1
|
Sunaguchi N, Yuasa T, Shimao D, Huang Z, Ichihara S, Nishimura R, Iwakoshi A, Kim JK, Gupta R, Ando M. Superimposed Wavefront Imaging of Diffraction-enhanced X-rays: sparsity-aware CT reconstruction from limited-view projections. Int J Comput Assist Radiol Surg 2024:10.1007/s11548-024-03303-y. [PMID: 39724204 DOI: 10.1007/s11548-024-03303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE In this paper, we describe an algebraic reconstruction algorithm with a total variation regularization (ART + TV) based on the Superimposed Wavefront Imaging of Diffraction-enhanced X-rays (SWIDeX) method to effectively reduce the number of projections required for differential phase-contrast CT reconstruction. METHODS SWIDeX is a technique that uses a Laue-case Si analyzer with closely spaced scintillator to generate second derivative phase-contrast images with high contrast of a subject. When the projections obtained by this technique are reconstructed, a Laplacian phase-contrast tomographic image with higher sparsity than the original physical distribution of the subject can be obtained. In the proposed method, the Laplacian image is first obtained by applying ART + TV, which is expected to reduce the projection with higher sparsity, to the projection obtained from SWIDeX with a limited number of views. Then, by solving Poisson's equation for the Laplacian image, a tomographic image representing the refractive index distribution is obtained. RESULTS Simulations and actual X-ray experiments were conducted to demonstrate the effectiveness of the proposed method in projection reduction. In the simulation, image quality was maintained even when the number of projections was reduced to about 1/10 of the originally required views, and in the actual experiment, biological tissue structure was maintained even when the number of projections was reduced to about 1/30. CONCLUSION SWIDeX can visualize the internal structures of biological tissues with very high contrast, and the proposed method will be useful for CT reconstruction from large projection data with a wide field of view and high spatial resolution.
Collapse
Affiliation(s)
- Naoki Sunaguchi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 461-8673, Japan.
| | - Tetsuya Yuasa
- Graduate School of Engineering and Science, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Daisuke Shimao
- Department of Radiological Sciences, International University of Health and Welfare, Otawara, Tochigi, 324-8501, Japan
| | - Zhuoran Huang
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 461-8673, Japan
| | - Shu Ichihara
- Department of Pathology, NHO Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
| | - Rieko Nishimura
- Department of Pathology, NHO Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
| | - Akari Iwakoshi
- Department of Pathology, NHO Nagoya Medical Center, Nagoya, Aichi, 460-0001, Japan
| | - Jong-Ki Kim
- Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu, 705-034, Korea
| | - Rajiv Gupta
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Masami Ando
- High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| |
Collapse
|
2
|
Kamezawa C, Hyodo K. Evaluation of high intensity synchrotron radiation x-ray imaging using Si crystals with lapped surface at 33.3 keV. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:093702. [PMID: 37676086 DOI: 10.1063/5.0161239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
In x-ray imaging methods, such as synchrotron radiation microangiography, the x-ray intensity has become more important in recent years for real-time dynamic observations to evaluate temporal changes in samples. Many synchrotron radiation facilities use x-rays monochromated by diffraction from perfect Si crystals to improve the spatial resolution of x-ray images and obtain detailed information about a sample. In this paper, monochromatic synchrotron x-ray images were acquired using Si crystals lapped with abrasives to enhance the x-ray intensity using white synchrotron radiation x-rays for observing dynamic changes in samples. The x-ray intensity, spatial resolution, and contrast noise ratio (CNR) in the acquired x-ray images were quantitatively evaluated using a state-of-the-art high-spatial-resolution detector. The x-ray intensity was substantially increased by a factor of ∼8 when a lapped Si crystal was used. When the lapped Si crystal was used, the spatial resolution of x-ray images in the diffraction-plane direction was ∼70% lower than when an etched Si crystal was used at a spatial resolution of 10 lp/mm. By contrast, the CNR in x-ray images, which is important for observing the interior of a sample, increased threefold when a contrast agent containing iodine at a concentration of 38 wt. % was used. It was confirmed that the combination of white synchrotron radiation x-rays and a lapped crystal produces an intense monochromatic x-ray, providing an important evaluation for the use of optics for each research purpose.
Collapse
Affiliation(s)
- Chika Kamezawa
- Photon Factory, Institute of Materials Structure Science, KEK (High Energy Accelerator Research Organization), Ibaraki 305-0801, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Ibaraki 305-0801, Japan
| | - Kazuyuki Hyodo
- Photon Factory, Institute of Materials Structure Science, KEK (High Energy Accelerator Research Organization), Ibaraki 305-0801, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Ibaraki 305-0801, Japan
| |
Collapse
|
3
|
Yakovlev MA, Liang K, Zaino CR, Vanselow DJ, Sugarman AL, Lin AY, La Riviere PJ, Zheng Y, Silverman JD, Leichty JC, Huang SX, Cheng KC. Quantitative Geometric Modeling of Blood Cells from X-ray Histotomograms of Whole Zebrafish Larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541939. [PMID: 37292910 PMCID: PMC10245913 DOI: 10.1101/2023.05.23.541939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissue phenotyping is foundational to understanding and assessing the cellular aspects of disease in organismal context and an important adjunct to molecular studies in the dissection of gene function, chemical effects, and disease. As a first step toward computational tissue phenotyping, we explore the potential of cellular phenotyping from 3-Dimensional (3D), 0.74 µm isotropic voxel resolution, whole zebrafish larval images derived from X-ray histotomography, a form of micro-CT customized for histopathology. As proof of principle towards computational tissue phenotyping of cells, we created a semi-automated mechanism for the segmentation of blood cells in the vascular spaces of zebrafish larvae, followed by modeling and extraction of quantitative geometric parameters. Manually segmented cells were used to train a random forest classifier for blood cells, enabling the use of a generalized cellular segmentation algorithm for the accurate segmentation of blood cells. These models were used to create an automated data segmentation and analysis pipeline to guide the steps in a 3D workflow including blood cell region prediction, cell boundary extraction, and statistical characterization of 3D geometric and cytological features. We were able to distinguish blood cells at two stages in development (4- and 5-days-post-fertilization) and wild-type vs. polA2 huli hutu ( hht ) mutants. The application of geometric modeling across cell types to and across organisms and sample types may comprise a valuable foundation for computational phenotyping that is more open, informative, rapid, objective, and reproducible.
Collapse
|
4
|
Papazoglou AS, Karagiannidis E, Liatsos A, Bompoti A, Moysidis DV, Arvanitidis C, Tsolaki F, Tsagkaropoulos S, Theocharis S, Tagarakis G, Michaelson JS, Herrmann MD. Volumetric Tissue Imaging of Surgical Tissue Specimens Using Micro-Computed Tomography: An Emerging Digital Pathology Modality for Nondestructive, Slide-Free Microscopy-Clinical Applications of Digital Pathology in 3 Dimensions. Am J Clin Pathol 2023; 159:242-254. [PMID: 36478204 DOI: 10.1093/ajcp/aqac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Micro-computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mapping review is to provide a comprehensive overview of the available literature on clinical applications of micro-CT tissue imaging and to assess its relevance and readiness for pathology practice. METHODS A computerized literature search was performed in the PubMed, Scopus, Web of Science, and CENTRAL databases. To gain insight into regulatory and financial considerations for performing and examining micro-CT imaging procedures in a clinical setting, additional searches were performed in medical device databases. RESULTS Our search identified 141 scientific articles published between 2000 and 2021 that described clinical applications of micro-CT tissue imaging. The number of relevant publications is progressively increasing, with the specialties of pulmonology, cardiology, otolaryngology, and oncology being most commonly concerned. The included studies were mostly performed in pathology departments. Current micro-CT devices have already been cleared for clinical use, and a Current Procedural Terminology (CPT) code exists for reimbursement of micro-CT imaging procedures. CONCLUSIONS Micro-CT tissue imaging enables accurate volumetric measurements and evaluations of entire surgical specimens at microscopic resolution across a wide range of clinical applications.
Collapse
Affiliation(s)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Liatsos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana Bompoti
- Diagnostic Imaging, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece.,LifeWatch ERIC, Sector II-II, Seville, Spain
| | - Fani Tsolaki
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, National and Kapoditrian University of Athens, Athens, Greece
| | - Georgios Tagarakis
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
6
|
Xian RP, Walsh CL, Verleden SE, Wagner WL, Bellier A, Marussi S, Ackermann M, Jonigk DD, Jacob J, Lee PD, Tafforeau P. A multiscale X-ray phase-contrast tomography dataset of a whole human left lung. Sci Data 2022; 9:264. [PMID: 35654864 PMCID: PMC9163096 DOI: 10.1038/s41597-022-01353-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Technological advancements in X-ray imaging using bright and coherent synchrotron sources now allows the decoupling of sample size and resolution while maintaining high sensitivity to the microstructures of soft, partially dehydrated tissues. The continuous developments in multiscale X-ray imaging resulted in hierarchical phase-contrast tomography, a comprehensive approach to address the challenge of organ-scale (up to tens of centimeters) soft tissue imaging with resolution and sensitivity down to the cellular level. Using this technique, we imaged ex vivo an entire human left lung at an isotropic voxel size of 25.08 μm along with local zooms down to 6.05-6.5 μm and 2.45-2.5 μm in voxel size. The high tissue contrast offered by the fourth-generation synchrotron source at the European Synchrotron Radiation Facility reveals the complex multiscale anatomical constitution of the human lung from the macroscopic (centimeter) down to the microscopic (micrometer) scale. The dataset provides comprehensive organ-scale 3D information of the secondary pulmonary lobules and delineates the microstructure of lung nodules with unprecedented detail.
Collapse
Affiliation(s)
- R Patrick Xian
- Department of Mechanical Engineering, University College London, London, UK.
| | - Claire L Walsh
- Department of Mechanical Engineering, University College London, London, UK
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - Alexandre Bellier
- Laboratoire d'Anatomie des Alpes Françaises (LADAF), Université Grenoble Alpes, Grenoble, France
| | - Sebastian Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - Joseph Jacob
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| |
Collapse
|
7
|
Verleden SE, Braubach P, Werlein C, Plucinski E, Kuhnel MP, Snoeckx A, El Addouli H, Welte T, Haverich A, Laenger FP, Dettmer S, Pauwels P, Verplancke V, Van Schil PE, Lapperre T, Kwakkel-Van-Erp JM, Ackermann M, Hendriks JMH, Jonigk D. From Macroscopy to Ultrastructure: An Integrative Approach to Pulmonary Pathology. Front Med (Lausanne) 2022; 9:859337. [PMID: 35372395 PMCID: PMC8965844 DOI: 10.3389/fmed.2022.859337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Pathology and radiology are complimentary tools, and their joint application is often crucial in obtaining an accurate diagnosis in non-neoplastic pulmonary diseases. However, both come with significant limitations of their own: Computed Tomography (CT) can only visualize larger structures due to its inherent–relatively–poor resolution, while (histo) pathology is often limited due to small sample size and sampling error and only allows for a 2D investigation. An innovative approach of inflating whole lung specimens and subjecting these subsequently to CT and whole lung microCT allows for an accurate matching of CT-imaging and histopathology data of exactly the same areas. Systematic application of this approach allows for a more targeted assessment of localized disease extent and more specifically can be used to investigate early mechanisms of lung diseases on a morphological and molecular level. Therefore, this technique is suitable to selectively investigate changes in the large and small airways, as well as the pulmonary arteries, veins and capillaries in relation to the disease extent in the same lung specimen. In this perspective we provide an overview of the different strategies that are currently being used, as well as how this growing field could further evolve.
Collapse
Affiliation(s)
- Stijn E. Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Division of Pneumology, University Hospital Antwerp, Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem, Belgium
| | - Peter Braubach
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Edith Plucinski
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P. Kuhnel
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Annemiek Snoeckx
- Division of Radiology, University Hospital Antwerp and University of Antwerp, Edegem, Belgium
| | - Haroun El Addouli
- Division of Radiology, University Hospital Antwerp and University of Antwerp, Edegem, Belgium
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Division of Pneumology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Division of Thoracic Surgery, Hannover Medical School, Hannover, Germany
| | - Florian P. Laenger
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Sabine Dettmer
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Patrick Pauwels
- Division of Pathology, University Hospital Antwerp, Edegem, Belgium
| | | | - Paul E. Van Schil
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem, Belgium
| | - Therese Lapperre
- Division of Pneumology, University Hospital Antwerp, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Antwerp University, Antwerp, Belgium
| | - Johanna M. Kwakkel-Van-Erp
- Division of Pneumology, University Hospital Antwerp, Edegem, Belgium
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Antwerp University, Antwerp, Belgium
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Witten, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jeroen M. H. Hendriks
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Antwerp University, Antwerp, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Edegem, Belgium
| | - Danny Jonigk
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- *Correspondence: Danny Jonigk
| |
Collapse
|
8
|
Yakovlev MA, Vanselow DJ, Ngu MS, Zaino CR, Katz SR, Ding Y, Parkinson D, Wang SY, Ang KC, La Riviere P, Cheng KC. A wide-field micro-computed tomography detector: micron resolution at half-centimetre scale. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:505-514. [PMID: 35254315 PMCID: PMC8900834 DOI: 10.1107/s160057752101287x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Ideal three-dimensional imaging of complex samples made up of micron-scale structures extending over mm to cm, such as biological tissues, requires both wide field of view and high resolution. For existing optics and detectors used for micro-CT (computed tomography) imaging, sub-micron pixel resolution can only be achieved for fields of view of <2 mm. This article presents a unique detector system with a 6 mm field-of-view image circle and 0.5 µm pixel size that can be used in micro-CT units utilizing both synchrotron and commercial X-ray sources. A resolution-test pattern with linear microstructures and whole adult Daphnia magna were imaged at beamline 8.3.2 of the Berkeley Advanced Light Source. Volumes of 10000 × 10000 × 7096 isotropic 0.5 µm voxels were reconstructed over a 5.0 mm × 3.5 mm field of view. Measurements in the projection domain confirmed a 0.90 µm measured spatial resolution that is largely Nyquist-limited. This unprecedented combination of field of view and resolution dramatically reduces the need for sectional scans and computational stitching for large samples, ultimately offering the means to elucidate changes in tissue and cellular morphology in the context of larger, whole, intact model organisms and specimens. This system is also anticipated to benefit micro-CT imaging in materials science, microelectronics, agricultural science and biomedical engineering.
Collapse
Affiliation(s)
- Maksim A. Yakovlev
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Biomedical Sciences PhD Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Daniel J. Vanselow
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Mee Siing Ngu
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Carolyn R. Zaino
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Spencer R. Katz
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Yifu Ding
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Dula Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Khai Chung Ang
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Penn State Zebrafish Functional Genomics Core, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
9
|
Walsh CL, Tafforeau P, Wagner WL, Jafree DJ, Bellier A, Werlein C, Kühnel MP, Boller E, Walker-Samuel S, Robertus JL, Long DA, Jacob J, Marussi S, Brown E, Holroyd N, Jonigk DD, Ackermann M, Lee PD. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat Methods 2021; 18:1532-1541. [PMID: 34737453 PMCID: PMC8648561 DOI: 10.1038/s41592-021-01317-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Imaging intact human organs from the organ to the cellular scale in three dimensions is a goal of biomedical imaging. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique using the European Synchrotron Radiation Facility (ESRF)'s Extremely Brilliant Source (EBS). The spatial coherence of the ESRF-EBS combined with our beamline equipment, sample preparation and scanning developments enabled us to perform non-destructive, three-dimensional (3D) scans with hierarchically increasing resolution at any location in whole human organs. We applied HiP-CT to image five intact human organ types: brain, lung, heart, kidney and spleen. HiP-CT provided a structural overview of each whole organ followed by multiple higher-resolution volumes of interest, capturing organotypic functional units and certain individual specialized cells within intact human organs. We demonstrate the potential applications of HiP-CT through quantification and morphometry of glomeruli in an intact human kidney and identification of regional changes in the tissue architecture in a lung from a deceased donor with coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- C L Walsh
- Department of Mechanical Engineering, University College London, London, UK.
- Centre for Advanced Biomedical Imaging, University College London, London, UK.
| | - P Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| | - W L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- German Lung Research Centre (DZL), Translational Lung Research Centre Heidelberg (TLRC), Heidelberg, Germany
| | - D J Jafree
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - A Bellier
- French Alps Laboratory of Anatomy (LADAF), Grenoble Alpes University, Grenoble, France
| | - C Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - M P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - E Boller
- European Synchrotron Radiation Facility, Grenoble, France
| | - S Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - J L Robertus
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - D A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Jacob
- Centre for Medical Image Computing, University College London, London, UK
- UCL Respiratory, University College London, London, UK
| | - S Marussi
- Department of Mechanical Engineering, University College London, London, UK
| | - E Brown
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - N Holroyd
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - D D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.
| | - M Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, Wuppertal, Germany.
| | - P D Lee
- Department of Mechanical Engineering, University College London, London, UK.
| |
Collapse
|
10
|
Bompoti A, Papazoglou AS, Moysidis DV, Otountzidis N, Karagiannidis E, Stalikas N, Panteris E, Ganesh V, Sanctuary T, Arvanitidis C, Sianos G, Michaelson JS, Herrmann MD. Volumetric Imaging of Lung Tissue at Micrometer Resolution: Clinical Applications of Micro-CT for the Diagnosis of Pulmonary Diseases. Diagnostics (Basel) 2021; 11:diagnostics11112075. [PMID: 34829422 PMCID: PMC8625264 DOI: 10.3390/diagnostics11112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-computed tomography (micro-CT) is a promising novel medical imaging modality that allows for non-destructive volumetric imaging of surgical tissue specimens at high spatial resolution. The aim of this study is to provide a comprehensive assessment of the clinical applications of micro-CT for the tissue-based diagnosis of lung diseases. This scoping review was conducted in accordance with the PRISMA Extension for Scoping Reviews, aiming to include every clinical study reporting on micro-CT imaging of human lung tissues. A literature search yielded 570 candidate articles, out of which 37 were finally included in the review. Of the selected studies, 9 studies explored via micro-CT imaging the morphology and anatomy of normal human lung tissue; 21 studies investigated microanatomic pulmonary alterations due to obstructive or restrictive lung diseases, such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and cystic fibrosis; and 7 studies examined the utility of micro-CT imaging in assessing lung cancer lesions (n = 4) or in transplantation-related pulmonary alterations (n = 3). The selected studies reported that micro-CT could successfully detect several lung diseases providing three-dimensional images of greater detail and resolution than routine optical slide microscopy, and could additionally provide valuable volumetric insight in both restrictive and obstructive lung diseases. In conclusion, micro-CT-based volumetric measurements and qualitative evaluations of pulmonary tissue structures can be utilized for the clinical management of a variety of lung diseases. With micro-CT devices becoming more accessible, the technology has the potential to establish itself as a core diagnostic imaging modality in pathology and to enable integrated histopathologic and radiologic assessment of lung cancer and other lung diseases.
Collapse
Affiliation(s)
- Andreana Bompoti
- Department of Radiology, Peterborough City Hospital, Northwest Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK;
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Dimitrios V. Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Nikolaos Otountzidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Nikolaos Stalikas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Eleftherios Panteris
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., P.O. Box 8318, GR 57001 Thessaloniki, Greece;
| | | | - Thomas Sanctuary
- Respiratory Department, Medway NHS Foundation Trust, Kent ME7 5NY, UK;
| | - Christos Arvanitidis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 70013 Heraklion, Greece;
- LifeWatch ERIC, Sector II-II, Plaza de España, 41071 Seville, Spain
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - James S. Michaelson
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Markus D. Herrmann
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Correspondence: ; Tel.: +6-17-724-1896
| |
Collapse
|
11
|
Xia CW, Hu SQ, Zhou QZ, Gan RL, Pan JR, Zhang Q, Pu YM, Chen S, Hu QG, Wang YX. Accurately Locating Metastatic Foci in Lymph Nodes With Lugol's Iodine-Enhanced Micro-CT Imaging. Front Oncol 2021; 11:594915. [PMID: 34604023 PMCID: PMC8481801 DOI: 10.3389/fonc.2021.594915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Accurate evaluation of lymph node (LN) status is the key factor to determine the treatment and evaluate prognosis for patients with cancer. However, traditional pathological examination resulted in a 30% false-negative rate of detection of metastases in LNs. This study aimed to utilize Lugol's iodine (I2-IK)-enhanced micro-CT imaging to reveal the 3-dimensional structure of regional LNs and decrease the false-negative rate in pathological examination. Methods To explore the feasibility of I2-IK-enhanced micro-CT imaging in locating metastatic lesion in LNs, nonmetastatic and metastatic LNs from mice were used to mimic the imaging process. Then, the LNs from oral squamous cell carcinoma (OSCC) patients were applied to verify the value of I2-IK-enhanced micro-CT imaging in revealing LN structure and locating metastatic lesions in LNs. The glycogen content in nonmetastatic and metastatic LNs was further detected by the use of a glycogen assay kit and periodic acid-Schiff (PAS) staining to explain the imaging differences between them. Results In nude mice, 0.5% I2-IK staining for 4 h was the best parameter for normal LN. The metastatic foci in metastatic LNs were also clearly outlined in this condition. For nonmetastatic LNs from patients with OSCC, 1% I2-IK staining for 12 h was the best parameter. However, due to the increased volume of metastatic LNs, the image effect of 3% I2-IK staining for 12 h was superior to 1% I2-IK staining [tumor background ratio (TBR), 3% vs. 1%, 1.89 ± 0.10 vs. 1.27 ± 0.07, p < 0.001]. Compared with subsequent pathological sections, we found the CT intensity of metastatic foci in LNs and muscle tissues was significantly higher than in nonmetastatic regions. Meanwhile, the glycogen content of metastatic foci in LNs detected was also significantly higher than in nonmetastatic region. Conclusions I2-IK-enhanced micro-CT imaging could identify the spatial location of metastatic foci in LNs. This will be an effective method to assist in decreasing the LN false-negative rate for cancer pathology.
Collapse
Affiliation(s)
- Cheng-Wan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qun-Zhi Zhou
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong-Lin Gan
- Department of Stomatology, The Suzhou Hospital affiliated to the Nanjing Medical University, Suzhou, China
| | - Jiong-Ru Pan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Mei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shen Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin-Gang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Special Issue: Chest Imaging 2021. Eur J Radiol Open 2020; 8:100309. [PMID: 33392361 PMCID: PMC7769704 DOI: 10.1016/j.ejro.2020.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|