1
|
Menger MM, Emmerich M, Scheuer C, Hans S, Ehnert S, Nüssler AK, Herath SC, Steinestel K, Menger MD, Histing T, Laschke MW. Cilostazol Stimulates Angiogenesis and Accelerates Fracture Healing in Aged Male and Female Mice by Increasing the Expression of PI3K and RUNX2. Int J Mol Sci 2024; 25:755. [PMID: 38255829 PMCID: PMC10815626 DOI: 10.3390/ijms25020755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Fracture healing in the aged is associated with a reduced healing capacity, which often results in delayed healing or non-union formation. Many factors may contribute to this deterioration of bone regeneration, including a reduced 'angiogenic trauma response'. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in preclinical studies. Therefore, we herein analyzed in a stable closed femoral fracture model whether this compound also promotes fracture healing in aged mice. Forty-two aged CD-1 mice (age: 16-18 months) were daily treated with 30 mg/kg body weight cilostazol (n = 21) or vehicle (control, n = 21) by oral gavage. At 2 and 5 weeks after fracture, the femora were analyzed by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry, and Western blotting. These analyses revealed a significantly increased bending stiffness at 2 weeks (2.2 ± 0.4 vs. 4.3 ± 0.7 N/mm) and an enhanced bone formation at 5 weeks (4.4 ± 0.7 vs. 9.1 ± 0.7 mm3) in cilostazol-treated mice when compared to controls. This was associated with a higher number of newly formed CD31-positive microvessels (3.3 ± 0.9 vs. 5.5 ± 0.7 microvessels/HPF) as well as an elevated expression of phosphoinositide-3-kinase (PI3K) (3.6 ± 0.8 vs. 17.4 ± 5.5-pixel intensity × 104) and runt-related transcription factor (RUNX)2 (6.4 ± 1.2 vs. 18.2 ± 2.7-pixel intensity × 104) within the callus tissue. These findings indicate that cilostazol accelerates fracture healing in aged mice by stimulating angiogenesis and the expression of PI3K and RUNX2. Hence, cilostazol may represent a promising compound to promote bone regeneration in geriatric patients.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Maximilian Emmerich
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Andreas K. Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Steven C. Herath
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
2
|
Chen Q, Chen J, Li J, Cheng Y, Zhang R, Liu Z. Recent advances of oxidative stress in thromboangiitis obliterans: biomolecular mechanisms, biomarkers, sources and clinical applications. Thromb Res 2023; 230:64-73. [PMID: 37639784 DOI: 10.1016/j.thromres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Oxidative stress (OS) has been identified as a key factor in the development of Thromboangiitis Obliterans (TAO). The detection of OS levels in clinical and scientific research practice is mainly based on the measurement of oxidative stress such as reactive oxygen species (ROS), reactive nitrogen species (RNS) and lipid peroxides. These markers are typically assessed through a combination of physical and chemical methods. Smoking is known to the state of OS in TAO, and OS levels are significantly increased in smokers due to inadequate antioxidant protection, which leads to the expression of apoptotic proteins and subsequent cell injury, thrombosis and limb ischemia. There, understanding the role of OS in the pathogenesis of TAO may provide insights into the etiology of TAO and a basis for its prevention and treatment.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jiahua Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Numaga-Tomita T, Shimauchi T, Kato Y, Nishiyama K, Nishimura A, Sakata K, Inada H, Kita S, Iwamoto T, Nabekura J, Birnbaumer L, Mori Y, Nishida M. Inhibition of transient receptor potential cation channel 6 promotes capillary arterialization during post-ischaemic blood flow recovery. Br J Pharmacol 2023; 180:94-110. [PMID: 36068079 PMCID: PMC10092707 DOI: 10.1111/bph.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Shinshu University School of Medicine, Nagano, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan
| | - Kosuke Sakata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inada
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Satomi Kita
- Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | | | - Junichi Nabekura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan
| | - Lutz Birnbaumer
- NIEHS, NIH, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Tsuruoka T, Kodama A, Yamaguchi S, Masutomi T, Koyama A, Murohara T, Komori K, Shibata R. Zinc deficiency impairs ischemia-induced angiogenesis. JVS Vasc Sci 2022; 3:30-40. [PMID: 35128488 PMCID: PMC8792263 DOI: 10.1016/j.jvssci.2021.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Objective Zinc is an important essential trace metal involved in many physiologic functions, and its deficiency can affect the development of multiple organs, including the vasculature. However, clarity is lacking regarding the effects of zinc deficiency in the regulation of angiogenesis. We investigated the effects of zinc deficiency on the revascularization process through animal experiments and examined the relationship between the circulating zinc levels and tissue blood perfusion in patients with chronic limb-threatening ischemia (CLTI). Methods Zinc-deficient mice and control wild-type mice had undergone surgery to create unilateral hindlimb ischemia. Next, we examined the relationship between the serum zinc levels and skin perfusion pressure (SPP) as an index of tissue blood perfusion in patients with CLTI. A total of 51 patients with CLTI who had been referred for de novo revascularization for CLTI due to arteriosclerosis obliterans at our hospital from May 2012 to March 2016 were enrolled. Results The zinc-deficient mice showed a significant reduction in blood flow recovery rates in the ischemic limb and capillary density in the ischemic adductor muscle fibers compared with the control wild-type mice. The zinc-deficient mice also showed increased reactive oxygen species production after hindlimb ischemia. Nicotinamide adenine dinucleotide phosphate oxidase inhibitors ameliorated the zinc deficient-induced impairment of revascularization. The serum zinc levels were positively associated with the SPP in the CLTI patients. Multivariate regression analysis also revealed that the serum zinc levels were significantly correlated with the SPP in patients with CLTI. Conclusions Zinc deficiency impaired the rate of ischemia-induced revascularization through enhanced oxidative stress rates, suggesting that nutritional management for zinc sufficiency could be useful in CLTI prevention and treatment. In the present study, we investigated the effects of zinc deficiency on angiogenesis. We found that zinc deficiency impaired the rate of ischemia-induced revascularization through enhanced oxidative stress rates in animal model. In addition, the skin perfusion pressures were positively associated with the serum zinc levels in patients with chronic limb-threatening ischemia. Thus, the intake of zinc could be useful for the prevention and/or treatment of ischemic limb disease. Circulating zinc levels could be a useful marker for the assessment of atherosclerosis-based vascular disease such as limb ischemia. Possibly, nutritional improvement by zinc intake could lead to the prevention and treatment of ischemic vascular disease.
Collapse
Affiliation(s)
- Takuya Tsuruoka
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kodama
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shukuro Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Masutomi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Koyama
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Komori
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Correspondence: Kimihiro Komori, MD, PhD, Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Shimatani K, Sato H, Saito A, Sasai M, Watanabe K, Mizukami K, Kamohara M, Miyagawa S, Sawa Y. A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates. Am J Physiol Heart Circ Physiol 2021; 320:H1124-H1135. [PMID: 33481698 DOI: 10.1152/ajpheart.00470.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Critical limb ischemia (CLI) is a severe state of peripheral artery disease with high unmet clinical needs. Further, there are no effective treatment options for patients with CLI. Based on preclinical study results, predicting the clinical efficacy of CLI treatments is typically difficult because conventional hindlimb ischemia (HLI) rodent models display spontaneous recovery from ischemia, which is not observed in patients with CLI. Therefore, we aimed to develop a novel chronic and severe HLI model to properly evaluate the therapeutic effects of drug candidates for CLI. Severe HLI mice (Type-N) were generated by increasing the excised area of blood vessels in a hindlimb of NOG mice. Immunohistochemistry and gene expression analysis at 9 wk after the Type-N operation revealed that the ischemic limb was in a steady state with impaired angiogenesis, like that observed in patients with CLI. We did selection of chronic Type-N mice based on the number of necrotic nails and blood flow rate at 2 wk after surgery because some Type-N mice showed mild symptoms. Therapeutic treatment with cilostazol, which is used for intermittent claudication, did not restore blood flow in chronic Type-N mice. In contrast, therapeutic transplantation of pericytes and vascular endothelial cells, which can form new blood vessels in vivo, significantly improved blood flow in a subset of Type-N mice. These findings suggest that this novel chronic and severe HLI model may be a valuable standard animal model for therapeutic evaluation of the angiogenic effects of CLI drug candidates.NEW & NOTEWORTHY We developed a chronic and severe hindlimb ischemia (HLI) mouse model for preclinical research on critical limb ischemia (CLI). This model partially reflects human CLI pathology in that it does not show spontaneous restoration of blood flow or expression of angiogenic genes in the ischemic limb. This novel model may be valuable for therapeutic evaluation of the angiogenic effects of CLI drug candidates.
Collapse
Affiliation(s)
| | - Hiromu Sato
- Drug Discovery Research, Astellas Pharma Incorporated, Ibaraki, Japan
| | - Atsuhiro Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Watanabe
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Mizukami
- Drug Discovery Research, Astellas Pharma Incorporated, Ibaraki, Japan
| | - Masazumi Kamohara
- Drug Discovery Research, Astellas Pharma Incorporated, Ibaraki, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Yasmeen S, Akram BH, Hainsworth AH, Kruuse C. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cell Signal 2019; 61:108-119. [PMID: 31132399 DOI: 10.1016/j.cellsig.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke. METHOD We performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors. RESULTS We found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects. CONCLUSION This review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.
Collapse
Affiliation(s)
- Saiqa Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bilal Hussain Akram
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christina Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Gresele P, Momi S, Guglielmini G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem Pharmacol 2019; 166:300-312. [DOI: 10.1016/j.bcp.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
8
|
Furuyama T, Onohara T, Yamashita S, Yoshiga R, Yoshiya K, Inoue K, Morisaki K, Kyuragi R, Matsumoto T, Maehara Y. Prognostic factors of ulcer healing and amputation-free survival in patients with critical limb ischemia. Vascular 2018; 26:626-633. [DOI: 10.1177/1708538118786864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective A multidisciplinary approach is required to treat critical limb ischemia. We determined the poor prognostic factors of ischemic ulcer healing after optimal arterial revascularization, and assessed the efficacy of the medication therapy using cilostazol, which is a selective inhibitor of phosphodiesterase 3. Methods In this retrospective, single-center, cohort study, 129 limbs that underwent infrainguinal arterial revascularization for Rutherford class 5 critical limb ischemia were reviewed. The primary end point was the ulcer healing time after arterial revascularization. The secondary end point was the amputation-free survival rate. Results Of the 129 limbs, endovascular therapy was performed in 69 limbs, and surgical reconstructive procedures were performed in 60 limbs for initial therapy. Complete ulcer healing was achieved in 95 limbs (74%). The median ulcer healing time was 90 days. In multivariate analysis, no cilostazol use significantly inhibited ulcer healing ( p = 0.0114). A white blood cell count >10,000 ( p = 0.0185), a major defect after debridement ( p = 0.0215), and endovascular therapy ( p = 0.0308) were significant poor prognostic factors for ulcer healing. Additionally, ischemic heart disease ( p < 0.0001), albumin levels <3 g/dl ( p = 0.0016), no cilostazol use ( p = 0.0078), and a major defect after debridement ( p = 0.0208) were significant poor prognostic factors for amputation-free survival rate. Conclusions Ulcer healing within 90 days after arterial revascularization is impaired by no cilostazol use, a white blood cell count >10,000, a major defect after debridement, and endovascular therapy. Furthermore, cilostazol improves amputation-free survival rate in patients with critical limb ischemia.
Collapse
Affiliation(s)
- Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Onohara
- Department of Vascular Surgery, Kyushu Medical Center, Fukuoka, Japan
| | - Sho Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yoshiga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiji Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Morisaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoichi Kyuragi
- Department of Vascular Surgery, Kyushu Medical Center, Fukuoka, Japan
| | - Takuya Matsumoto
- Department of Vascular Surgery, International University of Health and Welfare, Chiba, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Effects of açaí and cilostazol on skin microcirculation and viability of TRAM flaps in hamsters. J Surg Res 2018; 228:253-262. [PMID: 29907219 DOI: 10.1016/j.jss.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/08/2017] [Accepted: 03/13/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Tissue necrosis caused by insufficient perfusion is a major complication in flap transfer. This study evaluated whether treatment with cilostazol or hydroalcoholic extract of seeds of Euterpe oleracea Mart. (açaí) protects the transverse rectus abdominis myocutaneous (TRAM) flap against ischemic damage in hamsters. MATERIALS AND METHODS Fifty-four hamsters were divided into three oral treatment groups: placebo, açaí, or cilostazol. Caudally based, unipedicled TRAM flaps were raised, sutured back, classified into four vascular zones (I-IV), and evaluated for tissue viability, capillary blood flow (CBF), perfused vessel density (PVD), and microvascular flow index (MFI) by orthogonal polarization spectral imaging at three time points: immediately postoperatively (IPO), 24 h postoperatively (24hPO), and 7 d postoperatively (7POD). RESULTS Comparing to placebo, açaí increased PVD at IPO and açaí and cilostazol increased CBF and PVD at 24hPO in zone I; cilostazol increased CBF, PVD, and MFI at IPO, and CBF at 24hPO in zone II; açaí and cilostazol increased CBF at all time points and PVD and MFI at IPO and 24hPO in zone III; cilostazol increased CBF at IPO and 7POD, açaí increased CBF at 7POD, and both increased PVD and MFI at all time points in zone IV; and açaí and cilostazol increased the percentage of viable area in zones III and IV. CONCLUSIONS Açaí and cilostazol treatments had a protective effect against ischemic damage to TRAM flaps in hamsters, improving microvascular blood flow and increasing the survival of flap zones contralateral to the vascular pedicle (zones III and IV).
Collapse
|
10
|
Wang Z, Liu T, Chen X, You H, Zhang Q, Xue J, Zheng Y, Luo D. Low molecular weight fucoidan ameliorates hindlimb ischemic injury in type 2 diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:434-442. [PMID: 28917976 DOI: 10.1016/j.jep.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Low molecular weight fucoidan (LMWF), extracted from Laminaria japonica Areschoug, is a traditional Chinese medicine, commonly used to alleviate edema, particularly for feet with numbness and pain. AIM OF THE STUDY Diabetic mellitus (DM) patients are at high risk of developing peripheral arterial disease (PAD). Individuals with DM and PAD co-morbidity have a much higher risk of critical limb ischemia. LMWF showed several beneficial effects, such as anti-inflammation, anti-thrombosis, and enhancing revascularization. Therefore, we hypothesized that LMWF might be beneficial to diabetes-induced PAD, and investigated the therapeutic potential of LMWF on diabetic PAD rats. MATERIALS AND METHODS Type 2 diabetic Goto-Kakizaki (GK) rats were made PAD by injection of sodium laurate into femoral artery. LMWF (20, 40 or 80mg/kg/day) or cilostazol (100mg/kg/day) were given to diabetic PAD rats for 4 weeks, respectively. The effects of LMWF on foot ulceration and claudication, plantar blood flow, collateral vessel formation, endothelium morphology, gastrocnemius injury, platelet aggregation, vessel vasodilation, and the expressions of inflammation factors, VEGF, eNOS, and nitric oxide were measured. RESULTS We found that LMWF markedly ameliorated foot ulceration and claudication, and improved the plantar perfusion by reversing hyperreactive platelet aggregation, ameliorating endothelium-dependent vasodilation and revascularization on diabetic PAD rats. In addition, upregulation of several inflammatory factors, such as ICAM-1 and IL-1β in the gastrocnemius muscles of ischemic hindlimb were suppressed by LMWF administration. And eNOS phosphorylation at Ser1177 and NO production were significantly enhanced in LMWF-treated diabetic PAD rats. CONCLUSIONS Taken together, our findings demonstrated that LMWF exhibits therapeutic effect on hindlimb ischemia in type 2 diabetic rats likely through ameliorating endothelium eNOS dysfunction and enhancing revascularization, thus, providing a potential supplementary non-invasive treatment for diabetes-induced PAD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China
| | - Tiantian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China
| | - Xiaoping Chen
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China
| | - Hongjie You
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China
| | - Quanbin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jingyi Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China.
| | - Dali Luo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, District of Feng Tai, Street of Youanmenwai, #10 Xi TouTiao, Beijing 100069, PR China.
| |
Collapse
|
11
|
Cilostazol attenuates intimal hyperplasia in a mouse model of chronic kidney disease. PLoS One 2017; 12:e0187872. [PMID: 29206849 PMCID: PMC5716535 DOI: 10.1371/journal.pone.0187872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/29/2017] [Indexed: 11/21/2022] Open
Abstract
Intimal hyperplasia (IH) is a common cause of vasculopathy due to direct endothelial damage (such as post-coronary revascularization) or indirect injury (such as chronic kidney disease, or CKD). Although the attenuation of coronary revascularization-induced IH (direct-vascular-injury-induced IH) by cilostazol, a phosphodiesterase III inhibitor, has been demonstrated, our understanding of the effect on CKD-induced IH (indirect-vascular-injury-induced IH) is limited. Herein, we tested if cilostazol attenuated CKD-induced IH in a mouse model of ischemic-reperfusion injury with unilateral nephrectomy (Chr I/R), a normotensive non-proteinuria CKD model. Cilostazol (50 mg/kg/day) or placebo was orally administered once daily from 1-week post-nephrectomy. At 20 weeks, cilostazol significantly attenuated aortic IH as demonstrated by a 34% reduction in the total intima area with 50% and 47% decreases in the ratios of tunica intima area/tunica media area and tunica intima area/(tunica intima + tunica media area), respectively. The diameters of aorta and renal function were unchanged by cilostazol. Interestingly, cilostazol decreased miR-221, but enhanced miR-143 and miR-145 in either in vitro or aortic tissue, as well as attenuated several pro-inflammatory mediators, including asymmetrical dimethylarginine, high-sensitivity C-reactive protein, vascular endothelial growth factor in aorta and serum pro-inflammatory cytokines (IL-6 and TNF-α). We demonstrated a proof of concept of the effectiveness of cilostazol in attenuating IH in a Chr I/R mouse model, a CKD model with predominantly indirect-vascular-injury-induced IH. These considerations warrant further investigation to develop a new primary prevention strategy for CKD-related IH.
Collapse
|
12
|
Tsukamoto Y, Nagata E, Fukuyama N, Itoh Y, Yuzawa H, Kohara S, Shimizu M, Takahari Y, Takizawa S. Cilostazol protects against microvascular brain injury in a rat model of type 2 diabetes. Neurosci Res 2017; 117:48-53. [DOI: 10.1016/j.neures.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 11/26/2022]
|
13
|
Herath SC, Lion T, Klein M, Stenger D, Scheuer C, Holstein JH, Mörsdorf P, Rollmann MFR, Pohlemann T, Menger MD, Histing T. Stimulation of angiogenesis by cilostazol accelerates fracture healing in mice. J Orthop Res 2015; 33:1880-7. [PMID: 26134894 DOI: 10.1002/jor.22967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 02/04/2023]
Abstract
Cilostazol, a selective phosphodiesterase-3 inhibitor, is known to control cyclic adenosine monophosphate (c-AMP) and to stimulate angiogenesis through upregulation of pro-angiogenic factors. There is no information, however, whether cilostazol affects fracture healing. We, therefore, studied the effect of cilostazol on callus formation and biomechanics during fracture repair. Bone healing was analyzed in a murine femur fracture stabilized with an intramedullary screw. Radiological, biomechanical, histomorphometric, histochemical, and protein biochemical analyses were performed at 2 and 5 weeks after fracture. Twenty-five mice received 30 mg/kg body weight cilostazol p.o. daily. Controls (n=24) received equivalent amounts of vehicle. In cilostazol-treated animals radiological analysis at 2 weeks showed an improved healing with an accelerated osseous bridging compared to controls. This was associated with a significantly higher amount of bony tissue and a smaller amount of cartilage tissue within the callus. Western blot analysis showed a higher expression of cysteine-rich protein 61 (CYR61), bone morphogenetic protein (BMP)-4, and receptor activator of NF-kappaB ligand (RANKL). At 5 weeks, improved fracture healing after cilostazol treatment was indicated by biomechanical analyses, demonstrating a significant higher bending stiffness compared to controls. Thus, cilostazol improves fracture healing by accelerating both bone formation and callus remodeling.
Collapse
Affiliation(s)
- Steven C Herath
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Thorsten Lion
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - David Stenger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Saarland, Germany
| | - Jörg H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Philipp Mörsdorf
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Mika F R Rollmann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Saarland, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Saarland, Germany
| |
Collapse
|
14
|
Li H, Hong DH, Son YK, Na SH, Jung WK, Bae YM, Seo EY, Kim SJ, Choi IW, Park WS. Cilostazol induces vasodilation through the activation of Ca2+-activated K+ channels in aortic smooth muscle. Vascul Pharmacol 2015; 70:15-22. [DOI: 10.1016/j.vph.2015.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/25/2022]
|
15
|
Biscetti F, Pecorini G, Arena V, Stigliano E, Angelini F, Ghirlanda G, Ferraccioli G, Flex A. Cilostazol improves the response to ischemia in diabetic mice by a mechanism dependent on PPARγ. Mol Cell Endocrinol 2013; 381:80-7. [PMID: 23891623 DOI: 10.1016/j.mce.2013.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Cilostazol is effective for the treatment of peripheral ischemia. This compound has several beneficial effects on platelet aggregation, serum lipids and endothelial cells, and we recently found that it enhances collateral blood flow in the ischemic hind limbs of mice. Peroxisome proliferator-activated receptor (PPAR)γ, a receptor for thiazolidinediones, plays a role in angiogenesis. The aim of this work was to investigate the underlying molecular mechanisms and effects of cilostazol in a model of peripheral ischemia in diabetic mice. We induced diabetes in mice by streptozotocin (STZ) administration and studied ischemia-induced angiogenesis in the ischemic hind limbs of cilostazol-treated and untreated control mice. We found that perfusion recovery was significantly improved in treated compared with control diabetic mice. Interestingly, we found that the expression of PPARγ is reduced in ischemic tissues of diabetic mice. Furthermore, we discovered that local inhibition of the activity of this nuclear receptor decreased the angiogenic response to cilostazol treatment. Finally, we noted that this phenomenon is dependent on VEGF and modulated by PPARγ. Cilostazol administration enhances collateral blood flow in the ischemic hind limbs of STZ-induced diabetic mice through a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Federico Biscetti
- Laboratory of Vascular Biology and Genetics, Department of Medicine, A. Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy; Division of Rheumatology, Institute of Rheumatology & Affine Sciences, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Biscetti F, Pecorini G, Straface G, Arena V, Stigliano E, Rutella S, Locatelli F, Angelini F, Ghirlanda G, Flex A. Cilostazol promotes angiogenesis after peripheral ischemia through a VEGF-dependent mechanism. Int J Cardiol 2013; 167:910-6. [DOI: 10.1016/j.ijcard.2012.03.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 11/27/2022]
|
17
|
Lohr NL, Ninomiya JT, Warltier DC, Weihrauch D. Far red/near infrared light treatment promotes femoral artery collateralization in the ischemic hindlimb. J Mol Cell Cardiol 2013; 62:36-42. [PMID: 23702287 DOI: 10.1016/j.yjmcc.2013.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 01/19/2023]
Abstract
Nitric oxide (NO) is a crucial mediator of hindlimb collateralization and angiogenesis. Within tissues there are nitrosyl-heme proteins which have the potential to generate NO under conditions of hypoxia or low pH. Low level irradiation of blood and muscle with light in the far red/near infrared spectrum (670 nm, R/NIR) facilitates NO release. Therefore, we assessed the impact of red light exposure on the stimulation of femoral artery collateralization. Rabbits and mice underwent unilateral resection of the femoral artery and chronic R/NIR treatment. The direct NO scavenger carboxy-PTIO and the nitric oxide synthase (NOS) inhibitor L-NAME were also administered in the presence of R/NIR. DAF fluorescence assessed R/NIR changes in NO levels within endothelial cells. In vitro measures of R/NIR induced angiogenesis were assessed by endothelial cell proliferation and migration. R/NIR significantly increased collateral vessel number which could not be attenuated with L-NAME. R/NIR induced collateralization was abolished with c-PTIO. In vitro, NO production increased in endothelial cells with R/NIR exposure, and this finding was independent of NOS inhibition. Similarly R/NIR induced proliferation and tube formation in a NO dependent manner. Finally, nitrite supplementation accelerated R/NIR collateralization in wild type C57Bl/6 mice. In an eNOS deficient transgenic mouse model, R/NIR restores collateral development. In conclusion, R/NIR increases NO levels independent of NOS activity, and leads to the observed enhancement of hindlimb collateralization.
Collapse
Affiliation(s)
- Nicole L Lohr
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Santos MRGA, Celotto AC, Capellini VK, Evora PRB, Piccinato CE, Joviliano EE. The protective effect of cilostazol on isolated rabbit femoral arteries under conditions of ischemia and reperfusion: the role of the nitric oxide pathway. Clinics (Sao Paulo) 2012; 67:171-8. [PMID: 22358243 PMCID: PMC3275114 DOI: 10.6061/clinics/2012(02)13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/14/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/ reperfusion conditions following cilostazol administration. METHODS Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/ Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS Acetylcholine-and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/ Cilostazol/Reperfusion groups. CONCLUSION Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.
Collapse
Affiliation(s)
- Mariana R G A Santos
- Laboratory of Endothelial Function, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|