings PD. Assessing the Relationship between Lung Density and Function with Oxygen-Enhanced Magnetic Resonance Imaging in a Mouse Model of Emphysema. PLoS One 2016; 11:e0151211. [PMID: 26977928 PMCID: PMC4792441 DOI: 10.1371/journal.pone.0151211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose A magnetic resonance imaging method is presented that allows for the simultaneous assessment of oxygen delivery, oxygen uptake, and parenchymal density. The technique is applied to a mouse model of porcine pancreatic elastase (PPE) induced lung emphysema in order to investigate how structural changes affect lung function. Method Nine-week-old female C57BL6 mice were instilled with saline or PPE at days 0 and 7. At day 19, oxygen delivery, oxygen uptake, and lung density were quantified from T1 and proton-density measurements obtained via oxygen-enhanced magnetic resonance imaging (OE-MRI) using an ultrashort echo-time imaging sequence. Subsequently, the lungs were sectioned for histological observation. Blood-gas analyses and pulmonary functional tests via FlexiVent were performed in separate cohorts. Principal Findings PPE-challenged mice had reduced density when assessed via MRI, consistent with the parenchyma loss observed in the histology sections, and an increased lung compliance was detected via FlexiVent. The oxygenation levels, as assessed via the blood-gas analysis, showed no difference between PPE-challenged animals and control. This finding was mirrored in the global MRI assessments of oxygen delivery and uptake, where the changes in relaxation time indices were matched between the groups. The heterogeneity of the same parameters however, were increased in PPE-challenged animals. When the oxygenation status was investigated in regions of varying density, a reduced oxygen-uptake was found in low-density regions of PPE-challenged mice. In high-density regions the uptake was higher than that of regions of corresponding density in control animals. The oxygen delivery was proportional to the oxygen uptake in both groups. Conclusions The proposed method allowed for the regional assessment of the relationship between lung density and two aspects of lung function, the oxygen delivery and uptake. When compared to global indices of lung function, an increased sensitivity for detecting heterogeneous lung disorders was found. This indicated that the technique has potential for early detection of lung dysfunction–before global changes occur.
Collapse
Affiliation(s)
- Magdalena Zurek
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Louise Sladen
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marita Olsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Hui Zhang
- Drug Safety and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Gaell Mayer
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paul D. Hockings
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
Baldi S, Hartley R, Brightling C, Gupta S. Asthma. IMAGING 2016. [DOI: 10.1183/2312508x.10002815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
20
|
Kindvall SS, Diaz S, Svensson J, Wollmer P, Slusarczyk D, Olsson LE. Influence of age and sex on the longitudinal relaxation time, T1, of the lung in healthy never-smokers. J Magn Reson Imaging 2015; 43:1250-7. [DOI: 10.1002/jmri.25085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Simon S.I. Kindvall
- Medical Radiation Physics, Translational Medicine; Lund University; Malmö Sweden
| | - Sandra Diaz
- Medical Radiology, Translational Medicine; Lund University; Malmö Sweden
| | - Jonas Svensson
- Medical imaging and physiology; Skane University Hospital; Lund Sweden
| | - Per Wollmer
- Clinical Physiology, Translational Medicine; Lund University; Malmö Sweden
| | - Dariusz Slusarczyk
- Medical Radiology, Translational Medicine; Lund University; Malmö Sweden
| | - Lars E. Olsson
- Medical Radiation Physics, Translational Medicine; Lund University; Malmö Sweden
| |
Collapse
|
21
|
Hartley R, Baldi S, Brightling C, Gupta S. Novel imaging approaches in adult asthma and their clinical potential. Expert Rev Clin Immunol 2015; 11:1147-62. [PMID: 26289375 DOI: 10.1586/1744666x.2015.1072049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, imaging in asthma is confined to chest radiography and CT. The emergence of new imaging techniques and tremendous improvement of existing imaging methods, primarily due to technological advancement, has completely changed its research and clinical prospects. In research, imaging in asthma is now being employed to provide quantitative assessment of morphology, function and pathogenic processes at the molecular level. The unique ability of imaging for non-invasive, repeated, quantitative, and in vivo assessment of structure and function in asthma could lead to identification of 'imaging biomarkers' with potential as outcome measures in future clinical trials. Emerging imaging techniques and their utility in the research and clinical setting is discussed in this review.
Collapse
Affiliation(s)
- Ruth Hartley
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Simonetta Baldi
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Chris Brightling
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Sumit Gupta
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK.,b 2 Radiology Department, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| |
Collapse
|
22
|
Zhang WJ, Niven RM, Young SS, Liu YZ, Parker GJM, Naish JH. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma -- initial experience. Eur J Radiol 2014; 84:318-26. [PMID: 25467640 DOI: 10.1016/j.ejrad.2014.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. MATERIALS AND METHODS The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23±5 years old, FEV1=96±3% of predicted value) and six severe asthmatic patients (41±12 years old, FEV1=60±14% of predicted value) on a 1.5T MR scanner using a two-dimensional T1-weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO2max_l) and arterial blood of the aorta (ΔPO2max_a), and the oxygen wash-in (τup_l, τup_a) and wash-out (τdown_l, τdown_a) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland-Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. RESULTS The severe asthmatic group had significantly smaller EF (70±16%) and median ΔPO2max_l (156±52mmHg) and significantly larger interquartile range of τup_l (0.84±0.26min) than the mild asthmatic group (95±3%, P=0.014; 281±40mmHg, P=0.004; 0.20±0.07min, P=0.001, respectively). EF, median ΔPO2max_l and τdown_l and the interquartile range of τup_l and τdown_l were significantly correlated with age and pulmonary function test parameters (r=-0.734 to -0.927, 0.676-0.905; P=0.001-0.045). Median ΔPO2max_l was significantly correlated with ΔPO2max_a (r=0.745, P=0.013). Imaging readouts showed good one-month reproducibility and good intra-observer agreement (mean bias between repeated scans and between two observations did not significantly deviate from zero). CONCLUSIONS Dynamic OE-MRI is feasible in asthma and sensitive to the severity of disease. The technique provides indices related to regional oxygen delivery, uptake and washout that show good one month reproducibility and intra-observer agreement.
Collapse
Affiliation(s)
- Wei-Juan Zhang
- Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Robert M Niven
- North West Lung Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT, UK.
| | - Simon S Young
- Personalised Healthcare and Biomarkers, AstraZeneca R&D, Alderley Park, Macclesfield SK10 4TF, UK.
| | - Yu-Zhen Liu
- Personalised Healthcare and Biomarkers, AstraZeneca R&D, Alderley Park, Macclesfield SK10 4TF, UK.
| | - Geoffrey J M Parker
- Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Bioxydyn Limited, Rutherford House, Pencroft Way, Manchester M15 6SZ, UK.
| | - Josephine H Naish
- Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK; Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
23
|
Renne J, Hinrichs J, Schönfeld C, Gutberlet M, Winkler C, Faulenbach C, Jakob P, Schaumann F, Krug N, Wacker F, Hohlfeld JM, Vogel-Claussen J. Noninvasive quantification of airway inflammation following segmental allergen challenge with functional MR imaging: a proof of concept study. Radiology 2014; 274:267-75. [PMID: 25203130 DOI: 10.1148/radiol.14132607] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate oxygen-enhanced T1-mapping magnetic resonance (MR) imaging as a noninvasive method for visualization and quantification of regional inflammation after segmental allergen challenge in asthmatic patients compared with control subjects. MATERIALS AND METHODS After institutional review board approval, nine asthmatic and four healthy individuals gave written informed consent. MR imaging (1.5 T) was performed by using an inversion-recovery snapshot fast low-angle shot sequence before (0 hours) and 6 hours and 24 hours after segmental allergen challenge by using either normal- or low-dose allergen or saline. The volume of lung tissue with increased relaxation times was determined by using a threshold-based method. As a biomarker for oxygen transfer from the lungs into the blood, the oxygen transfer function ( OTF oxygen transfer function ) was calculated. After the third MR imaging examination, eosinophils in bronchoalveolar lavage fluid were counted. Differences between times and segments were analyzed with nonparametric Wilcoxon matched-pairs test and Spearman correlation. RESULTS In lung segments treated with the standard dose of allergen, the OTF oxygen transfer function was decreased at 6 hours in asthmatic patients, compared with saline-treated segments (P = .0078). In asthmatic patients at 24 hours, the volume over threshold was significantly increased in normal allergen dose-treated segments compared with saline-treated segments (P = .004). In corresponding lung segments, the volume over threshold at 24 hours in the asthmatic group showed a positive correlation (r = 0.65, P = .0001) and the OTF oxygen transfer function at 6 hours showed an inverse correlation (r = -0.67, P = .0001) with the percentage of eosinophils in the bronchoalveolar lavage fluid. CONCLUSION OTF oxygen transfer function and volume over threshold are noninvasive MR imaging-derived parameters to visualize and quantify the regional allergic reaction after segmental endobronchial allergen challenge.
Collapse
Affiliation(s)
- Julius Renne
- From the Department of Diagnostic and Interventional Radiology (J.R., J.H., C.S., M.G., F.W., J.V.), Fraunhofer Institute for Toxicology and Experimental Medicine (C.W., C.F., F.S., N.K., J.M.H.), and Department of Pneumology (C.W., J.M.H.), Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, OE 8220, Carl-Neuberg-Str 1, 30625 Hannover, Germany; and Department of Experimental Physics (Biophysics), University of Würzburg, Würzburg, Germany (P.J.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ohno Y, Nishio M, Koyama H, Seki S, Yoshikawa T, Matsumoto S, Obara M, van Cauteren M, Sugimura K. Asthma: comparison of dynamic oxygen-enhanced MR imaging and quantitative thin-section CT for evaluation of clinical treatment. Radiology 2014; 273:907-16. [PMID: 25102370 DOI: 10.1148/radiol.14132660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare the use of dynamic oxygen-enhanced magnetic resonance (MR) imaging with the use of quantitatively assessed computed tomography (CT) for assessment of clinical stage and evaluation of pulmonary functional change due to treatment in patients with asthma. MATERIALS AND METHODS The institutional review board of Kobe University Hospital approved this study, and written informed consent was obtained from each subject. Thirty consecutive patients with asthma (17 men and 13 women; age range, 27-78 years) underwent dynamic oxygen-enhanced MR imaging, multidetector CT, and assessment of forced expiratory volume in 1 second. All patients were classified as having one of four stages of asthma according to the guidelines of the National Asthma Education and Prevention Program. Relative enhancement ratio ( RER relative enhancement ratio ) and wash-in time maps were generated by means of pixel-by-pixel analyses. Regions of interest were placed on images of the lung in all sections, and all measurements were averaged to determine mean RER relative enhancement ratio and mean wash-in time for each subject. Percentage of airway wall area and mean lung density were determined at quantitative CT. For comparison of the modalities for assessment of clinical stage, indexes of subjects at all clinical stages were compared by means of the Tukey honestly significant difference test. Evaluation of pulmonary functional improvement was assessed by correlating improvement of each index with that of forced expiratory volume. RESULTS Mean wash-in time was significantly different among patients with asthma of different clinical stages (P < .05), but significant differences between mean RER relative enhancement ratio and percentage of airway wall area were observed for a limited number of clinical stages (P < .05). Improvement of mean RER relative enhancement ratio (r = 0.63, P = .0002) and mean wash-in time (r = -0.75, P < .0001) was significantly correlated with forced expiratory volume. CONCLUSION Dynamic oxygen-enhanced MR imaging has potential as a tool for assessment of clinical stage and evaluation of pulmonary functional change due to treatment in patients with asthma.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Advanced Biomedical Imaging Research Center (Y.O., M.N., T.Y., S.M., K.S.), Division of Functional and Diagnostic Imaging Research, Department of Radiology (Y.O., M.N., T.Y., S.M.), and Division of Radiology, Department of Radiology (H.K., S.S.), Kobe University Graduate School of Medicine, Kobe, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan; and Philips Electronics Japan, Tokyo, Japan (M.O., M.v.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Renne J, Lauermann P, Hinrichs J, Schönfeld C, Sorrentino S, Gutberlet M, Jakob P, Wacker F, Vogel-Claussen J. Clinical use of oxygen-enhanced T1 mapping MRI of the lung: reproducibility and impact of closed versus loose fit oxygen delivery system. J Magn Reson Imaging 2013; 41:60-6. [PMID: 24339056 DOI: 10.1002/jmri.24535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the reproducibility of oxygen-enhanced magnetic resonance imaging (MRI), and the influence of different gas delivery methods, in a clinical environment. MATERIALS AND METHODS Twelve healthy volunteers were examined on two visits with an inversion recovery snapshot fast low angle shot sequence on a 1.5 T system. Coronal slices were obtained breathing room air as well as 100% oxygen with a flow rate of 15 L/min. For oxygen delivery a standard nontight face mask and a full closed air-cushion face mask were used. T1 relaxation times and the oxygen transfer function (OTF) were calculated. RESULTS The mean T1 values did not change significantly between the two visits (P > 0.05). The T1 values breathing 100% oxygen obtained using the full closed mask were significantly lower (1093 ± 38 msec; P < 0.05) compared to the standard mask (1157 ± 52 msec). Accordingly, the OTF was significantly higher for the full closed mask (P < 0.05). The OTF changed significantly on the second visit using the standard mask (P < 0.05). The full closed mask showed lower interindividual variation for both the T1 values (3.5% vs. 4.5%) as well as the OTF (12.4% vs. 22.0%) and no difference of the OTF on the second visit (P > 0.05). CONCLUSION Oxygen-enhanced T1 mapping MRI produces reproducible data when using a full closed face mask.
Collapse
Affiliation(s)
- Julius Renne
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bianchi A, Ozier A, Ousova O, Raffard G, Crémillieux Y. Ultrashort-TE MRI longitudinal study and characterization of a chronic model of asthma in mice: inflammation and bronchial remodeling assessment. NMR IN BIOMEDICINE 2013; 26:1451-1459. [PMID: 23761222 DOI: 10.1002/nbm.2975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
Asthma is a chronic disease characterized by bronchial hyperresponsiveness (BHR), bronchial inflammation and remodeling. The great improvements in (1)H MRI ultrashort-TE (UTE) sequences in the last decade have allowed lung images with high-resolution and good signal-to-noise ratio to be obtained in parenchymal tissues. In this article, we present a UTE (1)H MRI high-resolution study of a chronic model of asthma in mice with the aim to longitudinally assess the main features of asthma using a fully noninvasive approach. Balb/c mice (n = 6) were sensitized with ovalbumin over a period of 75 days. The control group (n = 3) received normal saline on the same days. MRI acquisitions were performed on days 0, 38 and 78 to study the inflammatory volumes and bronchial remodeling (peribronchial signal intensity index, PBSI). Plethysmographic studies were performed on days 0, 39 and 79 to assess BHR to methacholine using the enhanced pause (Penh) ratio. The average inflammatory volume measured by MRI in the ovalbumin group (15.6 ± 2.4 μL) was increased significantly relative to control mice (-0.3 ± 0.7 μL) on day 38. The inflammatory volume was larger (34.2 ± 3.1 μL) on day 78 in the ovalbumin group. PBSI was significantly higher in the ovalbumin group on day 78 (1.53 ± 0.08) relative to the control group (1.16 ± 0.10), but not on day 38. After sensitization, asthmatic mice presented BHR to methacholine on days 39 and 79. Penh ratios correlated significantly with the inflammatory volume on day 39 and with the PBSI on day 79. This study shows, for the first time, that high-resolution UTE (1)H MRI of the lungs may allow the noninvasive quantification of peribronchial eosinophilic inflammation with airways occlusion by mucus and of bronchial remodeling in a murine asthma model that correlates with functional parameters.
Collapse
Affiliation(s)
- Andrea Bianchi
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Université Bordeaux Segalen, Bordeaux, France; Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, Bordeaux, France
| | | | | | | | | |
Collapse
|
27
|
Kirby M, Parraga G. Pulmonary functional imaging using hyperpolarized noble gas MRI: six years of start-up experience at a single site. Acad Radiol 2013; 20:1344-56. [PMID: 24119346 DOI: 10.1016/j.acra.2013.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/01/2022]
Abstract
RATIONALE AND OBJECTIVES In this review, we summarize our experience evaluating pulmonary function in 330 different subjects using hyperpolarized noble gas magnetic resonance imaging (MRI) after enrollment and screening of >1100 subjects with and without respiratory disease during the period February 1, 2006, through November 1, 2012. MATERIALS AND METHODS We discuss the feasibility of hyperpolarized gas MRI research in a small nonhospital research unit and provide an overview of our experience since we initiated patient-based studies. We also discuss the importance of infrastructure support, collaboration, research trainees, and a large and willing patient population that helped to advance the research and technological deliverables. A summary of patient safety and tolerability, key feasibility, and research milestones is provided, as well as a roadmap for future studies. RESULTS Hyperpolarized (3)He and (129)Xe gas MRI is feasible at smaller centers without significant human resources for large and small longitudinal studies by virtue of its excellent patient safety and tolerability, the speed with which images can be acquired and quantitatively analyzed and the high spatial-temporal dynamics of the method that allows for acute and chronic therapy studies. CONCLUSIONS The hyperpolarized noble gas MRI community's highly collaborative efforts and motivation to further the development and application of this tool has resulted in a moment-of-opportunity to translate the method clinically to provide an improved understanding of pulmonary disease. There are, as well, new and unprecedented opportunities for the evaluation of disease progression and to help develop the new treatments and interventions critically required for chronic pulmonary disease.
Collapse
Affiliation(s)
- Miranda Kirby
- Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada, N6A 5K8; Department of Medical Biophysics, London, Canada
| | | |
Collapse
|
28
|
Liszewski MC, Hersman FW, Altes TA, Ohno Y, Ciet P, Warfield SK, Lee EY. Magnetic resonance imaging of pediatric lung parenchyma, airways, vasculature, ventilation, and perfusion: state of the art. Radiol Clin North Am 2013; 51:555-82. [PMID: 23830786 DOI: 10.1016/j.rcl.2013.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Magnetic resonance (MR) imaging is a noninvasive imaging modality, particularly attractive for pediatric patients given its lack of ionizing radiation. Despite many advantages, the physical properties of the lung (inherent low signal-to-noise ratio, magnetic susceptibility differences at lung-air interfaces, and respiratory and cardiac motion) have posed technical challenges that have limited the use of MR imaging in the evaluation of thoracic disease in the past. However, recent advances in MR imaging techniques have overcome many of these challenges. This article discusses these advances in MR imaging techniques and their potential role in the evaluation of thoracic disorders in pediatric patients.
Collapse
Affiliation(s)
- Mark C Liszewski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 330 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
A better understanding of the anatomic structure and physiological function of the lung is fundamental to understanding the pathogenesis of pulmonary disease and how to design and deliver better treatments and measure response to intervention. Magnetic resonance imaging (MRI) with the hyperpolarised noble gases helium-3 ((3)He) and xenon-129 ((129)Xe) provides both structural and functional pulmonary measurements, and because it does not require the use of x-rays or other ionising radiation, offers the potential for intensive serial and longitudinal studies in paediatric patients. These facts are particularly important in the evaluation of chronic lung diseases such as asthma and cystic fibrosis- both of which can be considered paediatric respiratory diseases with unmet therapy needs. This review discusses MRI-based imaging methods with a focus on hyperpolarised gas MRI. We also discuss the strengths and limitations as well as the future work required for clinical translation towards paediatric respiratory disease.
Collapse
Affiliation(s)
- Miranda Kirby
- Imaging Research Laboratories, Robarts Research Institute, London, Canada.
| | | | | |
Collapse
|
30
|
Barreto MM, Rafful PP, Rodrigues RS, Zanetti G, Hochhegger B, Souza AS, Guimarães MD, Marchiori E. Correlation between computed tomographic and magnetic resonance imaging findings of parenchymal lung diseases. Eur J Radiol 2013; 82:e492-501. [DOI: 10.1016/j.ejrad.2013.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022]
|
31
|
Longitudinal characterization of a model of chronic allergic lung inflammation in mice using imaging, functional and immunological methods. Clin Sci (Lond) 2013; 125:555-64. [DOI: 10.1042/cs20130086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study investigated the role that imaging could have for assessing lung inflammation in a mouse model of HDM (house dust mite)-provoked allergic inflammation. Inflammation is usually assessed using terminal procedures such as BAL (bronchoalveolar lavage) and histopathology; however, MRI (magnetic resonance imaging) and CT (computed tomography) methods have the potential to allow longitudinal, repeated study of individual animals. Female BALB/c mice were administered daily either saline, or a solution of mixed HDM proteins sufficient to deliver a dose of 12 or 25 μg total HDM protein±budesonide (1 mg/kg of body weight, during weeks 5–7) for 7 weeks. AHR (airway hyper-responsiveness) and IgE measurements were taken on weeks 3, 5 and 7. Following imaging sessions at weeks 3, 5 and 7 lungs were prepared for histology. BAL samples were taken at week 7 and lungs prepared for histology. MRI showed a gradual weekly increase in LTI (lung tissue intensity) in animals treated with HDM compared with control. The 25 μg HDM group showed a continual significant increase in LTI between weeks 3 and 7, the 12 μg HDM-treated group showed a similar rate of increase, and plateaued by week 5. A corresponding increase in AHR, cell counts and IgE were observed. CT showed significant increases in lung tissue density from week 1 of HDM exposure and this was maintained throughout the 7 weeks. Budesonide treatment reversed the increase in tissue density. MRI and CT therefore provide non-invasive sensitive methods for longitudinally assessing lung inflammation. Lung tissue changes could be compared directly with the classical functional and inflammatory readouts, allowing more accurate assessments to be made within each animal and providing a clinically translatable approach.
Collapse
|
32
|
Costella S, Kirby M, Maksym GN, McCormack DG, Paterson NAM, Parraga G. Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging. Respirology 2013; 17:1237-46. [PMID: 22889229 DOI: 10.1111/j.1440-1843.2012.02250.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Spirometry is insensitive to small airway abnormalities in asthma. Our objective was to evaluate regional lung structure and function using hyperpolarized (3)He magnetic resonance imaging (MRI) before, during and after a methacholine challenge (MCh). METHODS Twenty-five asthmatics (mean age = 34 ± 11 years) and eight healthy volunteers (HV) (mean age = 33 ± 11 years) underwent spirometry, plethysmography and hyperpolarized (3)He MRI prior to a MCh. MRI was repeated following the MCh and again 25 min after salbutamol administration. (3)He MRI gas distribution was quantified using semiautomated segmentation of the ventilation defect percent (VDP). Tissue microstructure was measured using the (3)He apparent diffusion coefficient (ADC). Analysis of variance with repeated measures was used to evaluate changes at each time point as well as to determine interactions between regions of interest (ROI) and subject group. Pearson's correlations were performed to evaluate associations between (3)He MRI measurements and established clinical measures. RESULTS In asthmatics, but not HV, whole-lung ADC was increased post-MCh (P < 0.01). In asthmatics only, ADC was increased post-MCh in posterior ROI (P < 0.01) and all ROI in the superior-inferior direction (P < 0.01). VDP was increased in posterior and inferior ROI (P < 0.001). There was a correlation between VDP and specific airway resistance (r = 0.74, P < 0.0001), dyspnoea score (r = 0.66, P < 0.01) and fractional exhaled nitric oxide (r = 0.45, P < 0.05). CONCLUSIONS We evaluated the regional pulmonary response to methacholine and salbutamol using (3)He MRI and showed heterogeneous VDP and ADC consistent with bronchoconstriction and gas trapping, respectively, post-MCh. These regional alterations resolved post-salbutamol.
Collapse
Affiliation(s)
- Stephen Costella
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Ohno Y, Koyama H, Yoshikawa T, Matsumoto K, Aoyama N, Onishi Y, Takenaka D, Matsumoto S, Nishimura Y, Sugimura K. Comparison of capability of dynamic O2-enhanced MRI and quantitative thin-section MDCT to assess COPD in smokers. Eur J Radiol 2012; 81:1068-75. [DOI: 10.1016/j.ejrad.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/17/2010] [Accepted: 02/02/2011] [Indexed: 11/25/2022]
|
34
|
Abstract
Pulmonary magnetic resonance (MR) imaging has been put forward as a new research and diagnostic tool mainly to overcome the limitations of computed tomography and nuclear medicine studies. However, pulmonary MR imaging has been difficult to use because of inherently low proton density, a multitude of air-tissue interfaces, which create significant magnetic field distortions and are commonly referred to as susceptibility artifacts; diminishing signal in the lung; and respiratory and/or cardiac motion artifacts. To overcome these drawbacks of pulmonary MR imaging, technical advances made during the last decade in sequencing, scanner and coil, adaptation of parallel imaging techniques, and utilization of contrast media have been reported as being useful for functional and morphologic assessment of various pulmonary diseases including airway diseases. This review article covers (1) pulmonary MR techniques for morphologic and functional assessment of airway diseases, and (2) pulmonary MR imaging for cystic fibrosis, asthma, and chronic obstructive pulmonary disease. Pulmonary MR imaging provides not only morphology-related but also pulmonary function-related information. It has the potential to replace nuclear medicine studies for the identification of regional pulmonary function and may perform a complementary role in airway disease assessment instead of nuclear medicine study. We believe that the findings of further basic studies as well as clinical applications of this new technique will validate the real significance of pulmonary MR imaging for the future of airway disease assessment and its usefulness for diagnostic radiology and pulmonary medicine.
Collapse
|
35
|
Molinari F, Bauman G, Paolantonio G, Geisler T, Geiger B, Bonomo L, Kauczor HU, Puderbach M. Improvement of multislice oxygen-enhanced MRI of the lung by fully automatic non-rigid image registration. Eur J Radiol 2011; 81:2900-6. [PMID: 22127374 DOI: 10.1016/j.ejrad.2011.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/03/2011] [Indexed: 11/17/2022]
Abstract
PURPOSE In oxygen-enhanced magnetic resonance imaging of the lung (O2-MRI), motion artifacts related to breathing hamper the quality of the parametric O2-maps. In this study, fully automatic non-rigid image registration was assessed as a post-processing method to improve the quality of O2-MRI. MATERIALS AND METHODS Twenty healthy volunteers were investigated on a 1.5 T MR system. O2-MRI was obtained in four coronal sections using an IR-HASTE sequence with TE/TI of 12/1200 ms. Each section was repeatedly imaged during oxygen and room-air ventilation. Spatial differences among the images were corrected by fully automatic non-rigid registration. Signal variability, relative enhancement ratio between oxygen and room air images, and spatial heterogeneity of lung enhancement were assessed before and after image registration. RESULTS Motion artifacts were corrected in 5-10s. Non-rigid registration reduced signal variability of the source images and heterogeneity of the O2-maps by 1.1 ± 0.2% and 11.2 ± 2.9%, respectively (p<0.0001). Registration did not influence O2 relative enhancement ratio (p=0.06). CONCLUSION Fully automatic non-rigid image registration improves the quality of multislice oxygen-enhanced MRI of the lung.
Collapse
Affiliation(s)
- Francesco Molinari
- Department of Bioimaging and Radiological Sciences, Catholic University of Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
T2*Measurements of 3-T MRI With Ultrashort TEs: Capabilities of Pulmonary Function Assessment and Clinical Stage Classification in Smokers. AJR Am J Roentgenol 2011; 197:W279-85. [DOI: 10.2214/ajr.10.5350] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
van Echteld CJA, Beckmann N. A view on imaging in drug research and development for respiratory diseases. J Pharmacol Exp Ther 2011; 337:335-49. [PMID: 21317353 DOI: 10.1124/jpet.110.172635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
With the incidence of respiratory diseases increasing throughout the world, new therapies are needed. This review provides a short overview of different imaging techniques of interest for drug discovery and development within the pulmonary disease area. The focus is on studies performed in both animals and humans, which are of importance for understanding pathophysiological aspects and evaluating new drugs. Rather than emphasizing particular lung diseases, the noninvasive diagnosis and quantification of a number of characteristics related to several pathological conditions of the lung are addressed: inflammation, mucus secretion and clearance, emphysema, ventilation, perfusion, fibrosis, airway remodeling, and pulmonary arterial hypertension. Techniques are discussed based on their present use or potential future utilization in the context of drug studies.
Collapse
Affiliation(s)
- Cees J A van Echteld
- Novartis Institutes for BioMedical Research, Clinical Imaging Group, Basel, Switzerland.
| | | |
Collapse
|