1
|
Zhao CH, Liu H, Pan T, Xiang ZW, Mu LW, Luo JY, Zhou CR, Li MA, Liu MM, Yan HZ, Huang MS. Idarubicin-transarterial chemoembolization combined with gemcitabine plus cisplatin for unresectable intrahepatic cholangiocarcinoma. World J Gastrointest Oncol 2025; 17:103776. [DOI: 10.4251/wjgo.v17.i4.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/12/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is the second most common liver malignancy with poor prognosis and limited treatment options.
AIM To identify the most effective drug for transarterial chemoembolization (TACE) in cholangiocarcinoma and evaluate the efficacy and safety of combining it with gemcitabine and cisplatin (GemCis) for unresectable iCCA.
METHODS Cholangiocarcinoma cell lines (RBE, HuCC-T1) were treated with 10 chemotherapeutic drugs, and cytotoxicity was assessed by cell counting kit-8 assays. Tumor-bearing nude mice were treated with idarubicin or GemCis, and tumor growth was monitored. Clinical data from 85 iCCA patients were analyzed to evaluate the efficacy and safety of idarubicin-TACE combined with GemCis.
RESULTS Idarubicin demonstrated the highest cytotoxicity, significantly outperforming GemCis, the standard first-line therapies. In tumor-bearing mouse models, idarubicin and GemCis treatments significantly slowed tumor growth, with idarubicin showing particularly pronounced effects on days 12 and 15 (P < 0.05). In retrospective analysis, the median overall survival (OS) and progression-free survival (PFS) in the combination therapy group were significantly longer than those in the GemCis alone group (median OS, 16.23 months vs 10.07 months, P = 0.042; median PFS, 7.73 months vs 6.30 months, P = 0.023). Additionally, major grade 3/4 adverse events (AEs) in the combination therapy group were abdominal pain (26.3% vs 6.5%, P = 0.049) and elevated transaminases (42.1% vs 12.9%, P = 0.038). Most AEs were mild to moderate and manageable.
CONCLUSION Idarubicin demonstrated higher cytotoxicity than GemCis, significantly inhibiting tumor growth in tumor-bearing mouse models. Preliminary clinical results suggest that local idarubicin-TACE combined with GemCis may offer improved survival outcomes for iCCA patients with a manageable safety profile.
Collapse
Affiliation(s)
- Cheng-Hao Zhao
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Huan Liu
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Tao Pan
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Zhan-Wang Xiang
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Lu-Wen Mu
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Jun-Yang Luo
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Chu-Ren Zhou
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-An Li
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-Ming Liu
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Hu-Zheng Yan
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Ming-Sheng Huang
- Department of Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
2
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
3
|
Ye J, Chen Z, Zhang C, Xie R, Chen H, Ren P. PPIH is a novel diagnostic biomarker associated with immune infiltration in cholangiocarcinoma. BMC Cancer 2025; 25:218. [PMID: 39920663 PMCID: PMC11806719 DOI: 10.1186/s12885-025-13607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma (CHOL) is the second most common primary liver malignancy, characterized by high aggressiveness and heterogeneity. It is typically diagnosed at an advanced stage, leading to a poor prognosis. Although Peptidyl Proline Isomerase H (PPIH) has been implicated in various tumors, its role in CHOL remains unexplored. This study aims to investigate the diagnostic value and potential function of PPIH in CHOL. METHODS We analyzed the expression levels, prognostic significance, and diagnostic efficiency of PPIH in CHOL using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, coupled with gene enrichment analyses. The CIBERSORT database was employed to assess the correlation between PPIH expression and immune cell infiltration in CHOL. Additionally, immunohistochemical experiments were conducted to validate PPIH expression levels in CHOL tissues and to explore its correlation with TP53 gene mutations. RESULTS Our findings indicate that overexpression of PPIH mRNA in CHOL is associated with poor prognosis, with increased PPIH protein levels observed in CHOL tissues. Furthermore, PPIH expression showed a positive correlation with TP53 mutations. PPIH demonstrated strong diagnostic value for CHOL. Moreover, PPIH may influence tumor progression through its involvement in cell cycle regulation and spliceosome pathways, and is associated with immune cell infiltration levels. CONCLUSION The results of this study suggest that PPIH is a potential novel biomarker with significant diagnostic value for patients with CHOL. PPIH may also play a role in modulating the immune microenvironment, contributing to poor prognosis.
Collapse
Affiliation(s)
- Jun Ye
- Precision Medical Laboratory Center, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Zhitao Chen
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Chuan Zhang
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Rui Xie
- Chengdu Gaoxin -Daan Medical Laboratory Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Haini Chen
- Precision Medical Laboratory Center, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
- The Second Affiliated Hospital of Guizhou Medical University, Kangfu Road, Kaili, 556000, China.
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
- The Second Affiliated Hospital of Guizhou Medical University, Kangfu Road, Kaili, 556000, China.
| |
Collapse
|
4
|
Gilbert TM, Randle L, Quinn M, McGreevy O, O'leary L, Young R, Diaz-Neito R, Jones RP, Greenhalf B, Goldring C, Fenwick S, Malik H, Palmer DH. Molecular biology of cholangiocarcinoma and its implications for targeted therapy in patient management. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108352. [PMID: 38653586 DOI: 10.1016/j.ejso.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Cholangiocarcinoma (CCA) remains a devastating malignancy and a significant challenge to treat. The majority of CCA patients are diagnosed at an advanced stage, making the disease incurable in most cases. The advent of high-throughput genetic sequencing has significantly improved our understanding of the molecular biology underpinning cancer. The identification of 'druggable' genetic aberrations and the development of novel targeted therapies against them is opening up new treatment strategies. Currently, 3 targeted therapies are approved for use in CCA; Ivosidenib in patients with IDH1 mutations and Infigratinib/Pemigatinib in those with FGFR2 fusions. As our understanding of the biology underpinning CCA continues to improve it is highly likely that additional targeted therapies will become available in the near future. This is important, as it is thought up to 40 % of CCA patients harbour a potentially actionable mutation. In this review we provide an overview of the molecular pathogenesis of CCA and highlight currently available and potential future targeted treatments.
Collapse
Affiliation(s)
- T M Gilbert
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK.
| | - L Randle
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - M Quinn
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - O McGreevy
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - L O'leary
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R Young
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - R Diaz-Neito
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R P Jones
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - B Greenhalf
- Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| | - C Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - S Fenwick
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - H Malik
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - D H Palmer
- Clatterbridge Cancer Centre, Liverpool, UK; Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
6
|
Xu R, Zhou J, Yang J, Yu Y, Wang H, Zhang Z, Yang J, Zhang G, Liao R. First-line systemic therapy and sequencing options in advanced biliary tract cancer: A systematic review and network meta-analysis. Biosci Trends 2025; 18:555-562. [PMID: 39647857 DOI: 10.5582/bst.2024.01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The current state of systemic therapy for advanced biliary tract cancer (BTC) has undergone significant changes. Currently, there are no clinical trials directly comparing various first-line systemic therapy regimens to each other, and these trials are unlikely to be conducted in the future. In this systematic review, after various abstracts and full-text articles published from the establishment of the database until October 2024 were searched, we included and analysed phase 3 clinical trials to evaluate the efficacy of different first-line systemic treatment regimens in advanced BTC. We used the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines and a random effects model to pool the overall effects. Finally, seven low-risk-of-bias trials (with all of the trials representing first-line trials) were included. A total of 4033 patients were included in seven first-line trials. In terms of progression-free survival (PFS), network meta-analysis revealed that durvalumab + gemcitabine + cisplatin (GemCis) triple therapy, S-1 + GemCis triple therapy, and pembrolizumab + GemCis triple therapy were superior to GemCis. In terms of overall survival (OS), network meta-analysis revealed that durvalumab + GemCis triple therapy and pembrolizumab + GemCis triple therapy outperformed GemCis. According to the ranking of the P scores, durvalumab + GemCis triple therapy ranked first in PFS and second in OS. Therefore, the advantages of molecular immunotherapy have gradually become known, which suggests that future trials should focus on other potential combinations and molecular immunotargeted therapies.
Collapse
Affiliation(s)
- Ranning Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People's Hospital of Rongchang District, Chongqing, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanxi Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziqi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo Zhang
- Hospital Office, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
8
|
Yin L, Duan A, Zhang W, Li B, Zhao T, Xu X, Yang L, Nian B, Lu K, Chen S, Li Z, Liu J, Duan Q, Liu D, Chen H, Cui L, Chang Y, Kuang Y, Zhang D, Wang X, Zhang Y. Identification of whole-genome mutations and structural variations of bile cell-free DNA in cholangiocarcinoma. Genomics 2024; 116:110916. [PMID: 39147332 DOI: 10.1016/j.ygeno.2024.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Bile cell-free DNA (cfDNA) has been reported as a promising liquid biopsy tool for cholangiocarcinoma (CCA), however, the whole-genome mutation landscape and structural variants (SVs) of bile cfDNA remains unknown. Here we performed whole-genome sequencing on bile cfDNA and analyzed the correlation between mutation characteristics of bile cfDNA and clinical prognosis. TP53 and KRAS were the most frequently mutated genes, and the RTK/RAS, homologous recombination (HR), and HIPPO were top three pathways containing most gene mutations. Ten overlapping putative driver genes were found in bile cfDNA and tumor tissue. SVs such as chromothripsis and kataegis were identified. Moreover, the hazard ratio of HR pathway mutations were 15.77 (95% CI: 1.571-158.4), patients with HR pathway mutations in bile cfDNA exhibited poorer overall survival (P = 0.0049). Our study suggests that bile cfDNA contains genome mutations and SVs, and HR pathway mutations in bile cfDNA can predict poor outcomes of CCA patients.
Collapse
Affiliation(s)
- Lei Yin
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Duan
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Bin Li
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Teng Zhao
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaoya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Lixue Yang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Baoning Nian
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Kai Lu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Sheng Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Zhikuan Li
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Jian Liu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Dongyu Liu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Hao Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Longjiu Cui
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yanxin Chang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue Kuang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Yongjie Zhang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
9
|
Wang Y, Liu Y, Chen H, Xu Z, Jiang W, Xu X, Shan J, Chang J, Zhou T, Wang J, Chenyan A, Fan S, Tao Z, Shao K, Li X, Chen X, Ji G, Wu X. PIN1 promotes the metastasis of cholangiocarcinoma cells by RACK1-mediated phosphorylation of ANXA2. Cell Oncol (Dordr) 2024; 47:1233-1252. [PMID: 38386231 DOI: 10.1007/s13402-024-00924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a primary hepatobiliary malignancy, is characterized by a poor prognosis and a lack of effective treatments. Therefore, the need to explore novel therapeutic approaches is urgent. While the role of Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (PIN1) has been extensively studied in various tumor types, its involvement in CCA remains poorly understood. METHODS In this study, we employed tissue microarray (TMA), reverse transcription-polymerase chain reaction (RT-PCR), and The Cancer Genome Atlas (TCGA) database to assess the expression of PIN1. Through in vitro and in vivo functional experiments, we investigated the impact of PIN1 on the adhesion and metastasis of CCA. Additionally, we explored downstream molecular pathways using RNA-seq, western blotting, co-immunoprecipitation, immunofluorescence, and mass spectrometry techniques. RESULTS Our findings revealed a negative correlation between PIN1 overexpression and prognosis in CCA tissues. Furthermore, high PIN1 expression promoted CCA cell proliferation and migration. Mechanistically, PIN1 functioned as an oncogene by regulating ANXA2 phosphorylation, thereby promoting CCA adhesion. Notably, the interaction between PIN1 and ANXA2 was facilitated by RACK1. Importantly, pharmacological inhibition of PIN1 using the FDA-approved drug all-trans retinoic acid (ATRA) effectively suppressed the metastatic potential of CCA cells in a nude mouse lung metastasis model. CONCLUSION Overall, our study emphasizes the critical role of the PIN1/RACK1/ANXA2 complex in CCA growth and functionality, highlighting the potential of targeting PIN1 as a promising therapeutic strategy for CCA.
Collapse
Affiliation(s)
- Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Yiwei Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Hairong Chen
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhenggang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Xiao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Anlan Chenyan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Shilong Fan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Zifan Tao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Ke Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Guwei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China.
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), 300 Guangzhou Road, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center; Jiangsu Provincial Medical Key Laboratory, Nanjing, China.
| |
Collapse
|
10
|
Lee HK, Na YJ, Seong SM, Ahn D, Choi KC. Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties. Biomol Ther (Seoul) 2024; 32:369-378. [PMID: 38589021 PMCID: PMC11063483 DOI: 10.4062/biomolther.2023.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024] Open
Abstract
Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun-Jung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
11
|
Tsung C, Quinn PL, Ejaz A. Management of Intrahepatic Cholangiocarcinoma: A Narrative Review. Cancers (Basel) 2024; 16:739. [PMID: 38398130 PMCID: PMC10886475 DOI: 10.3390/cancers16040739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The management of resectable intrahepatic cholangiocarcinoma remains a challenge due to the high risk of recurrence. Numerous clinical trials have identified effective systemic therapies for advanced biliary tract cancer; however, fewer trials have evaluated systemic therapies in the perioperative period. The objective of this review is to summarize the current recommendations regarding the diagnosis, surgical resection, and systemic therapy for anatomically resectable intrahepatic cholangiocarcinoma. Our review demonstrates that surgical resection with microscopic negative margins and lymphadenectomy remains the cornerstone of treatment. High-level evidence regarding specific systemic therapies for use in resectable intrahepatic cholangiocarcinoma remains sparse, as most of the evidence is extrapolated from trials involving heterogeneous tumor populations. Targeted therapies are an evolving practice for intrahepatic cholangiocarcinoma with most evidence coming from phase II trials. Future research is required to evaluate the use of neoadjuvant therapy for patients with resectable and borderline resectable disease.
Collapse
Affiliation(s)
- Carolyn Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.T.); (P.L.Q.)
| | - Patrick L. Quinn
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.T.); (P.L.Q.)
| | - Aslam Ejaz
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Huang S, Yin Y, Li J, Shi M, Bian H, Zhao L. Evaluation of Treatments with Radiotherapy Alone and Radiotherapy Plus Chemo-immunotherapy in Patients with Primary Liver Cancer based on Blood Biomarkers. Curr Med Chem 2024; 31:6586-6595. [PMID: 37608661 DOI: 10.2174/0929867331666230822121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE It is critical to assess primary liver cancer patients likely to benefit from radiotherapy (RT) or RT plus chemo-immunotherapy. Many potential peripheral biomarkers from blood samples have been proposed for clinical application. Therefore, the aim of this study was to evaluate treatments with radiotherapy alone and radiotherapy plus chemo-immunotherapy in patients with unresectable primary liver cancer based on blood biomarkers. METHODS From January, 2017, to February, 2022, 63 unresectable primary liver cancer patients receiving radiotherapy alone (RT, n = 21) or radiotherapy plus chemo-immunotherapy (RT plus C/IT, n = 42) were included in this study. We compared the clinical outcomes and adverse effects of these two groups. Also, distant metastasis-free survival (DMFS), overall survival (OS), and progress- free survival (PFS) were retrospectively analyzed. Finally, univariable and multivariable Cox analyses were used to explore the prognostic role of blood biochemical biomarkers. RESULTS In this study, 1, 2, and 3 years of OS after RT treatment were 63.9%, 27.0%, and 13.5%, and after RT plus C/IT were 68.2%, 37.0%, and 24.7%, respectively (p = 0.617). Compared with baseline, white blood cells (WBC) and lymphocytes were significantly decreased after RT (p = 0.002 and p = 0.001, respectively) or RT plus C/IT therapy (p = 0.135 and p<0.001, respectively). In multivariable Cox regression analyses, higher lymphocyte counts before RT (pre-Lymphocyte) were associated with better OS and PFS (HR=0.439, p = 0.023; HR=0.539, p = 0.053; respectively), and higher lymphocyte counts before RT (pre- Platelets) were a poor prognostic factor associated with DMFS (HR=1.013, p = 0.040). Importantly, OS and PFS were significantly better for patients (pre-Lymphocyte ≥1.10 x 109/L) (p = 0.006; p = 0.066, respectively). The DMFS was significantly better for patients (pre-platelets < 233.5 ×109/L) (p<0.001). CONCLUSION Our evaluation of blood biomarkers before and after radiotherapy or plus chem-immunotherapy for primary liver cancer revealed a potential marker for clinics to decide on precise treatment strategies.
Collapse
Affiliation(s)
- Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Yutian Yin
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianping Li
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Hassan H, Chakrabarti S, Zemla T, Yin J, Wookey V, Prasai K, Abdellatief A, Katta R, Tran N, Jin Z, Cleary S, Roberts L, Mahipal A. Impact of perioperative chemotherapy on survival in patients with cholangiocarcinoma undergoing curative resection. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106994. [PMID: 37524649 PMCID: PMC11552685 DOI: 10.1016/j.ejso.2023.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Most patients with localized cholangiocarcinoma (CCA) endure cancer relapse after curative resection underscoring the importance of systemic therapy. The current study attempts to determine the impact of perioperative chemotherapy (PC) on survival in patients with CCA undergoing resection. METHODS Patients diagnosed with CCA undergoing curative-intent resection between January 1, 2000, and December 31, 2019, in a tertiary care center were included. Cox proportional hazard modeling was used to determine the impact of PC on disease-free survival (DFS) and overall survival (OS). In addition, a nomogram was constructed to estimate 3-year DFS. RESULTS Among the 182 patients included in the analysis, 102 underwent surgery alone, and 80 received surgery plus PC. Forty-two patients received neoadjuvant therapy, and 38 patients received adjuvant therapy. On multivariate analysis, PC was significantly associated with an improved DFS (HR, 95% CI: 0.63, 0.41-0.98; p = 0.04) and OS (HR, 95% CI: 0.46, 0.27-0.78; p < 0.01). In the interaction analysis, the survival benefit was especially seen in patients with positive resection margins and tumor size > 5 cm. CONCLUSION In patients with CCA undergoing curative resection, receipt of PC was associated with improved DFS and OS. The nomogram constructed from this database provides an estimate of 3-year DFS after surgical resection. Randomized trials are needed to define the optimal regimen and sequence.
Collapse
Affiliation(s)
- Hind Hassan
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sakti Chakrabarti
- Department of Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA
| | - Tyler Zemla
- Department of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Jun Yin
- Department of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Vanessa Wookey
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Kritika Prasai
- Department of Pathology and Laboratory Medicine, Northshore University Health Care System, Evanston, IL, USA
| | - Amro Abdellatief
- Department of Internal Medicine, Harlem Hospital Center, Columbia University Medical Center, New York, NY, USA
| | - Renuka Katta
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nguyen Tran
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Zhaohui Jin
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Sean Cleary
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Lewis Roberts
- Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Amit Mahipal
- Department of Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA; Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA.
| |
Collapse
|
14
|
Chen Y, Xu X, Wang Y, Zhang Y, Zhou T, Jiang W, Wang Z, Chang J, Liu S, Chen R, Shan J, Wang J, Wang Y, Li C, Li X. Hypoxia-induced SKA3 promoted cholangiocarcinoma progression and chemoresistance by enhancing fatty acid synthesis via the regulation of PAR-dependent HIF-1a deubiquitylation. J Exp Clin Cancer Res 2023; 42:265. [PMID: 37821935 PMCID: PMC10565972 DOI: 10.1186/s13046-023-02842-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunit 3 (SKA3) plays an important role in cell proliferation by regulating the separation of chromosomes and their division into daughter cells. Previous studies demonstrated that SKA3 was strongly implicated in tumor development and progression. However, the roles of SKA3 in cholangiocarcinoma (CCA) and the underlying mechanisms remain unclear. METHODS Next-generation sequencing (NGS) was performed with paired CCA tissues and normal adjacent tissues (NATs). SKA3 was chose to be the target gene because of its remarkably upregulation and unknown function in cholangiocarcinoma in TCGA datasets, GSE107943 datasets and our sequencing results. RT-PCR and immunohistochemistry staining were used to detect the expression of SKA3 in paired CCA tissues and normal adjacent tissues. The SKA3 knockdown and overexpression cell line were constructed by small interfering RNA and lentivirus vector transfection. The effect of SKA3 on the proliferation of cholangiocarcinoma under hypoxic conditions was detected by experiments in vitro and in vivo. RNA-seq was used to find out the differentially expressed pathways in cholangiocarcinoma proliferation under hypoxia regulated by SKA3. IP/MS analysis and Western blot assays were used to explore the specific mechanism of SKA3 in regulating the expression of HIF-1a under hypoxia. RESULTS SKA3 was up-regulated in NGS, TCGA and GSE107943 databases and was associated with poor prognosis. Functional experiments in vitro and in vivo showed that hypoxia-induced SKA3 promoted cholangiocarcinoma cell proliferation. RNA-sequencing was performed and verified that SKA3 enhanced fatty acid synthesis by up-regulating the expression of key fatty acid synthase, thus promoting cholangiocarcinoma cell proliferation under hypoxic conditions. Further studies indicated that under hypoxic conditions, SKA3 recruited PARP1 to bind to HIF-1a, thus enhancing the poly ADP-ribosylation (PARylation) of HIF-1a. This PARylation enhanced the binding between HIF-1a and USP7, which triggered the deubiquitylation of HIF-1a under hypoxic conditions. Additionally, PARP1 and HIF-1a were upregulated in CCA and promoted CCA cell proliferation. SKA3 promoted CCA cell proliferation and fatty acid synthesis via the PARP1/HIF-1a axis under hypoxic conditions. High SKA3 and HIF-1a expression levels were associated with poor prognosis after surgery. CONCLUSION Hypoxia-induced SKA3 promoted CCA progression by enhancing fatty acid synthesis via the regulation of PARylation-dependent HIF-1a deubiquitylation. Furthermore, increased SKA3 level enhanced chemotherapy-resistance to gemcitabine-based regimen under hypoxic conditions. SKA3 and HIF-1a could be potential oncogenes and significant biomarkers for the analysis of CCA patient prognosis.
Collapse
Affiliation(s)
- Yananlan Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yirui Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jijun Shan
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiangcheng Li
- Hepatobiliary Surgery Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, China.
- Key Laoratory for Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing Medical University), Nanjing, Jiangsu Province, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
15
|
Martinez Lyons A, Boulter L. NOTCH signalling - a core regulator of bile duct disease? Dis Model Mech 2023; 16:dmm050231. [PMID: 37605966 PMCID: PMC10461466 DOI: 10.1242/dmm.050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
The Notch signalling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, fate determination and maintenance of stem/progenitor cell populations across tissues. Although it was originally identified as a critical regulator of embryonic liver development, NOTCH signalling activation has been associated with the pathogenesis of a number of paediatric and adult liver diseases. It remains unclear, however, what role NOTCH actually plays in these pathophysiological processes and whether NOTCH activity represents the reactivation of a conserved developmental programme that is essential for adult tissue repair. In this Review, we explore the concepts that NOTCH signalling reactivation in the biliary epithelium is a reiterative and essential response to bile duct damage and that, in disease contexts in which biliary epithelial cells need to be regenerated, NOTCH signalling supports ductular regrowth. Furthermore, we evaluate the recent literature on NOTCH signalling as a critical factor in progenitor-mediated hepatocyte regeneration, which indicates that the mitogenic role for NOTCH signalling in biliary epithelial cell proliferation has also been co-opted to support other forms of epithelial regeneration in the adult liver.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
- CRUK Scottish Centre, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
16
|
Taghizadeh H, Djanani A, Eisterer W, Gerger A, Gruenberger B, Gruenberger T, Rumpold H, Weiss L, Winder T, Wöll E, Prager GW. Systemic treatment of patients with locally advanced or metastatic cholangiocarcinoma - an Austrian expert consensus statement. Front Oncol 2023; 13:1225154. [PMID: 37711201 PMCID: PMC10499516 DOI: 10.3389/fonc.2023.1225154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Locally advanced or metastatic cholangiocarcinoma is an aggressive carcinoma with a dismal prognosis. For the first-line treatment of locally advanced or metastatic cholangiocarcinoma, cisplatin/gemcitabine has been the standard of care for more than 10 years. Its combination with the immune checkpoint inhibitor durvalumab resulted in an efficiency improvement in the phase III setting. Regarding the use of chemotherapy in the second line, positive phase III data could only be generated for FOLFOX. The evidence base for nanoliposomal irinotecan (Nal-IRI) plus 5-fluorouracil (5-FU) and leucovorin (LV) is contradictory. After the failure of first-line treatment, targeted therapies can be offered if the molecular targets microsatellite instability-high (MSI-H), IDH1, FGFR2, BRAF V600E, and NTRK are detected. These targeted agents are generally preferable to second-line chemotherapy. Broad molecular testing should be performed, preferably from tumor tissue, at the initiation of first-line therapy to timely identify potential molecular targets.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Department of Internal Medicine I, University Hospital St. Pölten, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Angela Djanani
- Clinical Division of Gastroenterology, Hepatology and Metabolism, Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Eisterer
- Department of Internal Medicine, Klagenfurt Hospital, Klagenfurt am Wörthersee, Austria
| | - Armin Gerger
- Department of Internal Medicine, Clinical Division of Oncology, Medical University of Graz, Graz, Austria
| | - Birgit Gruenberger
- Department of Internal Medicine and Hematology and Internal Oncology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Thomas Gruenberger
- Department of Surgery, Clinic Favoriten, Hepatopancreatobiliary Center (HPB) Center, Health Network Vienna, and Sigmund Freud Private University, Vienna, Austria
| | - Holger Rumpold
- Visceral Oncology Center, Ordensklinikum Linz, Linz, Austria
| | - Lukas Weiss
- Department of Internal Medicine III, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Winder
- Department of Internal Medicine II, Hospital Feldkirch, Feldkirch, Austria
| | - Ewald Wöll
- Department of Internal Medicine, Saint Vincent Hospital Zams, Zams, Austria
| | - Gerald W. Prager
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Samankul A, Senawong G, Utaiwat S, Prompipak J, Woranam K, Phaosiri C, Sripa B, Senawong T. Tiliacora triandra Leaf Powder Ethanolic Extract in Combination with Cisplatin or Gemcitabine Synergistically Inhibits the Growth of Cholangiocarcinoma Cells In Vitro and in Nude Mouse Xenograft Models. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1269. [PMID: 37512080 PMCID: PMC10386122 DOI: 10.3390/medicina59071269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: The treatments of cholangiocarcinoma (CCA) with Cisplatin (Cis) and Gemcitabine (Gem) often cause side effects and drug resistance. This study aimed to investigate the combined effects of Tiliacora triandra leaf powder ethanolic extract (TLPE) and Cis or Gem on CCA cells in vitro and in nude mouse xenografts. Materials and Methods: Antiproliferative activity was evaluated using MTT assay. Drug interaction was studied by Chou-Talalay method. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. Results:Treatments with Cis or Gem in combination with TLPE significantly inhibited the growth of KKU-M213B and KKU-100 cells compared with single drug treatments. Synergistic drug interactions were observed with the dose reduction of Cis and Gem treatments. The safety of TLPE was demonstrated in vitro by the hemolytic assay. Synergistic combination treatments down-regulated Bcl2 and reduced the ratio of Bcl2/Bax in both CCA cells. TLPE enhanced tumor suppression of both Cis and Gem in nude mouse xenograft models. Combination treatments with Cis and TLPE reduced Cis toxicity, as demonstrated by the enhanced body weight change of the treated mice compared with the treatment with Cis alone. Furthermore, TLPE reduced hepatotoxicity caused by Gem treatment and reduced kidney and spleen toxicities caused by Cis treatment. Conclusion: These findings suggest that TLPE enhances the anticancer activity of Cis and Gem and reduces their toxicity both in vitro and in nude mouse xenograft models.
Collapse
Affiliation(s)
- Arunta Samankul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Gulsiri Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suppawit Utaiwat
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jeerati Prompipak
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khanutsanan Woranam
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanokbhorn Phaosiri
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
18
|
Leowattana W, Leowattana T, Leowattana P. Paradigm shift of chemotherapy and systemic treatment for biliary tract cancer. World J Gastrointest Oncol 2023; 15:959-972. [PMID: 37389105 PMCID: PMC10302992 DOI: 10.4251/wjgo.v15.i6.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
Biliary tract cancers (BTC) are frequently identified at late stages and have a poor prognosis due to limited systemic treatment regimens. For more than a decade, the combination of gemcitabine and cis-platin has served as the first-line standard treatment. There are few choices for second-line chemo-therapy. Targeted treatment with fibroblast growth factor receptor 2 inhibitors, neurotrophic tyrosine receptor kinase inhibitors, and isocitrate dehydrogenase 1 inhibitors has had important results. Immune checkpoint inhibitors (ICI) such as pembrolizumab are only used in first-line treatment for microsatellite instability high patients. The TOPAZ-1 trial's outcome is encouraging, and there are several trials underway that might soon put targeted treatment and ICI combos into first-line options. Newer targets and agents for existing goals are being studied, which may represent a paradigm shift in BTC management. Due to a scarcity of targetable mutations and the higher toxicity profile of the current medications, the new category of drugs may occupy a significant role in BTC therapies.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| |
Collapse
|
19
|
Cossiga V, Guarino M, Capasso M, Morisco F. Relevance of Bile Acids in Cholangiocarcinoma Pathogenesis: Critical Revision and Future Directions. Cells 2023; 12:1576. [PMID: 37371045 PMCID: PMC10296882 DOI: 10.3390/cells12121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cholangiocarcinoma (CCA), a highly heterogeneous cancer, is the second most common type of primary liver cancer. It is characterized by resistance to therapy and poor prognosis, with a 5-year survival rate lower than 20%. The pathogenesis of CCA is complex and multifactorial, and in recent years, bile acids (BAs) have been implicated in CCA development and prognosis. BAs belong to a category of amphipathic compounds that hold significant importance as signaling molecules and inflammatory agents. They possess the ability to activate transcriptional factors and cellular signaling pathways, thereby governing the regulation of lipid, glucose, and energy metabolism in diverse human disorders. These disorders encompass chronic liver diseases among other conditions. In this review, we provided an update on the current knowledge on the molecular mechanisms involving BAs in cholangiocarcinogenesis. Additionally, we analyzed the role of gut and biliary microbiota in CCA pathogenesis. Future research is required to better understand how to modulate BA activity and, possibly, identify new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Filomena Morisco
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (V.C.); (M.G.); (M.C.)
| |
Collapse
|
20
|
Brown ZJ, Ruff SM, Pawlik TM. Developments in FGFR and IDH inhibitors for cholangiocarcinoma therapy. Expert Rev Anticancer Ther 2023; 23:257-264. [PMID: 36744395 DOI: 10.1080/14737140.2023.2176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an uncommon malignancy originating from epithelial cells of the biliary tract. Regardless of the site of origin within the biliary tree, CCAs are generally aggressive with a poor survival. Surgical resection remains the only chance for cure, yet a majority of patients are not surgical candidates at presentation. Unfortunately, systemic therapies are often ineffective and complicated by side effects. As such, more effective targeted therapies are required in order to improve survival. AREA COVERED Genetic analysis of CCA has allowed for a better understanding of the genomic landscape of CCA. Isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) mutations have emerged as the most promising molecular targets for CCA. Inhibitors of IDH and FGFR have proven to have therapeutic benefit with an acceptable safety profile. However, patients often develop resistance rendering the therapy ineffective. EXPERT OPINION Understanding the molecular pathways of IDH and FGFR may lead to a better understanding of the mechanisms of resistance. Thus, novel therapies may be developed to improve the efficacy of these therapies. Developing novel biomarkers may improve patient selection and further enhance effectiveness of targeted therapies.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, Summit Health, Berkeley Heights, NJ, USA
| | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
21
|
Bakrania A, Joshi N, Zhao X, Zheng G, Bhat M. Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacol Res 2023; 189:106706. [PMID: 36813095 DOI: 10.1016/j.phrs.2023.106706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
Liver cancers are the fourth leading cause of cancer-related mortality worldwide. In the past decade, breakthroughs in the field of artificial intelligence (AI) have inspired development of algorithms in the cancer setting. A growing body of recent studies have evaluated machine learning (ML) and deep learning (DL) algorithms for pre-screening, diagnosis and management of liver cancer patients through diagnostic image analysis, biomarker discovery and predicting personalized clinical outcomes. Despite the promise of these early AI tools, there is a significant need to explain the 'black box' of AI and work towards deployment to enable ultimate clinical translatability. Certain emerging fields such as RNA nanomedicine for targeted liver cancer therapy may also benefit from application of AI, specifically in nano-formulation research and development given that they are still largely reliant on lengthy trial-and-error experiments. In this paper, we put forward the current landscape of AI in liver cancers along with the challenges of AI in liver cancer diagnosis and management. Finally, we have discussed the future perspectives of AI application in liver cancer and how a multidisciplinary approach using AI in nanomedicine could accelerate the transition of personalized liver cancer medicine from bench side to the clinic.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON, Canada; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | | | - Xun Zhao
- Toronto General Hospital Research Institute, Toronto, ON, Canada; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON, Canada; Ajmera Transplant Program, University Health Network, Toronto, ON, Canada; Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada; Department of Medical Sciences, Toronto, ON, Canada.
| |
Collapse
|
22
|
Borad MJ, Bai LY, Richards D, Mody K, Hubbard J, Rha SY, Soong J, McCormick D, Tse E, O'Brien D, Bayat A, Ahn D, Davis SL, Park JO, Oh DY. Silmitasertib plus gemcitabine and cisplatin first-line therapy in locally advanced/metastatic cholangiocarcinoma: A Phase 1b/2 study. Hepatology 2023; 77:760-773. [PMID: 36152015 DOI: 10.1002/hep.32804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS This study aimed to investigate safety and efficacy of silmitasertib, an oral small molecule casein kinase 2 inhibitor, plus gemcitabine and cisplatin (G+C) versus G+C in locally advanced/metastatic cholangiocarcinoma. APPROACH AND RESULTS This work is a Phase 1b/2 study (S4-13-001). In Phase 2, patients received silmitasertib 1000 mg twice daily for 10 days with G+C on Days 1 and 8 of a 21-day cycle. Primary efficacy endpoint was progression-free survival (PFS) in the modified intent-to-treat population (defined as patients who completed at least one cycle of silmitasertib without dose interruption/reduction) from both phases (silmitasertib/G+C n = 55, G+C n = 29). The response was assessed by Response Evaluation Criteria in Solid Tumors v1.1. The median PFS was 11.2 months (95% confidence interval [CI], 7.6, 14.7) versus 5.8 months (95% CI, 3.1, not evaluable [NE]) ( p = 0.0496); 10-month PFS was 56.1% (95% CI, 38.8%, 70.2%) versus 22.2% (95% CI, 1.8%, 56.7%); and median overall survival was 17.4 months (95% CI, 13.4, 25.7) versus 14.9 months (95% CI, 9.9, NE) with silmitasertib/G+C versus G+C. Overall response rate was 34.0% versus 30.8%; the disease control rate was 86.0% versus 88.5% with silmitasertib/G+C versus G+C. Almost all silmitasertib/G+C (99%) and G+C (93%) patients reported at least one treatment emergent adverse event (TEAE). The most common TEAEs (all grades) with silmitasertib/G+C versus G+C were diarrhea (70% versus 13%), nausea (59% vs. 30%), fatigue (47% vs. 47%), vomiting (39% vs. 7%), and anemia (39% vs. 30%). Twelve patients (10%) discontinued treatment because of TEAEs during the study. CONCLUSIONS Silmitasertib/G+C demonstrated promising preliminary evidence of efficacy for the first-line treatment of patients with locally advanced/metastatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Mitesh J Borad
- Center for Individualized Medicine, Liver and Biliary Cancer Research Program and Cancer Cell , Gene and Virus Therapy Lab, Mayo Clinic Arizona , Scottsdale , Arizona , USA
| | - Li-Yuan Bai
- China Medical University Hospital, and China Medical University , Taichung , Taiwan
| | - Donald Richards
- Texas Oncology-Tyler, US Oncology Research , Tyler , Texas , USA
| | - Kabir Mody
- Division of Hematology and Oncology , Mayo Clinic Jacksonville , Jacksonville , Florida , USA
| | - Joleen Hubbard
- Department of Medical Oncology , Mayo Clinic Rochester , Rochester , Minnesota , USA
| | - Sun Young Rha
- Yonsei Cancer Center , Yonsei University College of Medicine , Seoul , South Korea
| | - John Soong
- Clinical Operations , Senhwa Biosciences Corporation , San Diego , California , USA
| | - Daniel McCormick
- Clinical Operations , Senhwa Biosciences Corporation , San Diego , California , USA
| | - Emmett Tse
- Clinical Operations , Senhwa Biosciences Corporation , San Diego , California , USA
| | - Daniel O'Brien
- Department of Quantitative Health Sciences , Mayo Clinic , Rochester , Minnesota , USA
| | - Ahmad Bayat
- Regulatory Affairs , Amarex Clinical Research , Germantown , Maryland , USA
| | - Daniel Ahn
- Division of Hematology/Medical Oncology, Department of Internal Medicine , Mayo Clinic Arizona , Phoenix , Arizona , USA
| | - S Lindsey Davis
- Division of Medical Oncology , University of Colorado Cancer Center , Aurora , Colorado , USA
| | - Joon Oh Park
- Division of Hematology-Oncology , Samsung Medical Centre, Sungkyunkwan University School of Medicine , Seoul , South Korea
| | - Do-Youn Oh
- Cancer Research Institute , Seoul National University Hospital, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School , Seoul , South Korea
| |
Collapse
|
23
|
Protein Signatures and Individual Circulating Proteins, including IL-6 and IL-15, Associated with Prognosis in Patients with Biliary Tract Cancer. Cancers (Basel) 2023; 15:cancers15041062. [PMID: 36831406 PMCID: PMC9953893 DOI: 10.3390/cancers15041062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Biliary tract cancer (BTC) is a rare gastrointestinal cancer with a dismal prognosis. Biomarkers with clinical utility are needed. In this study, we investigated the association between survival and 89 immuno-oncology-related proteins, with the aim of identifying prognostic biomarkers for BTC. The study included patients with BTC (n = 394) treated at three Danish hospitals. Patients were divided into four cohorts: the first-line discovery cohort (n = 202), first-line validation cohort (n = 118), second-line cohort (n = 56), and surgery cohort (n = 41). Plasma protein levels were measured using a proximity extension assay (Olink Proteomics). Twenty-seven proteins were associated with overall survival (OS) in a multivariate analysis in the discovery cohort. In the first-line validation cohort, high levels of interleukin (IL)-6, IL-15, mucin 16, hepatocyte growth factor, programmed cell death ligand 1, and placental growth factor were significantly associated with poor OS in univariate Cox regression analyses. When adjusting for performance status, location, and stage, the association was significant only for IL-6 (hazard ratio (HR) = 1.25, 95% confidence interval (CI) 1.08-1.46) and IL-15 (HR = 2.23, 95% CI 1.48-3.35). Receiver operating characteristic analyses confirmed IL-6 and IL-15 as the strongest predictors of survival. Combining several proteins into signatures further improved the ability to distinguish between patients with short (<6 months) and long survival (>18 months). The study identified several circulating proteins as prognostic biomarkers in patients, with BTC, IL-6, and IL-15 being the most promising markers. Combining proteins in a prognostic signature improved prognostic performance, but future studies are needed to determine the optimal combination and thresholds.
Collapse
|
24
|
Mehmood A, Nawab S, Jin Y, Kaushik AC, Wei DQ. Mutational Impacts on the N and C Terminal Domains of the MUC5B Protein: A Transcriptomics and Structural Biology Study. ACS OMEGA 2023; 8:3726-3735. [PMID: 36743039 PMCID: PMC9893249 DOI: 10.1021/acsomega.2c04871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Cholangiocarcinoma (CCA) involves various epithelial tumors historically linked with poor prognosis because of its aggressive sickness course, delayed diagnosis, and limited efficacy of typical chemotherapy in its advanced stages. In-depth molecular profiling has exposed a varied scenery of genomic alterations as CCA's oncogenic drivers. Previous studies have mainly focused on commonly occurring TP53 and KRAS alterations, but there is limited research conducted to explore other vital genes involved in CCA. We retrieved data from The Cancer Genome Atlas (TCGA) to hunt for additional CCA targets and plotted a mutational landscape, identifying key genes and their frequently expressed variants. Next, we performed a survival analysis for all of the top genes to shortlist the ones with better significance. Among those genes, we observed that MUC5B has the most significant p-value of 0.0061. Finally, we chose two missense mutations at different positions in the vicinity of MUC5B N and C terminal domains. These mutations were further subjected to molecular dynamics (MD) simulation, which revealed noticeable impacts on the protein structure. Our study not only reveals one of the highly mutated genes with enhanced significance in CCA but also gives insights into the influence of its variants. We believe these findings are a good asset for understanding CCA from genomics and structural biology perspectives.
Collapse
Affiliation(s)
- Aamir Mehmood
- Department
of Bioinformatics and Biological Statistics, School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sadia Nawab
- State
Key Laboratory of Microbial Metabolism and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yifan Jin
- Department
of Bioinformatics and Biological Statistics, School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Aman Chandra Kaushik
- Department
of Bioinformatics and Biological Statistics, School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dong-Qing Wei
- State
Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade
Joint Innovation Center on Antibacterial Resistances, Joint International
Research Laboratory of Metabolic & Developmental Sciences and
School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Zhongjing
Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, P. R. China
- Peng
Cheng Laboratory, Vanke
Cloud City Phase I Building 8, Xili Street, Nanshan
District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
25
|
Mosconi C, Cacioppa LM, Cappelli A, Gramenzi AG, Vara G, Modestino F, Renzulli M, Golfieri R. Update of the Bologna Experience in Radioembolization of Intrahepatic cholangiocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231155690. [PMID: 36927302 PMCID: PMC10026142 DOI: 10.1177/15330338231155690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primitive liver cancer and is rising in incidence worldwide. Given its low survival and resectability rates, locoregional therapies such as Yttrium-90 transarterial radioembolization (Y-TARE) are increasingly being employed. This retrospective study aim was to confirm and update our previous results about overall survival (OR), safety, and efficacy of Y-TARE in patients with unresectable/recurrent ICC. MATERIALS AND METHODS OS was evaluated as primary endpoint while radiological tumor response at 3 months, based on Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, was considered as secondary endpoint. RESULTS Over a total of 49 patients, the overall median survival was 16 months (27-41 months, 95% confidence interval [CI]) from Y-TARE procedure. A significantly longer survival was recorded in naive patients compared to patients previously submitted to any type of liver-directed treatment and radical surgery (18 vs 14 months, P=.015 and 28 vs 14 months, P=.001, respectively). Target lesion and overall objective response for RECIST 1.1 criteria were 64.6% and 52.1%, respectively. Low rates of postprocedural and late complications were recorded. CONCLUSIONS In unresectable and recurrent ICC, Y-TARE confirms its safety and its potential in increasing OS, especially in naive patients.
Collapse
Affiliation(s)
- Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Maria Cacioppa
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alberta Cappelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Giulia Gramenzi
- Division of Semeiotic, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Modestino
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
26
|
FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022; 11:cells11233929. [PMID: 36497187 PMCID: PMC9737583 DOI: 10.3390/cells11233929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and limited treatment options. Molecular targeted therapies became a promising proposal for patients after progression under first-line chemical treatment. In light of an escalating prevalence of CCA, it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy. Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning diseases' symptoms and their underlying causes. Growing evidence showed that fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different neoplasms, it seems most reasonable to move towards intensive research and testing on these in the case of CCA. However, there is still a need for more data covering this topic. Although positive results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
Collapse
|
27
|
Wang G, Heij LR, Liu D, Dahl E, LANG SA, Ulmer TF, LUEDDE T, Neumann UP, Bednarsch J. The Role of Single-Nucleotide Polymorphisms in Cholangiocarcinoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14235969. [PMID: 36497451 PMCID: PMC9739277 DOI: 10.3390/cancers14235969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) play an essential role in various malignancies, but their role in cholangiocarcinoma (CCA) remains to be elucidated. Therefore, the purpose of this systematic review was to evaluate the association between SNPs and CCA, focusing on tumorigenesis and prognosis. A systematic literature search was carried out using PubMed, Embase, Web of Science and the Cochrane database for the association between SNPs and CCA, including literature published between January 2000 and April 2022. This systematic review compiles 43 SNPs in 32 genes associated with CCA risk, metastatic progression and overall prognosis based on 34 studies. Susceptibility to CCA was associated with SNPs in genes related to inflammation (PTGS2/COX2, IL6, IFNG/IFN-γ, TNF/TNF-α), DNA repair (ERCC1, MTHFR, MUTYH, XRCC1, OGG1), detoxification (NAT1, NAT2 and ABCC2), enzymes (SERPINA1, GSTO1, APOBEC3A, APOBEC3B), RNA (HOTAIR) and membrane-based proteins (EGFR, GAB1, KLRK1/NKG2D). Overall oncological prognosis was also related to SNPs in eight genes (GNB3, NFE2L2/NRF2, GALNT14, EGFR, XRCC1, EZH2, GNAS, CXCR1). Our findings indicate that multiple SNPs play different roles at various stages of CCA and might serve as biomarkers guiding treatment and allowing oncological risk assessment. Considering the differences in SNP detection methods, patient ethnicity and corresponding environmental factors, more large-scale multicentric investigations are needed to fully determine the potential of SNP analysis for CCA susceptibility prediction and prognostication.
Collapse
Affiliation(s)
- Guanwu Wang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Pathology, Erasmus Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sven Arke LANG
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tom Florian Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tom LUEDDE
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
28
|
Locoregional Approaches in Cholangiocarcinoma Treatment. Cancers (Basel) 2022; 14:cancers14235853. [PMID: 36497334 PMCID: PMC9740081 DOI: 10.3390/cancers14235853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare hepatic malignant tumor with poor prognosis due to late detection and anatomic factors limiting the applicability of surgical resection. Without surgical resection, palliation is the most common approach. In non-surgical cases contained within the liver, locoregional therapies provide the best chance for increased survival and disease control. The most common methods, transarterial chemoembolization and transarterial radioembolization, target tumors by embolizing their blood supply and limiting the tumor's ability to metabolize. Other treatments induce direct damage via thermal ablation to tumor tissue to mediate their anti-tumor efficacy. Recent studies have begun to explore roles for these therapies outside their previous role of palliation. This review will outline the mechanisms of each of these treatments, along with their effects on overall survival, while comparing these to non-locoregional therapies.
Collapse
|
29
|
Koshiol J, Yu B, Kabadi SM, Baria K, Shroff RT. Epidemiologic patterns of biliary tract cancer in the United States: 2001–2015. BMC Cancer 2022; 22:1178. [DOI: 10.1186/s12885-022-10286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Biliary tract cancer (BTC) includes intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma, gallbladder cancer, and ampulla of Vater cancer (AVC). Although BTC is rare in the US, incidence is increasing and elevated in certain populations. This study examined BTC epidemiology in the US by age, sex, race/ethnicity, geographic region, and anatomic site.
Methods
BTC incidence, prevalence, mortality, and survival from 2001 to 2015 were evaluated using the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program and the Centers for Disease Control and Prevention’s National Program of Cancer Registries databases. Incidence and mortality rates were calculated and reported as age-standardized rates. Data were assessed by age, anatomic sites, geographic region, and race/ethnicity, and a joinpoint regression model was used to predict trends for age-adjusted BTC incidence and mortality rates.
Results
BTC incidence increased during the study period (annual percent change = 1.76, 95% confidence interval [1.59–1.92]), with the highest increase in ICC (6.65 [6.11–7.19]). Incidence of unspecified BTC initially increased but has recently begun to drop. Hispanic, Asian/Pacific Islander, Black, or American Indian/Alaska Native race/ethnicity was associated with higher BTC mortality rates than White race/ethnicity. Patients with ICC had the highest mortality rate (age-standardized rate = 1.87/100,000 person-years [1.85–1.88]). Five-year survival was 15.2% for all BTC, ranging from 8.5% (ICC) to 34.5% (AVC), and patients with distant disease at diagnosis had lower survival (3%) compared with those with regional (19.1%) or locally advanced disease (31.5%).
Conclusions
BTC incidence increased, survival was low across all subtypes, and mortality was greatest in patients with ICC. This underscores the serious, increasing unmet need among patients with BTC. Treatment options are limited, although clinical studies investigating immunotherapy, targeted therapies, and alternative chemotherapy combinations are ongoing. Epidemiological insights may improve patient care and inform the integration of novel therapies for BTC.
Collapse
|
30
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
31
|
Islam MA, Barshetty MM, Srinivasan S, Dudekula DB, Rallabandi VPS, Mohammed S, Natarajan S, Park J. Identification of Novel Ribonucleotide Reductase Inhibitors for Therapeutic Application in Bile Tract Cancer: An Advanced Pharmacoinformatics Study. Biomolecules 2022; 12:biom12091279. [PMID: 36139117 PMCID: PMC9496582 DOI: 10.3390/biom12091279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors that may develop in the biliary tract, and it is the second most common liver cancer. Human ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC target. In the current study, a de novo design approach was used to generate novel and effective chemical therapeutics for BTC. A set of comprehensive pharmacoinformatics approaches was implemented and, finally, seventeen potential molecules were found to be effective for the modulation of hRRM1 activity. Molecular docking, negative image-based ShaEP scoring, absolute binding free energy, in silico pharmacokinetics, and toxicity assessments corroborated the potentiality of the selected molecules. Almost all molecules showed higher affinity in comparison to gemcitabine and naphthyl salicylic acyl hydrazone (NSAH). On binding interaction analysis, a number of critical amino acids was found to hold the molecules at the active site cavity. The molecular dynamics (MD) simulation study also indicated the stability between protein and ligands. High negative MM-GBSA (molecular mechanics generalized Born and surface area) binding free energy indicated the potentiality of the molecules. Therefore, the proposed molecules might have the potential to be effective therapeutics for the management of BTC.
Collapse
Affiliation(s)
- Md Ataul Islam
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Sridhar Srinivasan
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | - Dawood Babu Dudekula
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Sameer Mohammed
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Junhyung Park
- 3BIGS Co., Ltd., B-831, Geumgang Penterium IX Tower, Hwaseong 18469, Korea
- Correspondence:
| |
Collapse
|
32
|
Safety and Efficacy of Allogeneic Natural Killer Cells in Combination with Pembrolizumab in Patients with Chemotherapy-Refractory Biliary Tract Cancer: A Multicenter Open-Label Phase 1/2a Trial. Cancers (Basel) 2022; 14:cancers14174229. [PMID: 36077766 PMCID: PMC9454779 DOI: 10.3390/cancers14174229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: This study investigated the administration of combination therapy, allogeneic natural killer (NK) cells and pembrolizumab in the treatment of advanced biliary tract cancer to determine the safety and tolerability (phase 1) and the efficacy and safety (phase 2a). Methods: Forty patients (phase 1, n = 6; phase 2a, n = 34) were enrolled between December 2019 and June 2021. The patients received highly activated allogeneic NK cells (“SMT-NK”) on weeks 1 and 2 and pembrolizumab on week 1. This 3-week schedule (one cycle) was repeated until confirmed disease progression, intolerable adverse events (AEs), patient withdrawal, or finishing the maximum treatment schedule. The tumor response was evaluated after every three cycles. Results: In phase 1, four patients (66.7%) experienced seven AEs, but no severe AE was observed. In phase 2a, 126 AEs occurred in 29 patients (85.3%). Severe AEs (≥grade 3) were reported in 16 patients (47.1%). The overall response rate (ORR) was 17.4% in the full analysis set and 50.0% in the per-protocol set. Conclusions: SMT-NKs plus pembrolizumab resulted in no severe AEs directly related to the drug combination. The combination therapy also exerted antitumor activity with improved efficacy compared to the recent monotherapy with pembrolizumab in patients with advanced biliary tract cancer.
Collapse
|
33
|
Guo H, Qian Y, Yu Y, Bi Y, Jiao J, Jiang H, Yu C, Wu H, Shi Y, Kong X. An Immunity-Related Gene Model Predicts Prognosis in Cholangiocarcinoma. Front Oncol 2022; 12:791867. [PMID: 35847907 PMCID: PMC9283581 DOI: 10.3389/fonc.2022.791867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with cholangiocarcinoma (CCA) is closely related to both immune cell infiltration and mRNA expression. Therefore, we aimed at conducting multi-immune-related gene analyses to improve the prediction of CCA recurrence. Immune-related genes were selected from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and the Immunology Database and Analysis Portal (ImmPort). The least absolute shrinkage and selection operator (LASSO) regression model was used to establish the multi-gene model that was significantly correlated with the recurrence-free survival (RFS) in two test series. Furthermore, compared with single genes, clinical characteristics, tumor immune dysfunction and exclusion (TIDE), and tumor inflammation signature (TIS), the 8-immune-related differentially expressed genes (8-IRDEGs) signature had a better prediction value. Moreover, the high-risk subgroup had a lower density of B-cell, plasma, B-cell naïve, CD8+ T-cell, CD8+ T-cell naïve, and CD8+ T-cell memory infiltration, as well as more severe immunosuppression and higher mutation counts. In conclusion, the 8-IRDEGs signature was a promising biomarker for distinguishing the prognosis and the molecular and immune features of CCA, and could be beneficial to the individualized immunotherapy for CCA patients.
Collapse
Affiliation(s)
- Han Guo
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Qian
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yeping Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Bi
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Junzhe Jiao
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Haocheng Jiang
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Chang Yu
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yanjun Shi, ; Hailong Wu,
| | - Yanjun Shi
- Department of Hepatobiliary and Pancreas Surgery , The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaoni Kong, ; Yanjun Shi, ; Hailong Wu,
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yanjun Shi, ; Hailong Wu,
| |
Collapse
|
34
|
Mirallas O, López-Valbuena D, García-Illescas D, Fabregat-Franco C, Verdaguer H, Tabernero J, Macarulla T. Advances in the systemic treatment of therapeutic approaches in biliary tract cancer. ESMO Open 2022; 7:100503. [PMID: 35696747 PMCID: PMC9198382 DOI: 10.1016/j.esmoop.2022.100503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Biliary tract cancers (BTCs) are a rare and heterogenous group with an increasing incidence and high mortality rate. The estimated new cases and deaths of BTC worldwide are increasing, but the incidence and mortality rates in South East Asia are the highest worldwide, representing a real public health problem in these regions. BTC has a poor prognosis with a median overall survival <12 months. Thus, an urgent unmet clinical need for BTC patients exists and must be addressed. RESULTS The backbone treatment of these malignancies is chemotherapy in first- and second-line setting, but in the last decade a rich molecular landscape has been discovered, expanding conceivable treatment options. Some druggable molecular aberrations can be treated with new targeted therapies and have already demonstrated efficacy in patients with BTC, improving clinical outcomes, such as the FGFR2 or IDH1 inhibitors. Many other molecular alterations are being discovered and the treatment of BTC will change in the near future from our current clinical practice. CONCLUSIONS In this review we discuss the epidemiology, molecular characteristics, present treatment approaches, review the recent therapeutic advances, and explore future directions for patients with BTC. Due to the rich molecular landscape of BTC, molecular profiling should be carried out early. Ongoing research will bring new targeted treatments and immunotherapy in the near future.
Collapse
Affiliation(s)
- O Mirallas
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - D López-Valbuena
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - D García-Illescas
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - C Fabregat-Franco
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - H Verdaguer
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - T Macarulla
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
35
|
Zhou T, Zhang Y, Chen Y, Shan J, Wang J, Wang Y, Chang J, Jiang W, Chen R, Wang Z, Shi X, Yu Y, Li C, Li X. ROBO1 p.E280* Loses the Inhibitory Effects on the Proliferation and Angiogenesis of Wild-Type ROBO1 in Cholangiocarcinoma by Interrupting SLIT2 Signal. Front Oncol 2022; 12:879963. [PMID: 35615148 PMCID: PMC9124974 DOI: 10.3389/fonc.2022.879963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) remains one of the most lethal malignancies with an increasing incidence globally. Through whole-exome sequencing of 67 CCA tissues, we identified new mutated genes in CCA, including MACF1, METTL14, ROBO1, and so on. The study was designed to explore the effects and mechanism of ROBO1 wild type (ROBO1WT) and ROBO1E280* mutation on the progression of CCA. Methods Whole-exome sequencing was performed to identify novel mutations in CCAs. In vitro and in vivo experiments were used to examine the function and mechanism of ROBO1WT and ROBO1E280* in cholangiocarcinoma. A tissue microarray including 190 CCA patients and subsequent analyses were performed to indicate the clinical significance of ROBO1. Results Through whole-exome sequencing, we identified a novel CCA-related mutation, ROBO1E280*. ROBO1 was downregulated in CCA tissues, and the downregulation of ROBO1 was significantly correlated with poor prognosis. ROBO1WT suppressed the proliferation and angiogenesis of CCA in vitro and in vivo, while ROBO1E280* lost the inhibitory effects. Mechanically, ROBO1E280* translocated from the cytomembrane to the cytoplasm and interrupted the interaction between SLIT2 and ROBO1. We identified OLFML3 as a potential target of ROBO1 by conducting RNA-Seq assays. OLFML3 expression was downregulated by ROBO1WT and recovered by ROBO1E280*. Functionally, the silence of OLFML3 inhibited CCA proliferation and angiogenesis and was sufficient to repress the loss-of-function role of ROBO1E280*. Conclusions These results suggest that ROBO1 may act as a tumor suppressor and potential prognostic marker for CCA. ROBO1E280* mutation is a loss-of-function mutation, and it might serve as a candidate therapeutic target for CCA patients.
Collapse
Affiliation(s)
- Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yananlan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
- *Correspondence: Xiangcheng Li, ; Changxian Li,
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
- *Correspondence: Xiangcheng Li, ; Changxian Li,
| |
Collapse
|
36
|
Chen M, Li Y, Ma N, Zang J. Mesenchymal stem cell‑derived exosomes loaded with 5‑Fu against cholangiocarcinoma in vitro. Mol Med Rep 2022; 25:213. [PMID: 35543159 PMCID: PMC9133964 DOI: 10.3892/mmr.2022.12729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an intractable malignant tumour with a high degree of malignancy that is asymptomatic in the early stages. Exosomes have been shown in numerous studies in recent years to be effective delivery vehicles for chemotherapy drugs to suppress tumour proliferation and growth in vivo and in vitro. In order to explore the inhibition of 5-fluorouracil (5-Fu)-loaded exosomes on CCA growth, the present study used human bone marrow mesenchymal stem cell-derived exosomes, as well as incubation and sonication methods for 5-Fu loading into exosomes, to treat CCA in vitro. The findings demonstrated that exosomes isolated from mesenchymal stem cells have typical exosome characteristics. Both the incubation and sonication methods successfully loaded 5-Fu into the exosomes (5-Fu-Exos), with the sonication method having a higher loading efficiency than the incubation method. When compared to the free 5-Fu group, the 5-Fu-Exos group significantly inhibited the viability of CCA cells (P<0.01), indicating that 5-Fu-Exos can be an effective chemotherapy drug for CCA treatment.
Collapse
Affiliation(s)
- Mingzheng Chen
- Department of Medicine, Graduate School, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yangyang Li
- Department of Medicine, Graduate School, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ningfu Ma
- Department of Medicine, Graduate School, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jinfeng Zang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
37
|
Depciuch J, Parlinska-Wojtan M, Rahmi Serin K, Bulut H, Ulukaya E, Tarhan N, Guleken Z. Differential of cholangiocarcinoma disease using Raman spectroscopy combined with multivariate analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121006. [PMID: 35151168 DOI: 10.1016/j.saa.2022.121006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Cholangiocarcinoma (CCA) is a type of cancer, which 5-year survival is lower than 20 %, and which is detected mostly in advanced stage of the disease. Unfortunately, there are no diagnostic tools, which could show changes in the body indicating the development of the disease. Therefore, in this study, we investigate Raman spectroscopy as a promising analytical tool in medical diagnostics and as a method, which would allow to distinguish between healthy patients and patients suffering from cholangiocarcinoma. The obtained Raman spectra showed, that lower intensities of peaks corresponding to amino acids and proteins, as well as higher intensities of peaks originating from lipids vibrations were observed in healthy individuals in comparison with cancer patients. Moreover, Partial Last Square (PLS), Principal Component Analysis (PCA) and Hierarchical Component Analysis (HCA) of Raman spectra indicate that the ranges between 800 cm-1 and 1800 cm-1, 3477 cm-1 -3322 cm-1 and 1394 cm-1 -1297 cm-1 allow to distinguish cancer patients from healthy ones. The obtained results showed, that Raman spectroscopy is a good candidate, to become in future one of the diagnostic tools of Cholangiocarcinoma.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Science, 31342 Krakow, Poland.
| | | | - Kürşat Rahmi Serin
- Istanbul University, Faculty of Medicine, Hepatopancreatobiliary Surgery Unit, Department of General Surgery, Istanbul, Turkey
| | - Huri Bulut
- Istinye University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Engin Ulukaya
- ISUMKAM Molecular Cancer Research Center, Istinye University, İstanbul, Turkey
| | | | - Zozan Guleken
- Uskudar University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
38
|
Ding GY, Ma JQ, Yun JP, Chen X, Ling Y, Zhang S, Shi JY, Chang YQ, Ji Y, Wang XY, Tan WM, Yuan KF, Yan B, Zhang XM, Liang F, Zhou J, Fan J, Zeng Y, Cai MY, Gao Q. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J Hepatol 2022; 76:608-618. [PMID: 34793865 DOI: 10.1016/j.jhep.2021.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The prognostic value and clinical relevance of tertiary lymphoid structures (TLSs) in intrahepatic cholangiocarcinoma (iCCA) remain unclear. Thus, we aimed to investigate the prognostic value and functional involvement of TLSs in iCCA. METHODS We retrospectively included 962 patients from 3 cancer centers across China. The TLSs at different anatomic subregions were quantified and correlated with overall survival (OS) by Cox regression and Kaplan-Meier analyses. Multiplex immunohistochemistry (mIHC) was applied to characterize the composition of TLSs in 39 iCCA samples. RESULTS A quaternary TLS scoring system was established for the intra-tumor region (T score) and peri-tumor region (P score) respectively. T scores positively correlated with favorable prognosis (p <0.001), whereas a high P score signified worse survival (p <0.001). mIHC demonstrated that both T follicular helper and regulatory T cells were significantly increased in intra-tumoral TLSs compared to peri-tumoral counterparts (p <0.05), and regulatory T cell frequencies within intra-tumoral TLSs were positively associated with P score (p <0.05) rather than T score. Collectively, the combination of T and P scores stratified iCCAs into 4 immune classes with distinct prognoses (p <0.001) that differed in the abundance and distribution pattern of TLSs. Patients displaying an immune-active pattern had the lowest risk, with 5-year OS rates of 68.8%, whereas only 3.4% of patients with an immune-excluded pattern survived at 5 years (p <0.001). The C-index of the immune class was statistically higher than the TNM staging system (0.73 vs. 0.63, p <0.001). These results were validated in an internal and 2 external cohorts. CONCLUSIONS The spatial distribution and abundance of TLSs significantly correlated with prognosis and provided a useful immune classification for iCCA. T follicular helper and regulatory T cells may play a critical role in determining the functional orientation of spatially different TLSs. LAY SUMMARY Tertiary lymphoid structures (TLSs) are associated with favorable prognosis in a number of cancers. However, their role in intrahepatic cholangiocarcinoma (iCCA) remains unclear. Herein, we comprehensively evaluated the spatial distribution, abundance, and cellular composition of TLSs in iCCA, and revealed the opposite prognostic impacts of TLSs located within or outside the tumor. This difference could be mediated by the different immune cell subsets present within the spatially distinct TLSs. Based on our analysis, we were able to stratify iCCAs into 4 immune subclasses associated with varying prognoses.
Collapse
Affiliation(s)
- Guang-Yu Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jia-Qiang Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xing Chen
- Department of Liver Surgery & Liver Transplantation, Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yu Ling
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jie-Yi Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yu-Qing Chang
- Department of Pathology, Shibei Hospital of Shanghai Jing'an District, Shanghai, 200435, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Wei-Min Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200032, China
| | - Ke-Fei Yuan
- Department of Liver Surgery & Liver Transplantation, Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200032, China
| | - Xiao-Ming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Liang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China; Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 200540, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
39
|
Servin F, Collins JA, Heiselman JS, Frederick-Dyer KC, Planz VB, Geevarghese SK, Brown DB, Miga MI. Fat Quantification Imaging and Biophysical Modeling for Patient-Specific Forecasting of Microwave Ablation Therapy. Front Physiol 2022; 12:820251. [PMID: 35185606 PMCID: PMC8850958 DOI: 10.3389/fphys.2021.820251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Computational tools are beginning to enable patient-specific surgical planning to localize and prescribe thermal dosing for liver cancer ablation therapy. Tissue-specific factors (e.g., tissue perfusion, material properties, disease state, etc.) have been found to affect ablative therapies, but current thermal dosing guidance practices do not account for these differences. Computational modeling of ablation procedures can integrate these sources of patient specificity to guide therapy planning and delivery. This paper establishes an imaging-data-driven framework for patient-specific biophysical modeling to predict ablation extents in livers with varying fat content in the context of microwave ablation (MWA) therapy. Patient anatomic scans were segmented to develop customized three-dimensional computational biophysical models and mDIXON fat-quantification images were acquired and analyzed to establish fat content and determine biophysical properties. Simulated patient-specific microwave ablations of tumor and healthy tissue were performed at four levels of fatty liver disease. Ablation models with greater fat content demonstrated significantly larger treatment volumes compared to livers with less severe disease states. More specifically, the results indicated an eightfold larger difference in necrotic volumes with fatty livers vs. the effects from the presence of more conductive tumor tissue. Additionally, the evolution of necrotic volume formation as a function of the thermal dose was influenced by the presence of a tumor. Fat quantification imaging showed multi-valued spatially heterogeneous distributions of fat deposition, even within their respective disease classifications (e.g., low, mild, moderate, high-fat). Altogether, the results suggest that clinical fatty liver disease levels can affect MWA, and that fat-quantitative imaging data may improve patient specificity for this treatment modality.
Collapse
Affiliation(s)
- Frankangel Servin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jarrod A. Collins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jon S. Heiselman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
| | - Katherine C. Frederick-Dyer
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Virginia B. Planz
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sunil K. Geevarghese
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel B. Brown
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Michael I. Miga,
| |
Collapse
|
40
|
Song J, Cui D, Wang J, Qin J, Wang S, Wang Z, Zhai X, Ma H, Ma D, Liu Y, Jin B, Liu Z. Overexpression of HMGA1 confers radioresistance by transactivating RAD51 in cholangiocarcinoma. Cell Death Discov 2021; 7:322. [PMID: 34716319 PMCID: PMC8556338 DOI: 10.1038/s41420-021-00721-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 01/16/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumors of the bile ducts. CCAs are often diagnosed at an advanced stage and respond poorly to current conventional radiotherapy and chemotherapy. High mobility group A1 (HMGA1) is an architectural transcription factor that is overexpressed in multiple malignant tumors. In this study, we showed that the expression of HMGA1 is frequently elevated in CCAs and that the high expression of this gene is associated with a poor prognosis. Functionally, HMGA1 promotes CCA cell proliferation/invasion and xenograft tumor growth. Furthermore, HMGA1 transcriptionally activates RAD51 by binding to its promoter through two HMGA1 response elements. Notably, overexpression of HMGA1 promotes radioresistance whereas its knockdown causes radiosensitivity of CCA cells to X-ray irradiation. Moreover, rescue experiments reveal that inhibition of RAD51 reverses the effect of HMGA1 on radioresistance and proliferation/invasion. These findings suggest that HMGA1 functions as a novel regulator of RAD51 and confers radioresistance in cholangiocarcinoma.
Collapse
Affiliation(s)
- Jianping Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China.,Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Shourong Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Xiangyu Zhai
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Huan Ma
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Delin Ma
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China
| | - Yanfeng Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China.
| | - Bin Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China. .,Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, Shandong Province, China.
| |
Collapse
|
41
|
Kamal H, Sadr-Azodi O, Engstrand L, Brusselaers N. Association Between Proton Pump Inhibitor Use and Biliary Tract Cancer Risk: A Swedish Population-Based Cohort Study. Hepatology 2021; 74:2021-2031. [PMID: 34018229 DOI: 10.1002/hep.31914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Biliary tract cancer is a group of highly aggressive malignant disorders, yet risk factors are poorly understood. In this study, we aim to assess whether prolonged use of proton pump inhibitors (PPIs) increases the risk of incident biliary tract carcinoma in a nation-wide population-based cohort in Sweden. APPROACH AND RESULTS Using nation-wide registries, we identified all adults who received maintenance PPIs (≥180 days) according to the Swedish Prescribed Drug Register from 2005 through 2012. Data on incident biliary tract cancer were retrieved from the Swedish Cancer, Death and Outpatient Registers. Risk of biliary tract cancer in persons who received PPI treatment was compared with the general population of the corresponding age, sex, and calendar year yielding standardized incidence ratios (SIRs) with 95% CIs. Of 738,881 PPI users (median follow-up of 5.3 years), 206 (0.03%) developed gallbladder cancer and 265 (0.04%) extrahepatic and 131 (0.02%) intrahepatic bile duct cancer corresponding to SIRs of 1.58 (95% CI, 1.37-1.81), 1.77 (95% CI, 1.56-2.00), and 1.88 (95% CI, 1.57-2.23), respectively. In sensitivity analyses restricted to persons without a history of gallstones or chronic liver or pancreatic diseases, SIRs were 1.36 (95% CI, 1.17-1.57) and 1.47 (95% CI, 1.19-1.80) for extra- and intrahepatic duct cancer, respectively. The risk remained higher than the corresponding general population with ≥5 years of PPIs use, ruling out confounding by indication. CONCLUSIONS In this study, long-term use of PPIs was associated with an increased risk of gallbladder, intrahepatic, and extrahepatic bile duct cancer compared with the general population.
Collapse
Affiliation(s)
- Habiba Kamal
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Omid Sadr-Azodi
- Unit of Surgery, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Surgery, Capio Saint Göran Hospital, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Global Health Institute, Antwerp University, Antwerp, Belgium
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Global Health Institute, Antwerp University, Antwerp, Belgium.,Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Bednarsch J, Tan X, Czigany Z, Liu D, Lang SA, Sivakumar S, Kather JN, Appinger S, Rosin M, Boroojerdi S, Dahl E, Gaisa NT, den Dulk M, Coolsen M, Ulmer TF, Neumann UP, Heij LR. The Presence of Small Nerve Fibers in the Tumor Microenvironment as Predictive Biomarker of Oncological Outcome Following Partial Hepatectomy for Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13153661. [PMID: 34359564 PMCID: PMC8345152 DOI: 10.3390/cancers13153661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Nerve fibers in the microenvironment of malignant tumors have been shown to be an important prognostic factor for long-term survival in various cancer types; however, their role in intrahepatic cholangiocarcinoma remains to be determined. Therefore, the impact of nerve fibers on long-term survival was investigated in a large European cohort of patients with intrahepatic cholangiocarcinoma who were treated by curative-intent surgical resection. By univariate and multivariate statistics, the absence of nerve fibers was determined to be an independent predictor of impaired long-term survival. A group comparison between patients with and without nerve fibers showed a statically significant difference with a cancer-specific 5-year-survival of 47% in patients with nerve fibers compared to 21% in patients without nerve fibers. Thus, the presence of nerve fibers in the microenvironment of intrahepatic cholangiocarcinoma is revealed as a novel and important prognostic biomarker in these patients. Abstract The oncological role of the density of nerve fibers (NFs) in the tumor microenvironment (TME) in intrahepatic cholangiocarcinoma (iCCA) remains to be determined. Therefore, data of 95 iCCA patients who underwent hepatectomy between 2010 and 2019 was analyzed regarding NFs and long-term outcome. Extensive group comparisons were carried out and the association of cancer-specific survival (CSS) and recurrence-free survival (RFS) with NFs were assessed using Cox regression models. Patients with iCCA and NFs showed a median CSS of 51 months (5-year-CSS = 47%) compared to 27 months (5-year-CSS = 21%) in patients without NFs (p = 0.043 log rank). Further, NFs (hazard ratio (HR) = 0.39, p = 0.002) and N-category (HR = 2.36, p = 0.010) were identified as independent predictors of CSS. Patients with NFs and without nodal metastases displayed a mean CSS of 89 months (5-year-CSS = 62%), while patients without NFs or with nodal metastases but not both showed a median CCS of 27 months (5-year-CSS = 25%) and patients with both positive lymph nodes and without NFs showed a median CCS of 10 months (5-year-CSS = 0%, p = 0.001 log rank). NFs in the TME are, therefore, a novel and important prognostic biomarker in iCCA patients. NFs alone and in combination with nodal status is suitable to identify iCCA patients at risk of poor oncological outcomes following curative-intent surgery.
Collapse
Affiliation(s)
- Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Xiuxiang Tan
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Dong Liu
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Sven Arke Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Simone Appinger
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Mika Rosin
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Shiva Boroojerdi
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (E.D.); (N.T.G.)
| | - Nadine Therese Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (E.D.); (N.T.G.)
| | - Marcel den Dulk
- Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands; (M.d.D.); (M.C.)
| | - Mariëlle Coolsen
- Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands; (M.d.D.); (M.C.)
| | - Tom Florian Ulmer
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
- Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands; (M.d.D.); (M.C.)
| | - Lara Rosaline Heij
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (J.B.); (X.T.); (Z.C.); (D.L.); (S.A.L.); (S.A.); (M.R.); (S.B.); (T.F.U.); (U.P.N.)
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands; (M.d.D.); (M.C.)
- Correspondence:
| |
Collapse
|
43
|
King G, Javle M. FGFR Inhibitors: Clinical Activity and Development in the Treatment of Cholangiocarcinoma. Curr Oncol Rep 2021; 23:108. [PMID: 34269915 DOI: 10.1007/s11912-021-01100-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Cholangiocarcinoma is an aggressive cancer with a poor prognosis and limited treatment. Gene sequencing studies have identified genetic alterations in fibroblast growth factor receptor (FGFR) in a significant proportion of cholangiocarcinoma (CCA) patients. This review will discuss the FGFR signaling pathway's role in CCA and highlight the development of therapeutic strategies targeting this pathway. RECENT FINDINGS The development of highly potent and selective FGFR inhibitors has led to the approval of pemigatinib for FGFR2 fusion or rearranged CCA. Other selective FGFR inhibitors are currently under clinical investigation and show promising activity. Despite encouraging results, the emergence of resistance is inevitable. Studies using circulating tumor DNA and on-treatment tissue biopsies have elucidated underlying mechanisms of intrinsic and acquired resistance. There is a critical need to not only develop more effective compounds, but also innovative sequencing strategies and combinations to overcome resistance to selective FGFR inhibition. Therapeutic development of precision medicine for FGFR-altered CCA is a dynamic process of involving a comprehensive understanding of tumor biology, rational clinical trial design, and therapeutic optimization. Alterations in FGFR represent a valid therapeutic target in CCA and selective FGFR inhibitors are treatment options for this patient population.
Collapse
Affiliation(s)
- Gentry King
- Division of Medical Oncology, University of Washington, Seattle, WA, USA.,Seattle Cancer Care Alliance, 825 Eastlake Avenue East, LG-465, Seattle, WA, 98109, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Milind Javle
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0426, Houston, TX, 77030-4009, USA.
| |
Collapse
|
44
|
Omics-Based Platforms: Current Status and Potential Use for Cholangiocarcinoma. Biomolecules 2020; 10:biom10101377. [PMID: 32998289 PMCID: PMC7600697 DOI: 10.3390/biom10101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients. Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors and canonical pathways through transcriptomics profiles (including microarrays and next-generation sequencing). In addition, the proteomics database also indicates which molecules and their directly binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9, mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro and in vivo. We reversed the panels and selected many potentially small compounds from the connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each candidate gene and correlate this information with clinical events in CCA. This review can serve as a reference for further research to clearly investigate the complex characteristics of CCA, which may lead to better prognosis, drug repurposing and treatment strategies.
Collapse
|
45
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1392] [Impact Index Per Article: 278.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
46
|
Ulusakarya A, Karaboué A, Ciacio O, Pittau G, Haydar M, Biondani P, Gumus Y, Chebib A, Almohamad W, Innominato PF. A retrospective study of patient-tailored FOLFIRINOX as a first-line chemotherapy for patients with advanced biliary tract cancer. BMC Cancer 2020; 20:515. [PMID: 32493242 PMCID: PMC7268699 DOI: 10.1186/s12885-020-07004-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND FOLFIRINOX is a pillar first-line regimen in the treatment of pancreatic cancer. Historically, biliary tract cancer (BTC) and pancreatic cancer have been treated similarly with gemcitabine alone or combined with a platinum compound. With growing evidence supporting the role of fluoropyrimidines in the treatment of BTC, we aimed at assessing the outcomes of patients (pts) with BTC on frontline FOLFIRINOX. METHODS We retrospectively analyzed data of all our consecutive patients with locally advanced (LA) or metastatic (M) BTC who were registered to receive FOLFIRINOX as a first-line therapy between 12/2013 and 11/2017 at Paul Brousse university hospital. The main endpoints were Overall Survival (OS), Time-to-Progression (TTP), best Objective Response Rate (ORR), Disease Control rate (DCR), secondary macroscopically-complete resection (res) and incidence of severe (grade 3-4) toxicity (tox). RESULTS There were 17 male (40%) and 25 female (60%) pts. aged 36 to 84 years (median: 67). They had PS of 0 (55%) or 1 (45%), and intrahepatic cholangiocarcinoma (CCA) (21 pts., 50%), gallbladder carcinoma (8 pts., 19%), perihilar CCA (7 pts., 17%), distal CCA (4 pts., 10%) and ampulloma (2 pts., 5%). BTC was LA or M in 10 (24%) and 32 pts. (76%) respectively. Biliary stent was placed in 14 pts. (33%). A median of 10 courses was given with median treatment duration of 6 months. There were no untoward toxicity issues, with no febrile neutropenia, emergency admission for toxicity or toxic death. We observed 12 partial responses (29%) and 19 disease stabilisations (45%). Six patients (14%) underwent secondary R0-R1 resection. Median TTP was 8 months [95%CL, 6-10] and median OS was 15 months [13-17]. Patients undergoing secondary resection displayed a 3-y disease-free rate of 83%. CONCLUSIONS First-line FOLFIRINOX offers promising results in patients with LA and M-BTC. It deserves prospective evaluation to further improve outcomes for advanced BTC.
Collapse
Affiliation(s)
- Ayhan Ulusakarya
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology, Paul Brousse Hospital, 12-14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,INSERM U935 Campus CNRS, Villejuif, France.
| | - Abdoulaye Karaboué
- INSERM U935 Campus CNRS, Villejuif, France.,Medical oncology unit, GHI Le Raincy-Montfermeil, Montfermeil, France
| | - Oriana Ciacio
- Assistance Publique-Hôpitaux de Paris, Department of Surgery, Paul Brousse Hospital, Centre Hépato-Biliaire, Villejuif, France
| | - Gabriella Pittau
- Assistance Publique-Hôpitaux de Paris, Department of Surgery, Paul Brousse Hospital, Centre Hépato-Biliaire, Villejuif, France
| | - Mazen Haydar
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology, Paul Brousse Hospital, 12-14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Pamela Biondani
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology, Paul Brousse Hospital, 12-14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Yusuf Gumus
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology, Paul Brousse Hospital, 12-14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Amale Chebib
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology, Paul Brousse Hospital, 12-14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Wathek Almohamad
- Assistance Publique-Hopitaux de Paris, Department of Medical Oncology, Paul Brousse Hospital, 12-14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Pasquale F Innominato
- INSERM U935 Campus CNRS, Villejuif, France.,North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, UK.,Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|