1
|
Zhou FM, Wang KK, Wang LH, Qiu JG, Wang W, Liu WJ, Wang L, Jiang BH. CIB2 mediates acquired gefitinib resistance by inducing ZEB1 expression and epithelial-mesenchymal transition. Aging (Albany NY) 2024; 16:12277-12292. [PMID: 39264588 PMCID: PMC11424576 DOI: 10.18632/aging.206086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
EGFR-TKIs have been used as frontline treatment in patients with advanced non-small cell lung cancer (NSCLC) suffering from the EGFR mutation. Gefitinib, the first-generation EGFR-TKI, has greatly improved survival rates in lung cancer patients, whereas acquired gefitinib resistance is still a critical issue that needs to be overcome. In our research, high expression levels of CIB2 were found in gefitinib-resistant lung cancer cells. CIB2 knockout rendered gefitinib-resistant cells more sensitive to gefitinib, and overexpression of CIB2 in parental cells was sufficient to induce more resistance to gefitinib. Inhibition of CIB2 in gefitinib-resistant lung cancer cells significantly induced cell apoptosis. To clarify the major molecular mechanism by which CIB2 increases gefitinib resistance, we demonstrated that raised CIB2 in lung cancer cells promoted epithelial-to-mesenchymal transition (EMT) through upregulation of ZEB1. Moreover, FOSL1 transcriptionally regulated CIB2 expression. Finally, CIB2 rendered tumors resistant to gefitinib treatment in vivo. Our results explored a new mechanism: upregulated CIB2 promoted EMT through ZEB1 to regulate gefitinib resistance, which could be a candidate therapeutic target for overcoming acquired resistance to EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Feng-Mei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun-Kun Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Li-Hong Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wei Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
2
|
Liu ZY, Zhang YW, Zhuang HX, Ou YJ, Jiang QY, Li PF, He YM, Ren Y, Mao XL. Inhibiting the Otub1/phosphorylated STAT3 axis for the treatment of non-small cell lung cancer. Acta Pharmacol Sin 2024:10.1038/s41401-024-01366-w. [PMID: 39198663 DOI: 10.1038/s41401-024-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zi-Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hai-Xia Zhuang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Jie Ou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Yun Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping-Fei Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ming He
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xin-Liang Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Cagnin S, Pontisso P, Martini A. SerpinB3: A Multifaceted Player in Health and Disease-Review and Future Perspectives. Cancers (Basel) 2024; 16:2579. [PMID: 39061218 PMCID: PMC11274807 DOI: 10.3390/cancers16142579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player in various physiological and pathological processes. Initially identified as an oncogenic factor in squamous cell carcinomas, SerpinB3's intricate involvement extends from fibrosis progression and cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering novel strategies for cancer treatment development. Overall, this review underscores the importance of further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic potential across various medical conditions.
Collapse
Affiliation(s)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35123 Padova, Italy; (S.C.); (A.M.)
| | | |
Collapse
|
4
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
5
|
Park HJ, Park SH. The Ethanolic Extract of Dictyopteris Divaricata Induces Apoptosis in Non-Small Cell Lung Cancer Cells by Inhibiting STAT3 Activity. Nutr Cancer 2024; 76:305-315. [PMID: 38185896 DOI: 10.1080/01635581.2024.2301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Dictyopteris divaricata (DD) has been reported to exert diverse pharmacological activities, including anti-inflammatory, antioxidant, and anticancer effects. In this study, we aimed to investigate the anticancer potential of the ethanolic extract of DD (EDD) in non-small cell lung cancer (NSCLC) cells and to explore the underlying mechanism. EDD significantly suppressed cell proliferation in H1299, PC9, and H1975 NSCLC cells. EDD treatment increased the proportion of Annexin V-positive cells and cells in sub-G1 phase, indicating the induction of apoptosis. This observation was further supported by the presence of fragmented nuclei and increased expression of cleaved PARP and cleaved caspase-3 in NSCLC cells following EDD treatment. Mechanistically, EDD decreased the phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and Src. Transfection of constitutively activated STAT3 into H1975 cells partially attenuated EDD-induced apoptosis, highlighting the contribution of STAT3 inhibition to the anticancer activity of EDD. In addition, we identified fucosterol as a major constituent of EDD that exhibited similar anticancer potential in NSCLC cells. Taken together, our results demonstrate that EDD induces apoptosis in NSCLC cells by inhibiting STAT3 activity. We propose EDD as a potential candidate for the development of therapies targeting NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
6
|
Hou J, Li Y, Xing H, Cao R, Jin X, Xu J, Guo Y. Effusanin B Inhibits Lung Cancer by Prompting Apoptosis and Inhibiting Angiogenesis. Molecules 2023; 28:7682. [PMID: 38067413 PMCID: PMC10707445 DOI: 10.3390/molecules28237682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the deadliest human diseases, causing high rates of illness and death. Lung cancer has the highest mortality rate among all malignancies worldwide. Effusanin B, a diterpenoid derived from Isodon serra, showed therapeutic potential in treating non-small-cell lung cancer (NSCLC). Further research on the mechanism indicated that effusanin B inhibited the proliferation and migration of A549 cells both in vivo and in vitro. The in vitro activity assay demonstrated that effusanin B exhibited significant anticancer activity. Effusanin B induced apoptosis, promoted cell cycle arrest, increased the production of reactive oxygen species (ROS), and altered the mitochondrial membrane potential (MMP). Based on mechanistic studies, effusanin B was found to inhibit the proliferation and migration of A549 cells by affecting the signal transducer and activator of transcription 3 (STAT3) and focal adhesion kinase (FAK) pathways. Moreover, effusanin B inhibited tumor growth and spread in a zebrafish xenograft model and demonstrated anti-angiogenic effects in a transgenic zebrafish model.
Collapse
Affiliation(s)
- Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Xiaomeng Jin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
7
|
Ryoo GH, Kim GJ, Han AR, Jin CH, Lee H, Nam JW, Choi H, Jung CH. Antimetastatic activity of seongsanamide B in γ-irradiated human lung cancer. Heliyon 2023; 9:e20179. [PMID: 37809399 PMCID: PMC10559954 DOI: 10.1016/j.heliyon.2023.e20179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.
Collapse
Affiliation(s)
- Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Hunmin Lee
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, 54810, South Korea
| |
Collapse
|
8
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
9
|
Meng Y, Lin W, Wang N, Wei X, Huang Q, Liao Y. Bazedoxifene-induced ROS promote mitochondrial dysfunction and enhance osimertinib sensitivity by inhibiting the p-STAT3/SOCS3 and KEAP1/NRF2 pathways in non-small cell lung cancer. Free Radic Biol Med 2023; 196:65-80. [PMID: 36646328 DOI: 10.1016/j.freeradbiomed.2023.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Although the advent of osimertinib has brought revolutionary changes to the treatment landscape of non-small cell lung cancer (NSCLC) patients, acquired resistance remains a major obstacle limiting long-term survival benefits for the treatment of cancer. The purpose of this study was to examine the mechanisms involved in the ability of bazedoxifene to synergistically enhance osimertinib sensitivity, which will aid in delaying and overcoming osimertinib resistance to improve patient outcomes. Here, we found that osimertinib increased the production of reactive oxygen species (ROS), promoted mitochondrial fission, diminished mitochondrial membrane potential, and activated cell apoptosis. Moreover, the p-STAT3/suppressor of cytokine signaling 3 (SOCS3) and KEAP1/NRF2 signaling pathways were activated to scavenge ROS and promote osimertinib resistance. Mechanistically, SOCS3 can directly bind to KEAP1 to prevent the degradation of NRF2, resulting in the activation of an NRF2-dependent transcriptional program. Furthermore, the osimertinib-induced mitochondrial dysfunction and apoptosis were enhanced by bazedoxifene, thereby delaying and overcoming osimertinib resistance by inhibiting these pathways in vitro and in vivo. These findings identified a new critical link in the p-STAT3/SOCS3 pathway, KEAP1/NRF2 pathway, mitochondrial dysfunction, and osimertinib resistance. The present study demonstrated that bazedoxifene can be used for delaying or overcoming osimertinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
10
|
Vitali L, Merlini A, Galvagno F, Proment A, Sangiolo D. Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-19. Biomedicines 2022; 10:2628. [PMID: 36289890 PMCID: PMC9599827 DOI: 10.3390/biomedicines10102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) has exacted a disproportionate toll on cancer patients. The effects of anticancer treatments and cancer patients' characteristics shared significant responsibilities for this dismal outcome; however, the underlying immunopathological mechanisms are far from being completely understood. Indeed, despite their different etiologies, SARS-CoV-2 infection and cancer unexpectedly share relevant immunobiological connections. In the pathogenesis and natural history of both conditions, there emerges the centrality of the immune response, orchestrating the timed appearance, functional and dysfunctional roles of multiple effectors in acute and chronic phases. A significant number (more than 600) of observational and interventional studies have explored the interconnections between COVID-19 and cancer, focusing on aspects as diverse as psychological implications and prognostic factors, with more than 4000 manuscripts published so far. In this review, we reported and discussed the dynamic behavior of the main cytokines and immune system signaling pathways involved in acute vs. early, and chronic vs. advanced stages of SARS-CoV-2 infection and cancer. We highlighted the biological similarities and active connections within these dynamic disease scenarios, exploring and speculating on possible therapeutic crossroads from one setting to the other.
Collapse
Affiliation(s)
- Letizia Vitali
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Federica Galvagno
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessia Proment
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| |
Collapse
|
11
|
Shen Z, Li X, Hu Z, Yang Y, Yang Z, Li S, Zhou Y, Ma J, Li H, Liu X, Cai J, Pu L, Wang X, Huang Y. Linc00996 is a favorable prognostic factor in LUAD: Results from bioinformatics analysis and experimental validation. Front Genet 2022; 13:932973. [PMID: 36118847 PMCID: PMC9479463 DOI: 10.3389/fgene.2022.932973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Linc00996 has been reported in a variety of malignant tumors, but its potential role and significance in lung adenocarcinoma (LUAD) are not fully understood. The authors investigated the expression and biological behavior of Linc00996 in LUAD and elucidated the function of its potential target genes.Materials and methods: The data of Linc00996 expression in cancers were derived from GEPIA. GEO and TCGA datasets were used to identify the differential expression of Linc00996 in LUAD and analyze the respective correlation between different expression levels and LUAD stage and survival prognosis. We further elucidated the potential biological processes and pathways involved with Linc00996 in LAUD by GSEA. ssGSEA was applied to explore the relationship between Linc00996 and immune activity. Finally, the clinical impact of Linc00996 was assessed in 61 patients with LUAD, and the biological functions of Linc00996 were determined by a series of experiments in vitro, such as CCK8, colony formation, migration, and invasion assays.Results: Compared with adjacent normal lung tissues, Linc00996 was significantly downregulated in LUAD, and its expression was negatively correlated with T stage, N stage, and pathological stage. An in vitro study suggested that enhanced Linc00996 expression could inhibit cell proliferation, clonal formation, migration, and invasion in LUAD cell lines. Via GSEA and ssGSEA, we observed that Linc00996 might be connected with immune infiltration in LUAD, and Linc00996 might inhibit tumorigenesis and metastasis by regulating antigen processing and presentation, JAK-STAT3, and cell adhesion molecular signaling pathways.Conclusion: Linc00996 is a novel tumor suppressor in LUAD and may suppress the tumorigenesis and metastasis of LUAD via the tumor-related signaling pathway, such as antigen processing and presentation, JAK-STAT3, and cell adhesion molecular signaling pathways.
Collapse
Affiliation(s)
- Zhenghai Shen
- Cancer Center Office, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xin Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Yanlong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenghong Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Shanshan Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Yongchun Zhou
- Cancer Center Office, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Jie Ma
- Cancer Center Office, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Hongsheng Li
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xi Liu
- Cancer Center Office, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Jingjing Cai
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Lisa Pu
- Department of Nephrology, Kunming Yanan Hospital, Kunming, China
| | - Xiaoxiong Wang
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Xiaoxiong Wang, ; Yunchao Huang,
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Xiaoxiong Wang, ; Yunchao Huang,
| |
Collapse
|
12
|
Zhao Y, Zhang X, Li Y, Li Y, Zhang H, Song Z, Xu J, Guo Y. A natural xanthone suppresses lung cancer growth and metastasis by targeting STAT3 and FAK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154118. [PMID: 35576741 DOI: 10.1016/j.phymed.2022.154118] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonsmall-cell lung cancer (NSCLC) is one of the most common malignant tumors, and the current drugs have not achieved ideal therapeutic effects. The abnormal activation of STAT3 and FAK signal transduction in tumor cells is highly correlated with their proliferation and migration ability. Therefore, bioactive compounds that can inhibit STAT3 and FAK activation have the potential to become agents to treat NSCLC. PURPOSE This study aims to discover new antitumor compounds from Garcinia xipshuanbannaensis and investigate the molecular mechanism by which they inhibit lung cancer proliferation and metastasis in vivo and in vitro, all of which may lead to obtainment of a potential antitumor agent. METHODS Xipsxanthone H was obtained by various chromatography methods (including silica gel, medium pressure liquid chromatography (MPLC), and preparative high-performance liquid chromatography (HPLC)). 1D and 2D nuclear magnetic resonance (NMR) spectra were used to analyze the structure. Cell viability and wound healing assays were employed to detect changes in the proliferation and migration of cancer cells. Cell cycle and apoptosis were analyzed by flow cytometry. The protein expression of STAT3 and FAK signaling pathways affected by xipsxanthone H was determined by Western blotting. The zebrafish model was used to evaluate the in vivo effects of xipshantone H on tumor proliferation and metastasis. Molecular docking was utilized to explore the interaction between xipsxanthone H and STAT3. Cellular thermal shift assays (CETSAs) were employed to explore the possible target of xipsxanthone H. RESULTS The novel compound xipsxanthone H was purified and characterized from G. xipshuanbannaensis. Xipsxanthone H exhibited strong anti-proliferation activity in a variety of tumor cell lines. In addition to inducing reactive oxygen species (ROS) production and arresting the cell cycle, mechanistic studies demonstrated that xipsxanthone H suppressed STAT3 and FAK phosphorylation and regulated the downstream protein expression of the STAT3 and FAK signaling pathways. The in vivo studies using the zebrafish model revealed that xipsxanthone H inhibited tumor proliferation, metastasis, and angiogenesis. CONCLUSIONS A new xanthone was obtained from G. xipshuanbannaensis, and this compound had the property of inhibiting tumor proliferation and metastasis by targeting STAT3 and FAK signaling pathways in NSCLC. These findings suggested that xipsxanthone H might be a potential candidate agent for NSCLC treatment.
Collapse
Affiliation(s)
- Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
13
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
14
|
Shen Y, Cai H, Ma S, Zhu W, Zhao H, Li J, Ye H, Yang L, Zhao C, Huang X, Xiao Z. Telocinobufagin Has Antitumor Effects in Non-Small-Cell Lung Cancer by Inhibiting STAT3 Signaling. JOURNAL OF NATURAL PRODUCTS 2022; 85:765-775. [PMID: 35200033 DOI: 10.1021/acs.jnatprod.1c00761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-small-cell lung carcer (NSCLC), the main histological subtype of lung cancer, is responsible for significant morbidity and mortality worldwide. Telocinobufagin, an active compound of the Chinese traditional medicine ChanSu, has antitumor effects, but its mechanism of action remains unknown. Therefore, we investigated the effect of telocinobufagin on NSCLC growth and metastasis and its possible mechanism of action, in vitro and in vivo. Cell proliferation, migration, and apoptosis were measured by methyl thiazol tetrazolium assay, colony formation, 5-ethynyl-2'-deoxyuridine incorporation, Transwell migration, wound healing, and flow cytometry analysis. A mouse xenograft model was used to evaluate tumor formation in vivo. Telocinobufagin was found to suppress proliferation and metastasis and induce apoptosis in human NSCLC cells. Moreover, telocinobufagin was able to significantly inhibit STAT3 phosphorylation at tyrosine 705 (Y705) and its downstream targets. Additionally, telocinobufagin also impaired the IL-6-induced nuclear translocation of STAT3. Consistent with the in vitro experiments, telocinobufagin reduced the A549 xenograft tumor burden and the levels of P-STAT3Y705, MCL1, BCL2, and cleaved PARP1 in vivo. These results support telocinobufagin as a promising STAT3 signaling inhibitor candidate for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Yili Shen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haijian Cai
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shenjie Ma
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjing Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haiyang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jifa Li
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Hua Ye
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhongxiao Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| |
Collapse
|
15
|
Nakagawa T, Oda G, Kawachi H, Ishikawa T, Okamoto K, Uetake H. Nuclear Expression of p-STAT3 Is Associated with Poor Prognosis in ER(−) Breast Cancer. Clin Pract 2022; 12:157-167. [PMID: 35314590 PMCID: PMC8938801 DOI: 10.3390/clinpract12020020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/30/2022] Open
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) has been reported in several types of cancer, where it acts as an oncogene. However, in breast cancer, the clinical role of STAT3 remains unclear. In the present study, the association between phosphorylated-STAT3 (p-STAT3) expression and clinicopathological/biological factors was examined in each subtype. p-STAT3 expression was examined in 135 cases of breast cancer by immunohistochemistry. p-STAT3 expression was not associated with clinicopathological/biological factors and prognosis in a complete cohort of breast cancer cases. However, in patients with estrogen receptor-negative (ER(−)) breast cancer and triple-negative breast cancer (TNBC), multivariate analysis showed that higher p-STAT3 expression was significantly associated with a short relapse-free survival (p = 0.029, HR 5.37, 95%CI 1.19–24.29). TNBC patients with p-STAT3 overexpression were found to have a poor prognosis (p = 0.029, HR 5.37, 95%CI 1.19–24.29). On the other hand, in ER(+) breast cancer, p-STAT3 overexpression was associated with a favorable prognosis (p = 0.034, HR 9.48, 95%CI 1.18–76.21). The present results suggested that STAT3 expression may play a different role in ER(−) and ER(+) breast cancer. In the future, the pharmacological inhibition of STAT3 expression may serve as an effective therapeutic strategy for ER(−) breast cancer, particularly TNBC.
Collapse
Affiliation(s)
- Tsuyoshi Nakagawa
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
- Correspondence: ; Tel.: +81-3-5803-5261
| | - Goshi Oda
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| | - Hiroshi Kawachi
- Department of Pathology, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan;
| | - Toshiaki Ishikawa
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| | - Kentaro Okamoto
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| | - Hiroyuki Uetake
- Department of Specialized Surgeries, Graduate School, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo 113-8519, Japan; (G.O.); (T.I.); (K.O.); (H.U.)
| |
Collapse
|
16
|
Gao S, Zhang W, Yan N, Li M, Mu X, Yin H, Wang J. The impact of STAT3 and phospho-STAT3 expression on the prognosis and clinicopathology of ovarian cancer: a systematic review and meta-analysis. J Ovarian Res 2021; 14:164. [PMID: 34789292 PMCID: PMC8600722 DOI: 10.1186/s13048-021-00918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose STAT3 and p-STAT3 are often overexpressed in various human tumours and participate in cancer development and progression. However, whether STAT3/p-STAT3 expression is associated with clinicopathologic characteristics and has prognostic significance for people suffering from ovarian cancer remains controversial. We conducted a systematic review and meta-analyses to clarify the associations between STAT3/p-STAT3 expression and clinicopathologic characteristics and prognostic factors of ovarian cancer. Methods A systematic electronic search in the PubMed, Embase, CNKI, and Wanfang databases was conducted to identify relevant articles published before 3 April 2021. All statistical analyses were performed using Stata 15.1. Results We included 16 eligible studies incorporating 1747 ovarian cancer patients. The expression of STAT3/p-STAT3 was upregulated in ovarian cancer samples versus normal ovarian tissue, benign tumours and borderline tumours (OR = 10.14, p < 0.00001; OR = 9.08, P < 0.00001; OR = 4.01, p < 0.00001, respectively). STAT3/p-STAT3 overexpression was significantly correlated with FIGO stage (I-II vs. III-IV) (OR = 0.36, p < 0.00001), tumour grade (G1 + G2 vs. G3) (OR = 0.55; p = 0.001) and lymph node metastasis (yes vs. no) (OR = 3.39; p < 0.00001). High STAT3/p-STAT3 expression was correlated with poorer prognosis of ovarian cancer patients for both overall survival (OS) (HR = 1.67, p < 0.00001) and progression-free survival (PFS) (HR = 1.40, p = 0.007). Conclusion The present meta-analysis indicated that high STAT3/p-STAT3 expression is likely predictive of an unfavourable prognosis in ovarian cancer patients. Nonetheless, prospective trials are required to confirm these associations. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00918-6.
Collapse
Affiliation(s)
- Shuo Gao
- Graduate School of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Wenyuan Zhang
- ECG Network Center of Special Inspection Department, Dezhou Municipal Hospital, Dezhou, 253000, Shandong, China
| | - Na Yan
- Graduate School of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Min Li
- Graduate School of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Xiaowei Mu
- Graduate School of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Huaxia Yin
- Graduate School of Inner Mongolia Medical University, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Jinhua Wang
- Department of Pathology, Tumor Hospital of Inner Mongolia Autonomous Region, Hohhot, 010010, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
17
|
Sun Y, Lu X, Li H, Li X. Dihydroartemisinin inhibits IL-6-induced epithelial-mesenchymal transition in laryngeal squamous cell carcinoma via the miR-130b-3p/STAT3/β-catenin signaling pathway. J Int Med Res 2021; 49:3000605211009494. [PMID: 34755560 PMCID: PMC8586195 DOI: 10.1177/03000605211009494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective To explore whether dihydroartemisinin (DHA) can block interleukin (IL)-6-induced epithelial–mesenchymal transition (EMT) in laryngeal squamous cell carcinoma (LSCC). Methods The expression of SLUG, signal transducer and activator of transcription 3 (STAT3), and microRNA (miR)-130b-3p was measured. In addition, a dual-luciferase reporter assay was performed to examine the interaction of miR-130b-3p with STAT3. Results We found that IL-6 can promote EMT and invasion in LSCC cells, whereas DHA can inhibit these two processes. However, DHA alone does not influence EMT and cancer invasion. Furthermore, DHA upregulated miR-130b-3p, which can downregulate STAT3 and β-catenin protein expression and decrease the activity of the IL-6/STAT3 signaling pathway. Moreover, we found that miR-130b-3p can target STAT3 directly. Conclusions DHA can block IL-6-triggered EMT and invasion in LSCC, and during these processes, DHA increases miR-130b-3p expression to decrease the activation of the IL-6/STAT3 and β-catenin signaling pathways. These findings may provide new insights into strategies for suppressing and even preventing LSCC metastasis.
Collapse
Affiliation(s)
- Yajing Sun
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiuying Lu
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Hui Li
- Department of Pathology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
18
|
Shi S, Ma HY, Zhang ZG. Clinicopathological and prognostic value of STAT3/p-STAT3 in cervical cancer: A meta and bioinformatics analysis. Pathol Res Pract 2021; 227:153624. [PMID: 34571355 DOI: 10.1016/j.prp.2021.153624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT3) is an important member of the STAT family. Studies have found that it can participate in cell signal transduction and transcriptional activation. STAT3 plays an important role in tumor angiogenesis, immunity and tumor invasion and metastasis. Previous studies have found that STAT3 and phosphorylated STAT3(p-STAT3) are abnormally expressed in cervical cancer. In the research, we systematically analyzed the expression of STAT3 and phospho-STAT3(p-STAT3) in cervical cancer tissues and their correlation with clinicopathological features in patients with cervical cancer. We searched literature using PubMed, Web of Science and China National Knowledge Infrastructure(CNKI) on 10th Dec, 2020. Our results showed that the expression of STAT3 and p-STAT3 in cervical cancer tissues was significantly higher than that in normal tissues and cervical intraepithelial lesions, and the expression of STAT3 in cervical intraepithelial lesions was higher than that in normal cervical tissues (P < 0.05). The expression of STAT3 in cervical squamous cell carcinoma tissue was higher than that in adenocarcinoma tissue(p < 0.05). A positive association was found STAT3 expression and Lymph node metastasis, Infiltrating depth and TNM staging of cervical cancer patients(p < 0.05). p-STAT3 expression was also associated with Dedifferentiation, Lymph node metastasis and Depth of invasion(p < 0.05). According to oncomine database, STAT3 mRNA and DNA expression were obviously higher in cervical cancer tissue than cervix uteri tissue(p < 0.05). According to kmplotter, GEPIA and UALCAN databases, the expression of STAT3 in cervical cancer tissues is higher than that in normal tissues(p < 0.05), but it has no significant correlation with the prognosis of patients(p > 0.05). The high expression of STAT3 and p-STAT3 might be a potential marker for tumor occurrence and metastasis in cervical cancer patients.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Pathology, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Hong-Yan Ma
- Department of Pathology, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Zhi-Gang Zhang
- Department of Pathology, Cangzhou People's Hospital, Cangzhou 061000, China.
| |
Collapse
|
19
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
20
|
Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, Shi S, Zhu K, Qu X, Hu W, Liu P, Wang Y, Zhang X. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Am J Cancer Res 2021; 11:824-840. [PMID: 33391507 PMCID: PMC7738869 DOI: 10.7150/thno.49600] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Constitutive activation of signal transducer and activator of transcription 3 (STAT3) is a common feature in human non-small cell lung cancer (NSCLC). STAT3 plays an important role in cancer progression as a driver oncogene and acquired resistance of targeted therapies as an alternatively activated pathway. W2014-S with pharmacophore structure of imidazopyridine, which was firstly reported to be utilized in STAT3 inhibitor discovery, was screened out as a potent STAT3 inhibitor from a library of small molecules. The aim of this study is to investigate the antitumor activities and mechanisms of W2014-S in NSCLC and effect on epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) resistance in vitro and in vivo. Methods: SPR analysis, Co-immunoprecipitation, confocal microscope imaging, and luciferase report gene assays were utilized to determine the mechanisms. Cell viability, colonial survival, wound healing, cell invasion assay, human cancer cell xenografts and PDX tumor xenografts were used to determine antitumor activities. Results: W2014-S disrupted STAT3 dimerization and selectively inhibited aberrant STAT3 signaling in NSCLC cell line. W2014-S strongly suppressed proliferation, survival, migration and invasion of lung cancer cells with aberrant STAT3 activation and inhibited the growth of human NSCLC cell xenografts and PDX tumor xenografts in mouse model. Furthermore, W2014-S significantly sensitized resistant NSCLC cell line to gefitinib and erlotinib in vitro and enhances the anti-tumor effect of gefitinib in TKI-resistant lung cancer xenografts in vivo. Conclusions: Our study has provided a novel STAT3 inhibitor with significant anti-tumor activities in NSCLC and suggests that combination of STAT3 inhibitor such as W2014-S with gefitinib could serve as a promising strategy to overcome EGFR-TKIs acquired resistance in NSCLC patients.
Collapse
|
21
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
22
|
Cai X, Zhou F, Xie X, Zheng D, Yao Y, Zhao C, Huang X, Hu K. Neobavaisoflavone demonstrates valid antitumor effects in Non-Small-Cell Lung Cancer by inhibiting STAT3. Comb Chem High Throughput Screen 2020; 25:29-37. [PMID: 33280587 DOI: 10.2174/1386207323666201204135941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Lung cancer is the most common cancer which contributes to the majority of death caused by cancer where non-small-cell lung cancer (NSCLC) accounts for approximately 85%. To treat NSCLC, STAT3 has been identified as a target with therapeutic potential. The neobavaisoflavone (NBIF) is one of the flavonoids of traditional Chinese medicine Psoralea corylifolial. MATERIALS AND METHODS Human NSCLC cell lines, PC-9, H460 and A549, were applied to determine NBIF's antiproliferative effects through cell viability and colony formation detection. The effect of NBIF on cell apoptosis was determined through Flow cytometry-based assay. Western blotting was used in this study to confirm the levels of P-STAT3 and Bcl-2 and Bax which are apoptotic proteins. RESULTS It was observed that NBIF could decrease the cell viability and migration and induce apoptosis in human NSCLC cell lines dose-dependently. Levels of P-STAT3, as well as the downstream signals of STAT3 pathway, were downregulated, suggesting that the tumor-suppression effects of NBIF might be related to the inhibition of STAT3 signaling. Furthermore, NBIF could contribute to the upregulation of BAX and downregulation of BCL2. CONCLUSION NBIF might perform the anti-NSCLC efficacy as a result of the inhibition on STAT3 pathway. Besides, our work suggests that NBIF could provide therapeutic alternatives for NSCLC.
Collapse
Affiliation(s)
- Xueding Cai
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuhan, Hubei 430060. China
| | - Feng Zhou
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000. China
| | - Xiaona Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000. China
| | - Dandan Zheng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000. China
| | - Yulei Yao
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000. China
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Xiaoying Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000. China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Zhangzhidong Road No.99, Wuhan, Hubei 430060. China
| |
Collapse
|
23
|
Polonio-Alcalá E, Palomeras S, Torres-Oteros D, Relat J, Planas M, Feliu L, Ciurana J, Ruiz-Martínez S, Puig T. Fatty Acid Synthase Inhibitor G28 Shows Anticancer Activity in EGFR Tyrosine Kinase Inhibitor Resistant Lung Adenocarcinoma Models. Cancers (Basel) 2020; 12:cancers12051283. [PMID: 32438613 PMCID: PMC7281741 DOI: 10.3390/cancers12051283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinases inhibitors (TKIs) are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor an EGFR activating mutation. However, this treatment is not curative due to primary and secondary resistance such as T790M mutation in exon 20. Recently, activation of transducer and activator of transcription 3 (STAT3) in NSCLC appeared as an alternative resistance mechanism allowing cancer cells to elude the EGFR signaling. Overexpression of fatty acid synthase (FASN), a multifunctional enzyme essential for endogenous lipogenesis, has been related to resistance and the regulation of the EGFR/Jak2/STAT signaling pathways. Using EGFR mutated (EGFRm) NSCLC sensitive and EGFR TKIs’ resistant models (Gefitinib Resistant, GR) we studied the role of the natural polyphenolic anti-FASN compound (−)-epigallocatechin-3-gallate (EGCG), and its derivative G28 to overcome EGFR TKIs’ resistance. We show that G28’s cytotoxicity is independent of TKIs’ resistance mechanisms displaying synergistic effects in combination with gefitinib and osimertinib in the resistant T790M negative (T790M−) model and showing a reduction of activated EGFR and STAT3 in T790M positive (T790M+) models. Our results provide the bases for further investigation of G28 in combination with TKIs to overcome the EGFR TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain;
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
| | - Daniel Torres-Oteros
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramanet, Spain; (D.T.-O.); (J.R.)
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramanet, Spain; (D.T.-O.); (J.R.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, 17003 Girona, Spain; (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, 17003 Girona, Spain; (M.P.); (L.F.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain;
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
- Correspondence: (S.R.-M.); (T.P.); Tel.: +34-972-419-548 (S.R.-M.); +34-972-419-628 (T.P.)
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
- Correspondence: (S.R.-M.); (T.P.); Tel.: +34-972-419-548 (S.R.-M.); +34-972-419-628 (T.P.)
| |
Collapse
|
24
|
Zhang J, Wang F, Liu F, Xu G. Predicting STAT1 as a prognostic marker in patients with solid cancer. Ther Adv Med Oncol 2020; 12:1758835920917558. [PMID: 32426049 PMCID: PMC7222261 DOI: 10.1177/1758835920917558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Aberrant activities of signal transducer and activator of transcription 1 (STAT1) have been implicated in cancer development. However, the prognostic value of STAT1 remains unclear. This report identified the role of STAT1 in prognosis in patients with solid cancer through open literature and The Cancer Genome Atlas (TCGA) database. Methods: Published articles were obtained from PubMed, Web of Science, and Embase databases according to a search strategy up to October 2019. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were extracted to assess the prognostic factors of patients. TCGA datasets were used to explore the prognostic value of STAT1 in various cancers. Results: A total of 15 studies incorporating 2839 patients with solid cancers were included. Pooled data showed that overexpressed STAT1 favored long overall survival (OS) (HR = 0.604, 95% CI = 0.431–0.846, p = 0.003) and disease-specific survival (DSS) (HR = 0.650, 95% CI = 0.512–0.825, p = 0.000). In subgroup analyses, highly expressed STAT1 was correlated with long OS of patients with high-grade serous ovarian cancer and oral squamous cell carcinoma. Data extracted from TCGA datasets unveiled that STAT1 expression was significantly higher in 12 cancers (e.g. bladder and breast) than their adjacent normal tissues. Again, highly expressed STAT1 favored long OS of patients with ovarian cancer as well as rectum adenocarcinoma, sarcoma, and skin cutaneous melanoma. However, in renal carcinoma, brain lower grade glioma, lung adenocarcinoma, and pancreatic cancer, highly expressed STAT1 was correlated with poor OS of patients. Particularly in renal carcinoma, increased STAT1 expression was associated with high grade, later stage, large tumor size, and lymph node and distant metastasis. Conclusion: STAT1 has been identified to have prognostic value in patients with solid cancer. Highly expressed STAT1 may predict prognosis in cancer patients based on their tumor types.
Collapse
Affiliation(s)
- Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, P.R. China
| |
Collapse
|
25
|
Gao Y, Luo L, Xie Y, Zhao Y, Yao J, Liu X. PYCR1 knockdown inhibits the proliferation, migration, and invasion by affecting JAK/STAT signaling pathway in lung adenocarcinoma. Mol Carcinog 2020; 59:503-511. [PMID: 32133692 DOI: 10.1002/mc.23174] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinoma (LUAD), as a form of non-small cell lung cancer (NSCLC), is the most frequently diagnosed lung cancer worldwide. To date, a few biomarkers have been reported to provide valuable information in guiding LUAD treatment. The aim of our study was to explore the functional role of pyrroline-5-carboxylate reductase 1 (PYCR1) in LUAD. Based on Oncomine database, we found that PYCR1 was highly expressed in LUAD tissues. We also confirmed an abnormal increase of PYCR1 expression in LUAD cell lines and patients' tissues. Through Kaplan-Meier plotter database, we further studied the prognostic values of PYCR1. The outcomes indicated that overexpressed PYCR1 associated with poor prognosis among LUAD patients. To further study the function of PYCR1 in LUAD, cell counting kit-8, colony-forming, scratch wound healing, and Transwell assays were conducted. The results suggested that knockdown of PYCR1 curbed cell proliferation, migration, and invasion in LUAD cell lines. Subsequently, we identified 50 top genes positively and negatively correlated with PYCR1 in LUAD, and conducted biological pathway enrichment analysis of these genes. Among those enriched pathways, we selected JAK/STAT signaling pathway for further analysis. The results of Western blot assays revealed that PYCR1 knockdown significantly increased the expression of Bcl-2 and c-Myc, and the phosphorylation level of JAK2 and STAT3. Taken together, this study unearthed that PYCR1 knockdown could inhibit tumor growth and affect the JAK/STAT signaling pathway in LUAD. This study may contribute to a better understanding of PYCR1 in LUAD and provide a potential biomarker for cancer prognosis.
Collapse
Affiliation(s)
- Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lihua Luo
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Zhao
- Rochester Regional Health/Unity Hospital, Rochester, New York
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
26
|
STAT3: Versatile Functions in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12051107. [PMID: 32365499 PMCID: PMC7281271 DOI: 10.3390/cancers12051107] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer. Here, we provide a concise overview of STAT3‘s versatile roles in NSCLC and discuss the yins and yangs of STAT3 targeting therapies.
Collapse
|
27
|
Chen XK, Gu CL, Fan JQ, Zhang XM. P-STAT3 and IL-17 in tumor tissues enhances the prognostic value of CEA and CA125 in patients with lung adenocarcinoma. Biomed Pharmacother 2020; 125:109871. [PMID: 32187953 DOI: 10.1016/j.biopha.2020.109871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
AIM The present study aimed to examine the capability of p- signal transducer and activator of transcription (STAT)3 and interleukin-17 (IL-17), along with two known tumor markers carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125), for disease prognosis. Moreover, the associations among biomarkers and clinicopathological parameters were evaluated to uncover the potential mechanisms responsible for their correlations with lung adenocarcinoma (LAD) prognosis. METHODS Five LAD-related parameters were used in the study: CEA, CA125, STAT3, p-STAT3, and IL-17. Spearman and chi-square correlation tests were used to explore the relationships between some clinicopathological variables and parameter expression levels and the associations among these five parameters. RESULTS The disease-specific survival decreased with the positive expression of CEA, CA125, p-STAT3, and IL-17, with no significant difference in the expression level of STAT3. Combinations of p-STAT3 and IL-17, CEA and p-STAT3, CEA and IL-17, CA125 and p-STAT3, and CA125 and IL-17 had higher predictive values in LAD prognosis. The correlation analyses indicated the synergic activities of STAT3, p-STAT3, and IL-17 and the coordinated expression of CEA, CA125, p-STAT3, and IL-17. The tumor-node-metastasis (TNM) stage significantly correlated with the levels of CA125 and p-STAT3. CONCLUSIONS Elevated levels of CEA, CA125, p-STAT3, and IL-17 alone and/or combinations of p-STAT3 and IL-17, CEA and p-STAT3, CEA and IL-17, CA125 and p-STAT3, and CA125 and IL-17 were recommended as the prognostic predictors of unfavorable clinical outcomes in patients with postoperative LAD. Also, p-STAT3 and IL-17 combined with CA125 and CEA helped in predicting the overall survival of patients with LAD and informing the TNM stage.
Collapse
Affiliation(s)
- Xiao-Ke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan-Long Gu
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun-Qiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Zhang
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Abou Khouzam R, Goutham HV, Zaarour RF, Chamseddine AN, Francis A, Buart S, Terry S, Chouaib S. Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy. Semin Cancer Biol 2020; 65:140-154. [PMID: 31927131 DOI: 10.1016/j.semcancer.2020.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer. However, several abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of immunotherapies have been established. Microenvironmental hypoxia is a determining factor in shaping aggressiveness, metastatic potential and treatment resistance of solid tumors. The characterization of this phenomenon could prove beneficial for determining a patient's treatment path and for the introduction of novel targetable factors that can enhance therapeutic outcome. Indeed, the ablation of hypoxia has the potential to sensitize tumors to immunotherapy by metabolically remodeling their microenvironment. In this review, we discuss the intrinsic contributions of hypoxia to cellular plasticity, heterogeneity, stemness and genetic instability in the context of immune escape. In addition, we will shed light on how managing hypoxia can ameliorate response to immunotherapy and how integrating hypoxia gene signatures could play a role in this pursuit.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Hassan Venkatesh Goutham
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Département d'Oncologie Médicale, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France.
| | - Amirtharaj Francis
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faculty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France
| | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faculty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faculty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| |
Collapse
|
29
|
Kang JH, Jang YS, Lee HJ, Lee CY, Shin DY, Oh SH. Inhibition of STAT3 signaling induces apoptosis and suppresses growth of lung cancer: good and bad. Lab Anim Res 2019; 35:30. [PMID: 32257917 PMCID: PMC7081529 DOI: 10.1186/s42826-019-0030-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) modulates a variety of genes involved in the regulation of critical functions, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, and immunity. For many cancers, elevated levels of STAT3 signaling have been associated with a poor prognosis and the development of chemotherapy resistance. In this study, we investigated the inhibitory effects of a novel small-molecule inhibitor of STAT3, STX-0119, on the cell viability and survival of human lung cancer cells. STX-0119 inhibited activated STAT3 and the expression of STAT3-regulated oncoproteins such as c-Myc, cyclin D1, and survivin in lung cancer cells. STX-0119 also decreased the amount of STAT3 in the nuclear fraction as well as induced apoptosis of these lung cancer cell lines as evidenced by increases in apoptotic cells (Annexin V positive) and poly (ADP-ribose) polymerase (PARP) cleavage. The efficacy of STX-0119 in a mouse xenograft model was confirmed. However, a hematological side effect, which had not been previously reported, was observed. The level of white blood cells was significantly lowered when treated at the dose at which STX-0119 alone showed a significant tumor-suppressive effect. In conclusion, we suggest that STX-0119 may be a potent therapeutic agent against lung cancer. Consideration of the side effect suggests, it is necessary to study whether low-dose STX-0119 is effective for lung treatment with a combination of classic lung cancer therapeutics.
Collapse
Affiliation(s)
- Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Yeong-Su Jang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ha Jung Lee
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Chang-Yong Lee
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong Yun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
30
|
Igelmann S, Neubauer HA, Ferbeyre G. STAT3 and STAT5 Activation in Solid Cancers. Cancers (Basel) 2019; 11:cancers11101428. [PMID: 31557897 PMCID: PMC6826753 DOI: 10.3390/cancers11101428] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
31
|
Mubaid S, Ma JF, Omer A, Ashour K, Lian XJ, Sanchez BJ, Robinson S, Cammas A, Dormoy-Raclet V, Di Marco S, Chittur SV, Tenenbaum SA, Gallouzi IE. HuR counteracts miR-330 to promote STAT3 translation during inflammation-induced muscle wasting. Proc Natl Acad Sci U S A 2019; 116:17261-17270. [PMID: 31405989 PMCID: PMC6717253 DOI: 10.1073/pnas.1905172116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Debilitating cancer-induced muscle wasting, a syndrome known as cachexia, is lethal. Here we report a posttranscriptional pathway involving the RNA-binding protein HuR as a key player in the onset of this syndrome. Under these conditions, HuR switches its function from a promoter of muscle fiber formation to become an inducer of muscle loss. HuR binds to the STAT3 (signal transducer and activator of transcription 3) mRNA, which encodes one of the main effectors of this condition, promoting its expression both in vitro and in vivo. While HuR does not affect the stability and the cellular movement of this transcript, HuR promotes the translation of the STAT3 mRNA by preventing miR-330 (microRNA 330)-mediated translation inhibition. To achieve this effect, HuR directly binds to a U-rich element in the STAT3 mRNA-3'untranslated region (UTR) located within the vicinity of the miR-330 seed element. Even though the binding sites of HuR and miR-330 do not overlap, the recruitment of either one of them to the STAT3-3'UTR negatively impacts the binding and the function of the other factor. Therefore, together, our data establish the competitive interplay between HuR and miR-330 as a mechanism via which muscle fibers modulate, in part, STAT3 expression to determine their fate in response to promoters of muscle wasting.
Collapse
Affiliation(s)
- Souad Mubaid
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jennifer F Ma
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Amr Omer
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kholoud Ashour
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Xian J Lian
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Brenda J Sanchez
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Samantha Robinson
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anne Cammas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Laboratoire d'Excellence "TOUCAN," 31037 Toulouse, France
| | - Virginie Dormoy-Raclet
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux Cedex, France
| | - Sergio Di Marco
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sridar V Chittur
- College of Nanoscale Sciences, State University of New York (SUNY) Polytechnic Institute, Albany, NY 12203
- College of Engineering, SUNY Polytechnic Institute, Albany, NY 12203
| | - Scott A Tenenbaum
- College of Nanoscale Sciences, State University of New York (SUNY) Polytechnic Institute, Albany, NY 12203
- College of Engineering, SUNY Polytechnic Institute, Albany, NY 12203
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3G 1Y6, Canada;
| |
Collapse
|
32
|
Gowing SD, Chow SC, Cools-Lartigue JJ, Chen CB, Najmeh S, Goodwin-Wilson M, Jiang HY, Bourdeau F, Beauchamp A, Angers I, Giannias B, Spicer JD, Rousseau S, Qureshi ST, Ferri LE. Gram-Negative Pneumonia Augments Non-Small Cell Lung Cancer Metastasis through Host Toll-like Receptor 4 Activation. J Thorac Oncol 2019; 14:2097-2108. [PMID: 31382038 DOI: 10.1016/j.jtho.2019.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Surgery is essential for cure of early-stage non-small cell lung cancer (NSCLC). Rates of postoperative bacterial pneumonias, however, remain high, and clinical data suggests that post-operative infectious complications confer an increased risk for metastasis. Toll-like receptors (TLRs) mediate the inflammatory response to infection by recognizing evolutionarily conserved bacterial structures at the surface of numerous pulmonary cell types; yet, little is known about how host TLR activation influences NSCLC metastasis. TLR4 recognizes gram-negative bacterium lipopolysaccharide activating the innate immune system. METHODS C57BL/6 and TLR4 knockout murine airways were inoculated with Escherichia coli or lipopolysaccharide. Hepatic metastasis assays and intravital microscopy were performed. Bronchoepithelial conditioned media was generated through coincubation of bronchoepithelial cells with TLR4 activating Escherichia coli or lipopolysaccharide. Subsequently, H59 NSCLC were stimulated with conditioned media and subject to various adhesion assays. RESULTS We demonstrate that gram-negative Escherichia coli pneumonia augments the formation of murine H59 NSCLC liver metastases in C57BL/6 mice through TLR4 activation. Additionally, infected C57BL/6 mice demonstrate increased H59 NSCLC in vivo hepatic sinusoidal adhesion compared with negative controls, a response that is significantly diminished in TLR4 knockout mice. Similarly, intratracheal injection of purified TLR4 activating lipopolysaccharide increases in vivo adhesion of H59 cells to murine hepatic sinusoids. Furthermore, H59 cells incubated with bronchoepithelial conditioned medium show increased cell adhesion to in vitro extracellular matrix proteins and in vivo hepatic sinusoids through a mechanism dependent on bronchoepithelial TLR4 activation and interleukin-6 secretion. CONCLUSION TLR4 is a viable therapeutic target for NSCLC metastasis augmented by gram-negative pneumonia.
Collapse
Affiliation(s)
- Stephen D Gowing
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Simon C Chow
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Jonathan J Cools-Lartigue
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Crystal B Chen
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Sara Najmeh
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Marnie Goodwin-Wilson
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Henry Y Jiang
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - France Bourdeau
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Beauchamp
- Department of Critical Care and Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Isabelle Angers
- Department of Critical Care and Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Betty Giannias
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Jonathan D Spicer
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Simon Rousseau
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Salman T Qureshi
- Department of Critical Care and Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Lorenzo E Ferri
- Department of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
LncRNA MALAT-1 competitively regulates miR-124 to promote EMT and development of non-small-cell lung cancer. Anticancer Drugs 2019; 29:628-636. [PMID: 29782349 DOI: 10.1097/cad.0000000000000626] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study was carried out to explore the mechanism of LncRNA MALAT-1 as a competing endogenous RNA to regulate miR-124 in epithelial-mesenchymal transition and development of non-small-cell lung cancer (NSCLC). NSCLC and adjacent tissues were collected for RT-qPCR. The correlation of MALAT-1 and miR-124 was analyzed by Pearson. MALAT-1 expression was measured in NSCLC A549, NCI-H460, NCI-H529, SK-MES-1 cells, and 16HBE cells. A549 cells were selected for cell transfection experiments after the creation of six groups. Luciferase reporter assay and RNA immunoprecipitation were used to verify the relationship between MALAT-1 and miR-124. Expressions of E-cadherin and vimentin were determined by western blot. Cell variability, apoptosis, invasion, and migration were measured by MTT, FCM, transwell assay, and scratch test. LncRNA MALAT-1 expression was higher in NSCLC tissues than that in adjacent tissues, but a lower expression of miR-124 was detected in the former tissues than in the latter tissues. Compared with 16HBE cells, MALAT-1 was highly expressed in NSCLC tissues. Compared with the blank group, E-cadherin and cell apoptosis were increased, but vimentin, cell variability, cell invasion, and migration ability in the si-MALAT-1 and miR-124 mimics groups were reduced. Compared with the blank group, decreased E-cadherin and cell apoptosis and increased vimentin, cell variability, cell invasion, and migration ability were detected in the oe-MALAT-1 group. The oe-MALAT-1+miR-124 mimics group had increased E-cadherin and cell apoptosis, but decreased vimentin, cell variability, cell invasion, and migration ability in comparison with the oe-MALAT-1 group. By competitively regulating miR-124, MALAT-1 can promote epithelial-mesenchymal transition, thus accelerating the development of NSCLC.
Collapse
|
34
|
Huang Y, Chen Z, Wang Y, Ba X, Huang Y, Shen P, Wang H, Tu S. Triptolide exerts an anti-tumor effect on non‑small cell lung cancer cells by inhibiting activation of the IL‑6/STAT3 axis. Int J Mol Med 2019; 44:291-300. [PMID: 31115521 DOI: 10.3892/ijmm.2019.4197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/23/2019] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the leading cause of cancer‑associated mortality and current treatments are not sufficiently effective. Numerous studies have revealed that triptolide (TP), a classical traditional Chinese medicine compound widely used as an anti‑inflammatory and antirheumatic drug, also has an antitumor effect. This effect is hypothesized to be mediated by multiple pathways, with signal transducer and activator of transcription 3 (STAT3) possibly one of them. Evidence indicates that STAT3 participates in the initiation and progression of lung cancer during cell proliferation, apoptosis and migration; however, whether and how TP affects STAT3 and its targets remain unclear. In this study, the potential role of TP in the proliferation, apoptosis, and migration of non‑small cell lung cancer cell lines was investigated and evaluated the impact of TP on the interleukin‑6 (IL‑6)/STAT3 axis. The results showed that TP inhibited cell proliferation and migration and induced apoptosis. TP decreased the phosphorylation of STAT3, inhibited STAT3 translocation into the nucleus, and reduced the expression of STAT3 target genes involved in cell survival, apoptosis and migration, e.g. C‑myc, BCL‑2, myeloid cell leukemia‑1 (MCL‑1), and matrix metallopeptidase 9 (MMP‑9). Additionally, IL‑6‑induced activation of STAT3 target genes (e.g. MCL‑1 and BCL‑2) was attenuated by TP and homoharringtonine. In conclusion, the effect of TP on STAT3 signaling points to a promising strategy for drug development.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
35
|
Min TR, Park HJ, Ha KT, Chi GY, Choi YH, Park SH. Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non‑small cell lung cancer cells. Int J Oncol 2019; 55:320-330. [PMID: 31115519 DOI: 10.3892/ijo.2019.4799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the underlying mechanisms responsible for the anticancer effects of lupeol on human non‑small cell lung cancer (NSCLC). MTT assay and Trypan blue exclusion assay were used to evaluate the cell viability. DAPI staining and flow cytometric analysis were used to detect apoptosis. Molecular docking and western blot analysis were performed to determine the target of lupeol. We found that lupeol suppressed the proliferation and colony formation of NSCLC cells in a dose‑dependent manner. In addition, lupeol increased chromatin condensation, poly(ADP‑ribose) polymerase (PARP) cleavage, sub‑G1 cell populations, and the proportion of Annexin V‑positive cells, indicating that lupeol triggered the apoptosis of NSCLC cells. Notably, lupeol inhibited the phosphorylation of epithelial growth factor receptor (EGFR). A docking experiment revealed that lupeol directly bound to the tyrosine kinase domain of EGFR. We observed that the signal transducer and activator of transcription 3 (STAT3), a downstream molecule of EGFR, was also dephosphorylated by lupeol. Lupeol suppressed the nuclear translocation and transcriptional activity of STAT3 and downregulated the expression of STAT3 target genes. The constitutive activation of STAT3 by STAT3 Y705D overexpression suppressed lupeol‑induced apoptosis, demonstrating that the inhibition of STAT3 activity contributed to the induction of apoptosis. The anticancer effects of lupeol were consistently observed in EGFR tyrosine kinase inhibitor (TKI)‑resistant H1975 cells (EGFR L858R/T790M). Taken together, the findings of this study suggest that lupeol may be used, not only for EGFR TKI‑naïve NSCLC, but also for advanced NSCLC with acquired resistance to EGFR TKIs.
Collapse
Affiliation(s)
- Tae-Rin Min
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Busan National University, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong‑Eui University, Busan 47227, Republic of Korea
| |
Collapse
|
36
|
Ferraro DA, Patella F, Zanivan S, Donato C, Aceto N, Giannotta M, Dejana E, Diepenbruck M, Christofori G, Buess M. Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer 2019; 19:312. [PMID: 30947697 PMCID: PMC6449935 DOI: 10.1186/s12885-019-5521-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The tumour microenvironment is a critical regulator of malignant cancer progression. While endothelial cells have been widely studied in the context of tumour angiogenesis, their role as modulators of cancer cell invasion and migration is poorly understood. METHODS We have investigated the influence of endothelial cells on the invasive and migratory behaviour of human cancer cells in vitro. RESULTS Upon exposure to culture supernatants of endothelial cells, distinct cancer cells, such as SK-BR-3 cells, showed significantly increased invasion and cell migration concomitant with changes in cell morphology and gene expression reminiscent of an epithelial-mesenchymal transition (EMT). Interestingly, the pro-migratory effect on SK-BR-3 cells was significantly enhanced by supernatants obtained from subconfluent, proliferative endothelial cells rather than from confluent, quiescent endothelial cells. Systematically comparing the supernatants of subconfluent and confluent endothelial cells by quantitative MS proteomics revealed eight candidate proteins that were secreted at significantly higher levels by confluent endothelial cells representing potential inhibitors of cancer cell migration. Among these proteins, nidogen-1 was exclusively expressed in confluent endothelial cells and was found to be necessary and sufficient for the inhibition of SK-BR-3 cell migration. Indeed, SK-BR-3 cells exposed to nidogen-1-depleted endothelial supernatants showed increased promigratory STAT3 phosphorylation along with increased cell migration. This reflects the situation of enhanced SK-BR-3 migration upon stimulation with conditioned medium from subconfluent endothelial cells with inherent absence of nidogen-1 expression. CONCLUSION The identification of nidogen-1 as an endothelial-derived inhibitor of migration of distinct cancer cell types reveals a novel mechanism of endothelial control over cancer progression.
Collapse
Affiliation(s)
- Daniela A. Ferraro
- Tumor Biology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Francesca Patella
- Tumour Microenvironment and Proteomics, Cancer Research UK Beatson Institute, Glasgow, G611BD UK
| | - Sara Zanivan
- Tumour Microenvironment and Proteomics, Cancer Research UK Beatson Institute, Glasgow, G611BD UK
| | - Cinzia Donato
- Cancer Metastasis, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Nicola Aceto
- Cancer Metastasis, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Monica Giannotta
- Vascular Biology Unit, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Maren Diepenbruck
- Tumor Biology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Gerhard Christofori
- Tumor Biology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Martin Buess
- Department of Oncology, St. Claraspital, Kleinriehenstrasse 30, 4016 Basel, Switzerland
| |
Collapse
|
37
|
Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication. Front Oncol 2019; 9:48. [PMID: 30847297 PMCID: PMC6393348 DOI: 10.3389/fonc.2019.00048] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) pathway is connected upstream with Janus kinases (JAK) family protein and capable of integrating inputs from different signaling pathways. Each family member plays unique functions in signal transduction and crucial in mediating cellular responses to different kind of cytokines. STAT family members notably STAT3 and STAT5 have been involved in cancer progression whereas STAT1 plays opposite role by suppressing tumor growth. Persistent STAT3/5 activation is known to promote chronic inflammation, which increases susceptibility of healthy cells to carcinogenesis. Here, we review the role of STATs in cancers and inflammation while discussing current therapeutic implications in different cancers and test models, especially the delivery of STAT3/5 targeting siRNA using nanoparticulate delivery system.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed Fadhil Naema
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
38
|
Yang X, Tang Z, Zhang P, Zhang L. [Research Advances of JAK/STAT Signaling Pathway in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:45-51. [PMID: 30674393 PMCID: PMC6348154 DOI: 10.3779/j.issn.1009-3419.2019.01.09] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Janus激酶(Janus kinase, JAK)/信号转导子和转录活化子(signal transducer and activator of transcription, STAT)信号通路是细胞因子信号传导的下游通路,调控细胞的发育、分化、增殖、凋亡等,不仅参与调节正常的生理过程,在肿瘤的发生发展中也起着重要作用,尤其是在血液系统肿瘤中意义重大。近年来,随着对JAK/STAT信号通路研究的深入,人们发现该通路在实体肿瘤的发生发展中也扮演关键角色。本文就近年来JAK/STAT信号通路参与肺癌发生发展、肺癌转移、肺癌耐药机制形成以及靶向该通路的抑制剂在肺癌治疗中的应用现状进行综述。
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Yang L, Li J, Xu L, Lin S, Xiang Y, Dai X, Liang G, Huang X, Zhu J, Zhao C. Rhein shows potent efficacy against non-small-cell lung cancer through inhibiting the STAT3 pathway. Cancer Manag Res 2019; 11:1167-1176. [PMID: 30774444 PMCID: PMC6362962 DOI: 10.2147/cmar.s171517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) comprises about 85% of all lung cancers and is usually diagnosed at an advanced stage with poor prognosis. The IL-6/STAT3 signaling pathway plays a pivotal role in NSCLC biology. Rhein is a lipophilic anthraquinone extensively found in medicinal herbs. Emerging evidence suggests that Rhein has significant antitumor effects, supporting the potential uses of Rhein as an antitumor agent. METHODS Cell viability and colony formation were performed to examine Rhein's potent anti-proliferative effect in human NSCLC cell lines PC-9, H460 and A549. Flow cytometry-based assay was employed to study whether Rhein could affect cell apoptosis and cycle. The expression level of P-STAT3, apoptosis and cycle-related proteins Bcl-2, Bax, MDM2, CDC2, P53 and CyclinB1 were detected by Western blotting. The xenograft models were used to evaluate the in vivo effect of Rhein. RESULTS We found that Rhein could significantly reduce the viability and stimulate apoptosis in human NSCLC cells in a dose-dependent manner. Western blot analysis results suggested that the antitumor effect of Rhein might be mediated via STAT3 inhibition. Rhein upregulated the expression of the proapoptotic protein Bax and downregulated the expression of the antiapoptotic protein Bcl-2. In addition, Rhein induced the arrest of NSCLC cells in the G2/M phase of the cell cycle and dose dependently inhibited the expression of cycle-related proteins. The Rhein also inhibited tumor growth in H460 xenograft models. CONCLUSION Rhein shows potent efficacy against NSCLC through inhibiting the STAT3 pathway. Our results also suggest that Rhein has a promising potential to be used as a novel antitumor agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lehe Yang
- Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China, ,
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China,
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jifa Li
- Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China, ,
| | - Lingyuan Xu
- Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China, ,
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China,
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Shichong Lin
- Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China, ,
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China,
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Youqun Xiang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xuanxuan Dai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China,
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jiandong Zhu
- Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China, ,
| | - Chengguang Zhao
- Department of Respiratory Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China, ,
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China,
| |
Collapse
|
40
|
Jiang X, Wu M, Xu Z, Wang H, Wang H, Yu X, Li Z, Teng L. HJC0152, a novel STAT3 inhibitor with promising anti-tumor effect in gastric cancer. Cancer Manag Res 2018; 10:6857-6867. [PMID: 30588091 PMCID: PMC6296682 DOI: 10.2147/cmar.s188364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) is frequently seen in patients with gastric cancer (GC), and is generally associated with worse prognosis. HJC0152, a novel STAT3 inhibitor, has shown significant anti-tumor effects in several cancers, although its role in GC remains to be clarified. Methods The effect of HJC0152 on STAT3 signaling pathway and the biological behaviors of GC cells were evaluated through in vitro and/or in vivo experiments. Meanwhile, RNA sequence analysis was used to further explore its potential anti-tumor mechanisms. Results HJC0152 inhibited the expression of activated STAT3 and its downstream target genes (c-Myc and clyclinD1) in GC cells, and restrained tumor growth in vivo. HJC0152 treatment induced apoptosis in the STAT3 hyper-activated AGS and MKN45 cell lines, along with down-regulation of survivin and Mcl1, and up-regulation of cleaved-poly(ADP-ribose) polymerase. Moreover, HJC0152 markedly inhibited migration and invasion of these cells. Finally, RNA sequence analysis and protein expression analyses showed that in addition to STAT3 suppression, HJC0152 also exerts its anti-tumor effects at least partly via the mitogen-activated protein kinases pathway. Conclusion Our findings highlight that HJC0152 is a promising therapeutic agent for GC.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Mengjie Wu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China,
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China,
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| |
Collapse
|
41
|
Lee LYW, Mohammad S, Starkey T, Lee SM. STAT3 cyclic oligonucleotide decoy-a new therapeutic avenue for NSCLC? Transl Lung Cancer Res 2018; 7:S381-S384. [PMID: 30705862 DOI: 10.21037/tlcr.2018.09.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lennard Y W Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Summaya Mohammad
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Starkey
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Siow-Ming Lee
- Department of Oncology, University College London Hospitals, London, UK.,Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
42
|
Park HJ, Min TR, Chi GY, Choi YH, Park SH. Induction of apoptosis by morusin in human non-small cell lung cancer cells by suppression of EGFR/STAT3 activation. Biochem Biophys Res Commun 2018; 505:194-200. [PMID: 30243717 DOI: 10.1016/j.bbrc.2018.09.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023]
Abstract
This study was designed to validate the anticancer effects of morusin in human non-small cell lung cancer (NSCLC) cells. Morusin suppressed the cell growth and colony formation in a concentration-dependent manner in H1299, H460 and H292 cells. These anticancer activities were related with apoptosis induction proved by the accumulation of chromatin condensation, PARP cleavage, increase of sub-G1 phage and annexin V-positive cell population. Interestingly, signal transducer and activator of transcription 3 (STAT3) was dephosphorylated by morusin. Morusin suppressed the transcriptional activity of STAT3 and down-regulated the expression of STAT3 target genes. In addition, morusin inhibited the phosphorylation of epithelial growth factor receptor (EGFR), an upstream regulator of STAT3. The docking study showed that morusin directly binds to the tyrosine kinase domain of EGFR. Furthermore, the anticancer effects of morusin were consistently observed in erlotinib-resistant H1975 cells expressing L858R and T790 M mutant EGFR, suggesting that morusin can be used for the advanced NSCLC with acquired resistance to EGFR TKI. Taken together, our results demonstrate that morusin induced apoptosis in human NSCLC cells regardless of EGFR mutation status through inhibition of EGFR/STAT3 activation.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Tae-Rin Min
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea; Anti-Aging Research Center and Blue-Bio Industry RIC, Dong-eui University, Busan, 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea.
| |
Collapse
|
43
|
A Placebo-Controlled Phase II Study of Ruxolitinib in Combination With Pemetrexed and Cisplatin for First-Line Treatment of Patients With Advanced Nonsquamous Non–Small-Cell Lung Cancer and Systemic Inflammation. Clin Lung Cancer 2018; 19:e567-e574. [DOI: 10.1016/j.cllc.2018.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/08/2018] [Accepted: 03/17/2018] [Indexed: 12/18/2022]
|
44
|
Kaida H, Azuma K, Kawahara A, Sadashima E, Hattori S, Takamori S, Akiba J, Fujimoto K, Rominger A, Murakami T, Ishii K, Ishibashi M. The assessment of correlation and prognosis among 18F-FDG uptake parameters, Glut1, pStat1 and pStat3 in surgically resected non-small cell lung cancer patients. Oncotarget 2018; 9:31971-31984. [PMID: 30174790 PMCID: PMC6112832 DOI: 10.18632/oncotarget.25865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction To assess the correlation among 18F-FDG uptake, Glut1, pStat1 and pStat3, and to investigate the relationship between the prognosis and 18F-FDG uptake and these molecular markers in surgically resected non-small cell lung cancer (NSCLC) patients. Results Knockdown of Glut1 led to a significant increase in pStat1 expression. Glut1 expression positively correlated with the SUVmax, SUVmean, and TLG significantly (P<0.001). pStat3 expression negatively correlated with all PET parameters significantly (P<0.001). pStat1 had positive weak correlations with the SUVmax and SUVmean. All PET parameters and Glut1 were significantly associated with DFS (P<0.05). TLG, MTV, Glut1 and pStat1 were significantly associated with OS (P<0.05). Conclusion pStat3 and Glut1 may be associated with 18F-FDG uptake mechanism. TLG, MTV, and Glut1 may be independent prognostic factors. Methods The SUVmax, SUVmean, MTV and TLG of primary lesions were calculated in 140 patients. The expressions of Glut1 and Stat pathway proteins in NSCLC cell lines were examined by immune blots. Excised tumor tissue was analyzed by immunohistochemistry. OS and DFS were evaluated by the Kaplan-Meier method. The difference in survival between subgroups was analyzed by log-rank test. The prognostic significance of clinicopathological, molecular and PET parameters was assessed by Cox proportional hazard regression analysis.
Collapse
Affiliation(s)
- Hayato Kaida
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Koichi Azuma
- Division of Respirology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Eiji Sadashima
- Life Science, Saga-Ken Medical Centre Koseikan, Saga, Saga, Japan
| | - Satoshi Hattori
- Department of Biomedical Statistics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinzo Takamori
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazunari Ishii
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Masatoshi Ishibashi
- Department of Radiology, Fukuoka Tokushukai Medical Center, Kasuga, Fukuoka, Japan
| |
Collapse
|
45
|
Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol Sin 2018; 39:425-437. [PMID: 29119966 DOI: 10.1038/aps.2017.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/09/2017] [Indexed: 12/11/2022] Open
Abstract
STAT1 and STAT3 are two important members of the STAT (signal transducers and activators of transcription) protein family and play opposing roles in regulating cancer cell growth. Suppressing STAT3 and/or enhancing STAT1 signaling are considered to be attractive anticancer strategies. Cucurbitacin I (CuI) isolated from the cucurbitacin family was reported to be an inhibitor of STAT3 signaling and a disruptor of actin cytoskeleton. In this study we investigated the function and mechanisms of CuI in regulating STAT signaling in human cancer cells in vitro. CuI (0.1-10 mmol/L) dose-dependently inhibited the phosphorylation of STAT3, and enhanced the phosphorylation of STAT1 in lung adenocarcinoma A549 cells possibly through disrupting actin filaments. We further demonstrated that actin filaments physically associated with JAK2 and STAT3 in A549 cells and regulated their phosphorylation through two signaling complexes, the IL-6 receptor complex and the focal adhesion complex. Actin filaments also interacted with STAT1 in A549 cells and regulated its dephosphorylation. Taken together, this study reveals the molecular mechanisms of CuI in the regulation of STAT signaling and in a possible inhibition of human cancer cell growth. More importantly, this study uncovers a novel role of actin and actin-associated signaling complexes in regulating STAT signaling.
Collapse
|
46
|
Liu Y, Huang J, Li W, Chen Y, Liu X, Wang J. Meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with breast cancer. Oncotarget 2018; 9:13060-13067. [PMID: 29560131 PMCID: PMC5849195 DOI: 10.18632/oncotarget.23962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The prognostic value of signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 in breast cancer remains controversial in heterogeneous. The objective of this meta-analysis was to evaluate STAT3 and phospho-STAT3 expression on the prognosis of breast cancer patients. MATERIALS AND METHODS PubMed, Cochrane Central Register of Controlled Trials, Embase, Web of Science, Chinese CNKI, and Wan Fang were searched up to 19th June 2017. Studies which investigated the STAT3 or phospho-STAT3 expression of patients with breast cancer on the basis of patient survival data or survival curve were eligible. RESULTS This meta-analysis involves 12 studies and 4513 female patients with breast cancer. No clear relationship exists between overall survival (OS) and high expression of STAT3 and p-STAT3 (hazard ratio [HR] = 0.95, 95% confidence interval [CI]: 0.62-1.46, p > 0.05). p-STAT3 expression is unrelated to disease-free survival (HR = 0.69, 95% CI: 0.18-2.55, p = 0.573). Notably, the pooled effect predicts better breast cancer-specific survival with p-STAT3 overexpression (HR = 0.68, 95% CI: 0.59-0.78, I2 = 30.9%, p < 0.001). Results of subgroup analyses show that STAT3 overexpression indicates shorter OS (HR = 1.87, 95% CI: 1.42-2.45, p < 0.001) when excluding the heterogeneity test. Meanwhile, p-STAT3-positive patients have a significantly higher OS than their counterparts (HR = 0.72, 95% CI: 0.57-0.91, p < 0.01). CONCLUSIONS Positive STAT3 expression may indicate poor OS. However, p-STAT3, as a potential molecular biomarker for predicting chemotherapeutic effect, appears to have better prognostic value than STAT3.
Collapse
Affiliation(s)
- Ya Liu
- Department of Breast Surgery, Western China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie Huang
- Department of Rheumatology, Shenzhen Hospital of Peking University, Guangzhou Medical University, Shenzhen, 518000, China
| | - Wen Li
- Department of Breast Surgery, Western China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yujuan Chen
- Department of Breast Surgery, Western China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xuejuan Liu
- Department of Breast Surgery, Western China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgery, Western China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
47
|
Sun ZG, Zhang M, Yang F, Gao W, Wang Z, Zhu LM. Clinical and prognostic significance of signal transducer and activator of transcription 3 and mucin 1 in patients with non-small cell lung cancer following surgery. Oncol Lett 2018. [PMID: 29541195 PMCID: PMC5835865 DOI: 10.3892/ol.2018.7858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) and mucin 1 (MUC1) are associated with development, progression and a poor prognosis in several types of cancer. The present study investigated the levels of STAT3 and MUC1 in patients with non-small cell lung cancer (NSCLC) following surgery. In total, 98 patients with NSCLC were enrolled into the study. STAT3, phosphorylated (p)-STAT3 and MUC1 expression in NSCLC specimens obtained from patients were investigated using immunohistochemical analysis. Enumeration results were analyzed using the χ2 test or Fisher's exact probability test. Spearman's rank correlation was used to analyze correlations between STAT3, p-STAT3 and MUC1 expression. Univariate analysis was conducted using the Kaplan-Meier estimator curve method and Cox regression multivariate analysis was performed in order to determine prognostic factors. Results demonstrated that STAT3 and p-STAT3 expression was identified in 82 and 51 patients, respectively. Furthermore, the expression of MUC1 was identified in 61/98 cases (62.2%) and STAT3 expression was significantly associated with pathological tumor-node-metastasis stage (pTNM; P<0.01). p-STAT3 expression was associated with pathological type (P<0.01), pathological lymph nodes (pN; P<0.01) and pTNM (P<0.05). MUC1 expression was associated with pathological type (P<0.05), pathological tumor pT (P<0.05), pN (P<0.01) and pTNM (P<0.01). STAT3 expression was positively associated with p-STAT3 expression (P<0.05) and p-STAT3 expression was positively associated with MUC1 expression (P<0.01). Overall, the results identified that the 3-year survival rate was 56.1% and was significantly associated with the degree of differentiation (P<0.05), pT (P<0.01), pN (P<0.01), pTNM stage (P<0.01), p-STAT3 expression (P<0.01) and MUC1 expression (P<0.05). Results obtained from the Cox multivariate regression analysis demonstrated that pN and p-STAT3 expression were independent factors associated with the 3-year survival rate.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liang-Ming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
48
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
49
|
Yang H, Fan HX, Song LH, Xie JC, Fan SF. Relationship between Contrast-Enhanced CT and Clinicopathological Characteristics and Prognosis of Non-Small Cell Lung Cancer. Oncol Res Treat 2017; 40:516-522. [PMID: 28866685 DOI: 10.1159/000472256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study investigated the relationship between contrast-enhanced computed tomography (CECT) and clinicopathological characteristics and prognosis of non-small cell lung cancer (NSCLC). METHODS A total of 198 NSCLC patients admitted to Enze Hospital from February 2009 to July 2012 underwent pre-surgical CECT to investigate parameters such as tumor size, CECT enhancement, lymph node enlargement, and lymph node size. Chi-square and log-rank tests were used to analyze associations between CECT parameters and pathological features as well as correlations of CECT parameters with prognosis. A Cox proportional hazard model and logistic regression analysis were applied to identify independent risk factors for prognosis. RESULTS Tumor size, CECT enhancement, and lymph node enlargement and size were related to degree of differentiation, TNM stage, and lymph node metastasis. Tumor size, lymph node enlargement and metastasis, lymph node size, and CECT enhancement were independent risk factors for NSCLC prognosis. Large tumors and lymph nodes, tumor enhancement, and enlarged and metastatic lymph nodes indicated a poor prognosis. CONCLUSION Our study indicates that CECT features can be associated with clinicopathological characteristics and can predict the prognosis of patients with NSCLC.
Collapse
|
50
|
Correlation between p-STAT3 overexpression and prognosis in lung cancer: A systematic review and meta-analysis. PLoS One 2017; 12:e0182282. [PMID: 28797050 PMCID: PMC5552221 DOI: 10.1371/journal.pone.0182282] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023] Open
Abstract
Objective Previous studies have shown the correlation between p-STAT3 overexpression and prognosis in a variety of human tumors. However, their correlation in lung cancer remains controversial. We performed a systematic review and meta-analysis to explore the correlation between p-STAT3 overexpression and prognosis in lung cancer patients. Methods We searched PubMed, Embase, Web of Science, CNKI, VIP, and WanFang Data to identify relevant studies. Two reviewers independently screened the literature search results, extracted data, and assessed the methodological quality of the included studies. Then, meta-analysis was performed by using Review Manager 5.3 and STATA 14 software. A random-effect model was employed to evaluate all related pooled results. Statistical heterogeneity of each study was assessed by I2. Publication bias was determined by funnel plot and the Begg’s or Egger’s tests. Results Eventually, 13 studies were included in present meta-analysis. Among these 13 studies, 8 studies were associated with the overall survival of lung cancer and 10 studies with other clinicopathological characteristics. The results of this meta-analysis suggested that p-STAT3 overexpression may be a poor prognosis biomarker in lung cancer (HR: 1.23; 95% CI: 1.04–1.46; P = 0.02). In terms of other clinicopathological characteristics, p-STAT3 overexpression was more frequent to advanced TNM stages ranging from III to IV (OR: 1.92; 95% CI: 1.13–3.27; P = 0.02) and lymphatic node metastasis (OR: 1.81; 95% CI: 1.20–2.72; P = 0.004). But, it was not associated with tumor differentiation (OR: 0.82; 95% CI: 0.44–1.53; P = 0.54). Conclusion p-STAT3 overexpression has significant correlation with poorer overall survival of lung cancer patients, as well as with more advanced TNM stages and lymph node metastasis. Thus, it may serve a biomarker for poor prognosis in lung cancer. Nevertheless, our findings should be confirmed by large prospective studies.
Collapse
|