1
|
Guimarães J, de Almeida J, Mendes PL, Ferreira MJ, Gonçalves L. Advancements in non-invasive imaging of atherosclerosis: Future perspectives. J Clin Lipidol 2024; 18:e142-e152. [PMID: 38142178 DOI: 10.1016/j.jacl.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the buildup of plaques in arterial walls, leading to cardiovascular diseases and high morbidity and mortality rates worldwide. Non-invasive imaging techniques play a crucial role in evaluating patients with suspected or established atherosclerosis. However, there is a growing body of evidence suggesting the need to visualize the underlying processes of plaque progression and rupture to enhance risk stratification. This review explores recent advancements in non-invasive assessment of atherosclerosis, focusing on computed tomography, magnetic resonance imaging, and nuclear imaging. These advancements provide valuable insights into the assessment and management of atherosclerosis, potentially leading to better risk stratification and improved patient outcomes.
Collapse
Affiliation(s)
- Joana Guimarães
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal.
| | - José de Almeida
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Paulo Lázaro Mendes
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal
| | - Maria João Ferreira
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra's Hospital and University Center, Praceta Mota Pinto, 3000-561 Coimbra, Portugal; Faculty of Medicine, Coimbra's University, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Ryu J, Han SA, Han S, Choi S, Moon DH, Oh M. Comparison of SUV A/V and SUV A-V for Evaluating Atherosclerotic Inflammation in 18F-FDG PET/CT. Nucl Med Mol Imaging 2024; 58:25-31. [PMID: 38261882 PMCID: PMC10796899 DOI: 10.1007/s13139-023-00822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose This study aimed to compare the clinical significance of two parameters, division of standardized uptake value (SUV) of target arterial activity by background venous blood pool activity (SUVA/V) and subtraction of background venous blood pool activity from SUV of target arterial activity (SUVA-V) of carotid arteries with atherosclerotic plaques using 18F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT). Methods Patients aged 50 years or more who were diagnosed with carotid artery stenosis of 50% or more with carotid Doppler ultrasonography and had torso 18F-FDG PET/CT were enrolled retrospectively and classified patients who developed cerebrovascular events (CVEs) within 5 years after 18F-FDG PET/CT scan as the active group and patients who did not experience the CVE within 5 years as an inactive group. We calculated SUVA/V and SUVA-V using measurements of SUVmax of carotid arteries and mean SUV of superior vena cava (SVC). Results SUVA-V, SUVA-V_high, and SUVA-V_low were significantly higher in the active group than in the inactive group, but neither SUVA/V, SUVA/V_high, nor SUVA/V_low showed significant differences between the active and inactive groups. The difference in rank between groups of SUVA/V_high and SUVA/V_low was greater than the difference in rank between groups of SUVA-V_high and SUVA-V_low. The CVE incidence differed between SUVA/V_high and SUVA/V_low of high carotid FDG uptake, but the CVE incidence did not differ between SUVA-V_high and SUVA-V_low of high carotid FDG uptake. Conclusion SUVA-V may be a more rational solution than SUVA/V for evaluating atherosclerotic plaque inflammation on 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Jeongryul Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Shin Ae Han
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Sangwon Han
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Sunju Choi
- Department of Nuclear Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
3
|
Chlorogiannis DD, Pargaonkar S, Papanagiotou P, Bakogiannis NC, Bakoyiannis C, Kokkinidis DG. Inflammation, anti-inflammatory agents, and the role of colchicine in carotid artery stenosis. VASA 2024; 53:4-12. [PMID: 38079179 DOI: 10.1024/0301-1526/a001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality worldwide. In the last few years, the role of inflammation and inflammatory modulatory medications is investigated for the optimal treatment of coronary artery disease. It can be hypothesized that since inflammation is also involved in carotid artery stenosis development and progression, the same class of medication could be useful. Our objective with this review is to present the available evidence, published studies and promising ongoing trials on the role of anti-inflammatory medications - with a special emphasis on the most commonly used drug of this class: colchicine - in patients with carotid artery stenosis.
Collapse
Affiliation(s)
| | - Sumant Pargaonkar
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York Ciry, NY, USA
| | - Panagiotis Papanagiotou
- First Department of Radiology, School of Medicine, National & Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
- Department of Diagnostic and Interventional Neuroradiology, Hospital Bremen-Mitte/Bremen-Ost, Bremen, Germany
| | - Nikolaos C Bakogiannis
- Division of Vascular Surgery, Laiko General Hospital/University of Athens School of Medicine, Athens, Greece
| | - Christos Bakoyiannis
- Division of Vascular Surgery, Laiko General Hospital/University of Athens School of Medicine, Athens, Greece
| | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Ruddy TD, Kadoya Y, Small GR. Targeting atherosclerosis with antihypertensive therapy. J Nucl Cardiol 2023; 30:1627-1629. [PMID: 37138176 DOI: 10.1007/s12350-023-03272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Affiliation(s)
- Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
| | - Yoshito Kadoya
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| | - Gary R Small
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada
| |
Collapse
|
5
|
Aortic Metabolic Uptake Predicts the Risk of Future Cardiovascular Events in Patients With Rheumatoid Arthritis. JACC Cardiovasc Imaging 2023; 16:253-255. [PMID: 36648047 DOI: 10.1016/j.jcmg.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
|
6
|
Dong Z, Zhao Y, Chen Y, Liu Z, Song H, Li H, Shi D, Zhou C, Zhou J, Liu R. Evaluating Atherosclerosis of the Abdominal Aorta in Rabbits Using 2-D Strain Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2199-2206. [PMID: 35953348 DOI: 10.1016/j.ultrasmedbio.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
After establishment of an animal model of atherosclerosis, speckle tracking imaging was performed to analyze the correlation between ultrasound characteristics and pathological manifestations. Rabbits were divided into the normal control (NC) and atherosclerosis (AS) groups. Rabbits in the AS group were subjected to ultrasound-guided balloon injury of the abdominal aorta and fed a high-fat diet for 16 wk. Rabbits in the NC group were fed a normal diet for the same period. After 16 wk, all animals underwent serological tests, ultrasound and speckle tracking circumferential strain analysis. In the AS group, 28 hypo-echoic plaques had formed. The circumferential strain of six segments at the short axis of plaques in the AS group was lower than that in the NC group (p < 0.001), and global circumferential strain (GCS) in the AS group was significantly reduced compared with the NC group (p < 0.001). In the AS group, the area ratio of type I to type III collagen fibers was smaller than that in the NC group. The GCS of atherosclerotic plaques was positively correlated with the area ratio of type I to type III collagen fibers in plaques (r = 0.7181, p < 0.001). In conclusion, there is a significant positive correlation between the decreased circumferential strain and the decreased area ratio of type I to type III collagen fibers in hypo-echoic plaques.
Collapse
Affiliation(s)
- Zhizhi Dong
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; Central Laboratory, First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang, China
| | - Yue Chen
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; Central Laboratory, First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Zulin Liu
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Haiying Song
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Hao Li
- Department of Gastrointestinal Surgery, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Douzi Shi
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; Central Laboratory, First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Chang Zhou
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Jun Zhou
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Rong Liu
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
7
|
Kuo DY, Wu YW, Hsieh CH, Liao LJ, Shueng PW. Application of Carotid Duplex Ultrasonography in the Surveillance of Carotid Artery Stenosis after Neck Irradiation. Rev Cardiovasc Med 2022; 23:240. [PMID: 39076899 PMCID: PMC11266801 DOI: 10.31083/j.rcm2307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 07/31/2024] Open
Abstract
Head and neck cancer (HNC) shares some risk factors with cardiovascular disease. Neck radiotherapy (RT) causes carotid artery injury and stenosis. In HNC patients treated with RT, the prevalence rate of severe ( > 70%) carotid artery stenosis is > 10%, and the cumulative incidence continuously increases over time. There is at least a two-fold risk of cerebrovascular events in these patients compared with the normal population. Carotid artery stenosis is mainly assessed and diagnosed via duplex ultrasonography. Angioplasty and stenting may be recommended to patients who developed severe post-irradiation carotid artery stenosis. This review assessed Taiwanese data that provided some recommendations for HNC patients treated with RT. With consideration of the high prevalence rate of carotid artery stenosis after neck irradiation, duplex ultrasonography should be included in the follow-up workup.
Collapse
Affiliation(s)
- Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 220 New Taipei, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, 220 New Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, 112 Taipei, Taiwan
| | - Chen-Hsi Hsieh
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 220 New Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, 112 Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 112 Taipei, Taiwan
| | - Li-Jen Liao
- Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, 220 New Taipei, Taiwan
- Biomedical Engineering Office, Far Eastern Memorial Hospital, 220 New Taipei, Taiwan
- Department of Electrical Engineering, Yuan Ze University, 320 Taoyuan, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, 220 New Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, 112 Taipei, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, 112 Taipei, Taiwan
| |
Collapse
|
8
|
Leboucher A, Sotton S, Gambin Flandrin I, Magné N. Head and neck radiotherapy-induced carotid toxicity: Pathophysiological concepts and clinical syndromes. Oral Oncol 2022; 129:105868. [DOI: 10.1016/j.oraloncology.2022.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023]
|
9
|
Mechtouff L, Sigovan M, Douek P, Costes N, Le Bars D, Mansuy A, Haesebaert J, Bani-Sadr A, Tordo J, Feugier P, Millon A, Luong S, Si-Mohamed S, Collet-Benzaquen D, Canet-Soulas E, Bochaton T, Crola Da Silva C, Paccalet A, Magne D, Berthezene Y, Nighoghossian N. Simultaneous assessment of microcalcifications and morphological criteria of vulnerability in carotid artery plaque using hybrid 18F-NaF PET/MRI. J Nucl Cardiol 2022; 29:1064-1074. [PMID: 33145738 DOI: 10.1007/s12350-020-02400-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies have suggested the role of microcalcifications in plaque vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological criteria of vulnerability. METHODS AND RESULTS We included 12 patients with either recently symptomatic or asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-background ratio (TBR) was measured in culprit and nonculprit (including contralateral plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also collected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vulnerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase (TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial walls did not differ between symptomatic and asymptomatic patients. CONCLUSIONS 18F-NaF PET/MRI may be a promising tool for providing additional insights into the plaque vulnerability.
Collapse
Affiliation(s)
- Laura Mechtouff
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron, France.
- INSERM U1060, CarMeN Laboratory, University Lyon 1, Lyon, France.
| | - Monica Sigovan
- CNRS, UMR 5220, CREATIS, University of Lyon, Lyon, France
- INSA-Lyon UCBL, Inserm U1206, UJM-Saint Etienne, Lyon, France
| | - Philippe Douek
- CNRS, UMR 5220, CREATIS, University of Lyon, Lyon, France
- INSA-Lyon UCBL, Inserm U1206, UJM-Saint Etienne, Lyon, France
- Department of Radiology, Louis Pradel University Hospital, Bron, France
| | | | - Didier Le Bars
- CERMEP - Imagerie du vivant, Lyon, France
- ICBMS, University C. Bernard Lyon 1 & Hospices Civils de Lyon, Lyon, France
| | - Adeline Mansuy
- Cellule Recherche Imagerie, Louis Pradel University Hospital, Bron, France
| | - Julie Haesebaert
- Clinical Research and Epidemiology Unit, Public Health Department Hospices Civils de Lyon & Université de Lyon, Université Claude Bernard Lyon 1, Université Saint-Étienne, HESPER EA 7425, F-69008 Lyon, 42023, Saint-Etienne, France
| | - Alexandre Bani-Sadr
- Department of Nuclear Medicine, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jérémie Tordo
- Department of Nuclear Medicine, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Patrick Feugier
- Vascular Surgery Department, Edouard Herriot University Hospital & Claude Bernard Lyon 1 University, Lyon, France
| | - Antoine Millon
- Vascular Surgery Department, Edouard Herriot University Hospital & Claude Bernard Lyon 1 University, Lyon, France
| | - Stéphane Luong
- Department of Radiology, Louis Pradel University Hospital, Bron, France
| | - Salim Si-Mohamed
- Department of Radiology, Louis Pradel University Hospital, Bron, France
| | | | | | - Thomas Bochaton
- INSERM U1060, CarMeN Laboratory, University Lyon 1, Lyon, France
| | | | | | - David Magne
- ICBMS, CNRS, UMR 5246, University Lyon 1, Lyon, France
| | - Yves Berthezene
- CNRS, UMR 5220, CREATIS, University of Lyon, Lyon, France
- Neuroradiology Department, Pierre Wertheimer Hospital, Bron, France
| | - Norbert Nighoghossian
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron, France
- INSERM U1060, CarMeN Laboratory, University Lyon 1, Lyon, France
| |
Collapse
|
10
|
Li F, Du Y, Hong L, Liu Z, Yan K, Liu C, Zhu Z, Lu Q, Tang C, Zhu L. Single‐cell transcriptional profiling of human carotid plaques reveals a subpopulation of endothelial cells associated with stroke incidences. J Cell Mol Med 2022; 26:3446-3459. [PMID: 35527426 PMCID: PMC9189335 DOI: 10.1111/jcmm.17354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
The differences in plaque histology between symptomatic and asymptomatic patients have been widely accepted. Whether there is a heterogeneity of cells between symptomatic and asymptomatic plaques remains largely unclear. To reveal the potential heterogeneity within different plaques, which may contribute to different stroke incidences, we obtained the scRNA‐seq data from symptomatic and asymptomatic patients and identified eight cell types present in plaques. Further analysis of endothelial cells (ECs) revealed three distinct EC subpopulations appeared to be endowed with specific biological functions such as antigen processing and presentation, cell adhesion, and smooth muscle cell proliferation. Of note, the differentially expressed genes of the EC 2 subpopulation showed that the genes involved in cell adhesion were up‐regulated in asymptomatic plaques compared to symptomatic plaques. Integrating the data of intraplaque haemorrhage and plaque stability, the 5th top‐enriched biological process was cell adhesion in the stable or non‐haemorrhaged plaques compared to unstable plaques or haemorrhaged plaques. Among these cell adhesion‐related genes, the intersection gene AOC3 may play a vital role in plaque haemorrhage and plaque stability. Targeting cell adhesion and the specialized genes may provide potential new therapeutic directions to prevent asymptomatic patients from stroke.
Collapse
Affiliation(s)
- Fengchan Li
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Yun Du
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Lei Hong
- Department of The First Affiliated Hospital of USTC Anhui China
| | - Ziting Liu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Kunmin Yan
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Chu Liu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Zhen Zhu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Qiongyu Lu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
| | - Chaojun Tang
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
- National Clinical Research Center for Hematologic Diseases of the First Affiliated Hospital of Soochow University Suzhou China
| | - Li Zhu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Suzhou Key Laboratory of thrombosis and vascular diseases Soochow University Suzhou China
- National Clinical Research Center for Hematologic Diseases of the First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
11
|
Effect of systemic immune inflammation index on symptom development in patients with moderate to severe carotid stenosis. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1055846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Raynor WY, Park PSU, Borja AJ, Sun Y, Werner TJ, Ng SJ, Lau HC, Høilund-Carlsen PF, Alavi A, Revheim ME. PET-Based Imaging with 18F-FDG and 18F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders. Diagnostics (Basel) 2021; 11:diagnostics11122234. [PMID: 34943473 PMCID: PMC8700072 DOI: 10.3390/diagnostics11122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (FDG) represents a method of detecting and characterizing arterial wall inflammation, with potential applications in the early assessment of vascular disorders such as atherosclerosis. By portraying early-stage molecular changes, FDG-PET findings have previously been shown to correlate with atherosclerosis progression. In addition, recent studies have suggested that microcalcification revealed by 18F-sodium fluoride (NaF) may be more sensitive at detecting atherogenic changes compared to FDG-PET. In this review, we summarize the roles of FDG and NaF in the assessment of atherosclerosis and discuss the role of global assessment in quantification of the vascular disease burden. Furthermore, we will review the emerging applications of FDG-PET in various vascular disorders, including pulmonary embolism, as well as inflammatory and infectious vascular diseases.
Collapse
Affiliation(s)
- William Y. Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Peter Sang Uk Park
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Austin J. Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Yusha Sun
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
- Correspondence: or
| |
Collapse
|
13
|
Alavi A, Werner TJ, Raynor W, Høilund-Carlsen PF, Revheim ME. Critical review of PET imaging for detection and characterization of the atherosclerotic plaques with emphasis on limitations of FDG-PET compared to NaF-PET in this setting. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:337-351. [PMID: 34754605 PMCID: PMC8569336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Applications of various positron emission tomography (PET) tracers for assessing atherosclerosis have been evolving over the years. 18F-fluorodeoxyglucose (FDG)-PET was introduced in 2001 as a probe for this purpose. During the past decade, numerous papers have described a major role for sodium 18F-fluoride (NaF) as another tracer for assessing this vascular disease. We have reviewed the existing data about the merits of both techniques for assessing atherosclerosis. We have to emphasize that our team has been actively involved in conducting research with both tracers over many years. In this review, we have relied upon the data from the CAMONA study which has become a gold standard for defining the role of PET imaging in atherosclerosis. This study was one of the largest of any in recent years and has allowed comprehensive comparison between these two tracers in detecting and quantifying atherosclerosis. Based on what we have learned from this major undertaking, we believe the role of FDG-PET will be limited in assessing atherosclerosis in clinical work-up. This is relevant to both major and coronary arteries. In contrast to NaF-PET, the role of FDG-PET in assessing coronary artery atherosclerosis is almost non-existent. Based on the existing data in this domain, NaF-PET is an ideal imaging modality for both research and clinical assessment of atherosclerosis. The aim of this review is to describe the pros and cons of both approaches based on the existing data in the literature.
Collapse
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - William Raynor
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University HospitalOdense 5000, Denmark
- Department of Clinical Research, University of Southern DenmarkOdense, Denmark
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University HospitalOslo 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo 0424, Norway
| |
Collapse
|
14
|
Kondakov A, Lelyuk V. Clinical Molecular Imaging for Atherosclerotic Plaque. J Imaging 2021; 7:jimaging7100211. [PMID: 34677297 PMCID: PMC8538040 DOI: 10.3390/jimaging7100211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a well-known disease leading to cardiovascular events, including myocardial infarction and ischemic stroke. These conditions lead to a high mortality rate, which explains the interest in their prevention, early detection, and treatment. Molecular imaging is able to shed light on the basic pathophysiological processes, such as inflammation, that cause the progression and instability of plaque. The most common radiotracers used in clinical practice can detect increased energy metabolism (FDG), macrophage number (somatostatin receptor imaging), the intensity of cell proliferation in the area (labeled choline), and microcalcifications (fluoride imaging). These radiopharmaceuticals, especially FDG and labeled sodium fluoride, can predict cardiovascular events. The limitations of molecular imaging in atherosclerosis include low uptake of highly specific tracers, possible overlap with other diseases of the vessel wall, and specific features of certain tracers’ physiological distribution. A common protocol for patient preparation, data acquisition, and quantification is needed in the area of atherosclerosis imaging research.
Collapse
|
15
|
Abstract
New therapeutic approaches are required for secondary prevention of residual vascular risk after stroke. Diverse sources of evidence support a causal role for inflammation in the pathogenesis of stroke. Randomized controlled trials of anti-inflammatory agents have reported benefit for secondary prevention in patients with coronary disease. We review the data from observational studies supporting a role for inflammation in pathogenesis of stroke, overview randomized controlled trials of anti-inflammatory therapy in cardiac disease and discuss the potential implications for stroke prevention therapy.
Collapse
Affiliation(s)
- Peter J Kelly
- Stroke Service, Mater University Hospital and University College Dublin, Ireland (P.J.K.).,Health Research Board Stroke Clinical Trials Network Ireland (P.J.K.)
| | - Robin Lemmens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Belgium (R.L.).,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium (R.L.).,Department of Neurology, University Hospitals Leuven, Belgium (R.L.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, National & Kapodistrian University of Athens, Greece (G.T.)
| |
Collapse
|
16
|
Sriranjan RS, Tarkin JM, Evans NR, Le EPV, Chowdhury MM, Rudd JHF. Atherosclerosis imaging using PET: Insights and applications. Br J Pharmacol 2021; 178:2186-2203. [PMID: 31517992 DOI: 10.1111/bph.14868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
PET imaging is able to harness biological processes to characterise high-risk features of atherosclerotic plaque prone to rupture. Current radiotracers are able to track inflammation, microcalcification, hypoxia, and neoangiogenesis within vulnerable plaque. 18 F-fluorodeoxyglucose (18 F-FDG) is the most commonly used radiotracer in vascular studies and is employed as a surrogate marker of plaque inflammation. Increasingly, 18 F-FDG and other PET tracers are also being used to provide imaging endpoints in cardiovascular interventional trials. The evolution of novel PET radiotracers, imaging protocols, and hybrid scanners are likely to enable more efficient and accurate characterisation of high-risk plaque. This review explores the role of PET imaging in atherosclerosis with a focus on PET tracers utilised in clinical research and the applications of PET imaging to cardiovascular drug development.
Collapse
Affiliation(s)
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Nicholas R Evans
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Elizabeth P V Le
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Kocyigit D, Scanameo A, Xu B. Multimodality imaging for the prevention of cardiovascular events: Coronary artery calcium and beyond. Cardiovasc Diagn Ther 2021; 11:840-858. [PMID: 34295709 PMCID: PMC8261752 DOI: 10.21037/cdt-19-654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) has been the leading cause of death worldwide for more than a decade. Prevention is of utmost importance to reduce related mortality. The innovations in cardiovascular imaging technology, in addition to our improved understanding of coronary atherosclerosis pathogenesis, have resulted in cardiovascular imaging becoming one of the most influential tools for diagnosis and risk stratification in ASCVD. Although numerous publications have emerged on this topic, data that guide routine cardiology clinical practice currently focus on the utility of a limited number of such modalities, namely arterial ultrasonography and computed tomography. Herein, current evidence with respect to the role of multimodality cardiovascular imaging on ASCVD prevention will be reviewed.
Collapse
Affiliation(s)
- Duygu Kocyigit
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Bo Xu
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Urbak L, Ripa RS, Sandholt BV, Kjaer A, Sillesen H, Graebe M. Carotid plaque inflammatory activity assessed by 2-[18F]FDG-PET imaging decrease after a neurological thromboembolic event. EJNMMI Res 2021; 11:30. [PMID: 33755791 PMCID: PMC7988031 DOI: 10.1186/s13550-021-00773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Atherosclerotic plaque vulnerability is comprised by plaque composition driven by inflammatory activity and these features can be depicted with 3D ultrasound and 2-[18F]FDG-PET, respectively. The study investigated timely changes in carotid artery plaque inflammation and morphology after a thromboembolic event with PET/CT and novel ultrasound volumetric grayscale median (GSM) readings. Patients with a single hemisphere-specific neurological symptom and the presence of an ipsilateral carotid artery atherosclerotic plaque were prospectively included to both 2-[18F]FDG PET/CT and 3D ultrasound scans of the plaque immediately after their event and again three months later. On PET/CT images the maximum standardized uptake value (SUVmax) was measured and the volumetric ultrasound acquisitions were analyzed using a semiautomated software measuring GSM values. Results Baseline scans were performed by a mean of 7 days (range 2–14) after the symptom and again after 98 days (range 91–176). For the entire group (n = 14), we found a decrease in average SUVmax from baseline to follow-up of − 0.18 (95% confidence interval: − 0.34 to − 0.02, P = 0.034). GSM did not increase significantly over time (mean change: + 2.21, 95% confidence interval: − 17.02 to 21.44, P = 0.808). Conclusion A decrease in culprit lesion 2-[18F]FDG-uptake 3 months after an event indicates a decrease in inflammatory activity, suggesting that carotid plaque stabilization over time. 3D ultrasound morphological quantitative differences in GSM were not detectable after 3 months.
Collapse
Affiliation(s)
- Laerke Urbak
- Department of Vascular Surgery, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Rasmus S Ripa
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Benjamin V Sandholt
- Department of Vascular Surgery, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sillesen
- Department of Vascular Surgery, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Martin Graebe
- Department of Vascular Surgery, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
19
|
Ménégaut L, Jalil A, Pilot T, van Dongen K, Crespy V, Steinmetz E, Pais de Barros JP, Geissler A, Le Goff W, Venteclef N, Lagrost L, Gautier T, Thomas C, Masson D. Regulation of glycolytic genes in human macrophages by oxysterols: a potential role for liver X receptors. Br J Pharmacol 2021; 178:3124-3139. [PMID: 33377180 DOI: 10.1111/bph.15358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Subset of macrophages within the atheroma plaque displays a high glucose uptake activity. Nevertheless, the molecular mechanisms and the pathophysiological significance of this high glucose need remain unclear. While the role for hypoxia and hypoxia inducible factor 1α has been demonstrated, the contribution of lipid micro-environment and more specifically oxysterols is yet to be explored. EXPERIMENTAL APPROACH Human macrophages were conditioned in the presence of homogenates from human carotid plaques, and expression of genes involved in glucose metabolism was quantified. Correlative analyses between gene expression and the oxysterol composition of plaques were performed. KEY RESULTS Conditioning of human macrophages by plaque homogenates induces expression of several genes involved in glucose uptake and glycolysis including glucose transporter 1 (SLC2A1) and hexokinases 2 and 3 (HK2 and HK3). This activation is significantly correlated to the oxysterol content of the plaque samples and is associated with a significant increase in the glycolytic activity of the cells. Pharmacological inverse agonist of the oxysterol receptor liver X receptor (LXR) partially reverses the induction of glycolysis genes without affecting macrophage glycolytic activity. Chromatin immunoprecipitation analysis confirms the implication of LXR in the regulation of SLC2A1 and HK2 genes. CONCLUSION AND IMPLICATIONS While our work supports the role of oxysterols and the LXR in the modulation of macrophage metabolism in atheroma plaques, it also highlights some LXR-independent effects of plaques samples. Finally, this study identifies hexokinase 3 as a promising target in the context of atherosclerosis. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Pilot
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Kevin van Dongen
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| | - Valentin Crespy
- Department of Cardiovascular Surgery, CHU Dijon, Dijon, France
| | - Eric Steinmetz
- Department of Cardiovascular Surgery, CHU Dijon, Dijon, France
| | - Jean Paul Pais de Barros
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,Lipidomic Analytic Platform, UBFC, Dijon, France
| | | | - Wilfried Le Goff
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB, Université de Paris, Université Paris, Paris, France
| | - Laurent Lagrost
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,Laboratory of Clinical Chemistry, CHU Dijon, Dijon, France
| |
Collapse
|
20
|
Huisman LA, Steinkamp PJ, Hillebrands JL, Zeebregts CJ, Linssen MD, Jorritsma-Smit A, Slart RHJA, van Dam GM, Boersma HH. Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW. Sci Rep 2021; 11:2899. [PMID: 33536498 PMCID: PMC7858611 DOI: 10.1038/s41598-021-82568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Lydian A. Huisman
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Pieter J. Steinkamp
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Clark J. Zeebregts
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs D. Linssen
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annelies Jorritsma-Smit
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.6214.10000 0004 0399 8953Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Gooitzen M. van Dam
- grid.4494.d0000 0000 9558 4598Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrikus H. Boersma
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Johnsrud K, Seierstad T, Russell D, Revheim ME. Inter-reader agreement of 18F-FDG PET/CT for the quantification of carotid artery plaque inflammation. JRSM Cardiovasc Dis 2021; 9:2048004020980941. [PMID: 33403110 PMCID: PMC7747113 DOI: 10.1177/2048004020980941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction A significant proportion of ischemic strokes are caused by emboli from unstable atherosclerotic carotid artery plaques. Inflammation is a key feature of plaque instability. Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-(18F)-fluoro-D-glucose (18F-FDG) is a promising technique to quantify plaque inflammation, but a consensus on the methodology has not been established. High inter-reader agreement is essential if 18F-FDG PET/CT is to be used as a clinical tool for the assessment of unstable plaques and stroke risk. Methods We assessed the inter-reader variability of different methods for quantification of 18F-FDG uptake in 43 patients with carotid artery stenosis ≥70%. Two independent readers delineated the plaque and collected maximum standardized uptake value (SUVmax) from all axial PET slices containing the atherosclerotic plaque. Results Uptake values with and without background correction were calculated and intraclass correlation coefficients were highest for uncorrected uptake values (0.97–0.98) followed by those background corrected by subtraction (0.89–0.94) and lowest for those background corrected by division (0.74–0.79). Conclusion Quantification methods without background correction have the highest inter-reader agreement for 18F-FDG PET of carotid artery plaque inflammation. The use of the single highest uptake value (max SUVmax) from the plaque will facilitate the method’s clinical utility in stroke prevention.
Collapse
Affiliation(s)
- Kjersti Johnsrud
- Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Therese Seierstad
- Department for Research and Development, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - David Russell
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Bueno A, March JR, Garcia P, Cañibano C, Ferruelo A, Fernandez-Casado JL. Carotid Plaque Inflammation Assessed by 18F-FDG PET/CT and Lp-PLA 2 Is Higher in Symptomatic Patients. Angiology 2020; 72:260-267. [PMID: 33089697 DOI: 10.1177/0003319720965419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carotid plaque inflammation assessed by 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) and lipoprotein-associated phospholipase A2 (Lp-PLA2) levels are higher in symptomatic patients. The aim of this study was to assess correlations between 18F-FDG uptake on PET scan of carotid artery plaques, plasma levels of Lp-PLA2, and cerebrovascular symptoms. The study included 45 consecutive patients (22 symptomatic, 23 asymptomatic) with >70% carotid stenosis. Patients were examined by hybrid PET/CT, and maximum standardized uptake values (SUVmax) were recorded. Blood samples were obtained, and plasma was stored at -80 °C for subsequent Lp-PLA2 analysis. Symptomatic and asymptomatic patients showed no significant difference in classical cardiovascular risk factors. Asymptomatic carotid stenosis patients more frequently had a history of coronary artery disease (P = .025) and peripheral artery disease (P = .012). The symptomatic group had higher 18F-FDG uptake in carotid plaques (P < .001), higher plasma Lp-PLA2 (P < .01), and higher high-sensitive C-reactive protein (P = .022). 2-Deoxy-2-[18F]fluoro-D-glucose uptake on PET/CT and plasma Lp-PLA2 show a statistically significant association with the symptomatic status of carotid plaques.
Collapse
Affiliation(s)
- Alicia Bueno
- Angiology and Vascular Surgery Department, 16503Hospital Universitario de Getafe, Madrid, Spain.,Getafe Health Research Institute, Madrid, Spain
| | - Jose Ramon March
- Angiology and Vascular Surgery Department, 16503Hospital Universitario de Getafe, Madrid, Spain.,Getafe Health Research Institute, Madrid, Spain
| | - Pilar Garcia
- Getafe Health Research Institute, Madrid, Spain.,Nuclear Medicine Department, 16503Hospital Universitario de Getafe, Madrid, Spain
| | - Cristina Cañibano
- Angiology and Vascular Surgery Department, 16503Hospital Universitario de Getafe, Madrid, Spain.,Getafe Health Research Institute, Madrid, Spain
| | - Antonio Ferruelo
- Department of Critical Care, 16503Hospital Universitario de Getafe, Madrid, Spain.,Ciber Enfermedades Respiratorias (CIBER), Getafe Health Research Institute, Madrid, Spain
| | - Jose Luis Fernandez-Casado
- Angiology and Vascular Surgery Department, 16503Hospital Universitario de Getafe, Madrid, Spain.,Getafe Health Research Institute, Madrid, Spain
| |
Collapse
|
23
|
Soule E, Nguyen QH, Dervishi M, Matteo J, Ozdemir S. Hot Aortic Nodules. Cureus 2020; 12:e10479. [PMID: 33083181 PMCID: PMC7567324 DOI: 10.7759/cureus.10479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Morbidity of the dreaded thrombotic complications of atherosclerosis such as cerebrovascular accident and myocardial infarction may be severe. Early detection of fulminant disease is therefore important for risk stratification and selecting a treatment strategy. In this report we present four patients in which 18-fluorodeoxyglucose uptake was identified in atherosclerotic plaques at positron emission tomography, performed for other indications. The study aims to showcase the potential implications of 18-fluorodeoxyglucose avid plaques, which may be otherwise overlooked at positron emission tomography. Early detection may aid in prevention of complications of atherosclerotic cardiovascular disease through aggressive lifestyle modification, as well as pharmacologic or other intervention, such as endovascular atherectomy.
Collapse
|
24
|
Grubic N, Colledanchise KN, Liblik K, Johri AM. The Role of Carotid and Femoral Plaque Burden in the Diagnosis of Coronary Artery Disease. Curr Cardiol Rep 2020; 22:121. [PMID: 32778953 DOI: 10.1007/s11886-020-01375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW With limitations of cardiovascular disease risk stratification by traditional risk factors, the role of noninvasive imaging techniques, such as vascular ultrasound, has emerged as a prominent utility for decision-making in coronary artery disease. A review of current guidelines and contemporary approaches for carotid and femoral plaque assessment is needed to better inform the diagnosis, management, and treatment of atherosclerosis in clinical practice. RECENT FINDINGS The recent consensus-based guidelines for carotid plaque assessment in coronary artery disease have been established, supported by some outcomes-based research. Currently, there is a gap of evidence on the use of femoral ultrasound to detect atherosclerosis, as well as predict adverse cardiovascular outcomes. The quantification and characterization of individualized plaque burden are important to stratify risk in asymptomatic or symptomatic atherosclerosis patients. Standardized quantification guidelines, supported by further outcomes-based research, are required to assess disease severity and progression.
Collapse
Affiliation(s)
- Nicholas Grubic
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada.,Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kayla N Colledanchise
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, CINQ, Queen's University, 76 Stuart Street, FAPC 3, Kingston, ON, K7L 2V7, Canada.
| |
Collapse
|
25
|
Johri AM, Nambi V, Naqvi TZ, Feinstein SB, Kim ESH, Park MM, Becher H, Sillesen H. Recommendations for the Assessment of Carotid Arterial Plaque by Ultrasound for the Characterization of Atherosclerosis and Evaluation of Cardiovascular Risk: From the American Society of Echocardiography. J Am Soc Echocardiogr 2020; 33:917-933. [PMID: 32600741 DOI: 10.1016/j.echo.2020.04.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Atherosclerotic plaque detection by carotid ultrasound provides cardiovascular disease risk stratification. The advantages and disadvantages of two-dimensional (2D) and three-dimensional (3D) ultrasound methods for carotid arterial plaque quantification are reviewed. Advanced and emerging methods of carotid arterial plaque activity and composition analysis by ultrasound are considered. Recommendations for the standardization of focused 2D and 3D carotid arterial plaque ultrasound image acquisition and measurement for the purpose of cardiovascular disease stratification are formulated. Potential clinical application towards cardiovascular risk stratification of recommended focused carotid arterial plaque quantification approaches are summarized.
Collapse
Affiliation(s)
| | | | | | | | - Esther S H Kim
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Park
- Cleveland Clinic Heart and Vascular Institute, Cleveland, Ohio
| | - Harald Becher
- University of Alberta Hospital, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Henrik Sillesen
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Zhu G, Hom J, Li Y, Jiang B, Rodriguez F, Fleischmann D, Saloner D, Porcu M, Zhang Y, Saba L, Wintermark M. Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease. Cardiovasc Diagn Ther 2020; 10:1048-1067. [PMID: 32968660 DOI: 10.21037/cdt.2020.03.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carotid artery plaque is a measure of atherosclerosis and is associated with future risk of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary, cerebrovascular, and peripheral arterial diseases. With advanced imaging techniques, computerized tomography (CT) and magnetic resonance imaging (MRI) have shown their potential superiority to routine ultrasound to detect features of carotid plaque vulnerability, such as intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC), and calcification. The correlation between imaging features and histological changes of carotid plaques has been investigated. Imaging of carotid features has been used to predict the risk of cardiovascular events. Other techniques such as nuclear imaging and intra-vascular ultrasound (IVUS) have also been proposed to better understand the vulnerable carotid plaque features. In this article, we review the studies of imaging specific carotid plaque components and their correlation with risk scores.
Collapse
Affiliation(s)
- Guangming Zhu
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jason Hom
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ying Li
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA.,Clinical Medical Research Center, Luye Pharma Group Ltd., Beijing 100000, China
| | - Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fatima Rodriguez
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dominik Fleischmann
- Department of Radiology, Cardiovascular Imaging Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Saloner
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Michele Porcu
- Dipartimento di Radiologia, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Yanrong Zhang
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Luca Saba
- Dipartimento di Radiologia, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Max Wintermark
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
27
|
Ravikanth R. Role of 18F-FDG positron emission tomography in carotid atherosclerotic plaque imaging: A systematic review. World J Nucl Med 2020; 19:327-335. [PMID: 33623500 PMCID: PMC7875029 DOI: 10.4103/wjnm.wjnm_26_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Stroke and other thromboembolic events in the brain are often due to carotid artery atherosclerosis, and atherosclerotic plaques with inflammation are considered particularly vulnerable, with an increased risk of becoming symptomatic. Positron emission tomography (PET) with 2-deoxy-2-[Fluorine-18] fluoro-D-glucose (18F-FDG) provides valuable metabolic information regarding arteriosclerotic lesions and may be applied for the detection of vulnerable plaque. At present, however, patients are selected for carotid surgical intervention on the basis of the degree of stenosis alone, and not the vulnerability or inflammation of the lesion. During the past decade, research using PET with the glucose analog tracer 18F-fluor-deoxy-glucose, has been implemented for identifying increased tracer uptake in symptomatic carotid plaques, and tracer uptake has been shown to correlate with plaque inflammation and vulnerability. These findings imply that 18F-FDG PET might hold the promise for a new and better diagnostic test to identify patients eligible for carotid endarterectomy. The rationale for developing diagnostic tests based on molecular imaging with 18F-FDG PET, as well as methods for simple clinical PET approaches, are discussed. This is a systematic review, following Preferred Reporting Items for Systematic Reviews guidelines, which interrogated the PUBMED database from January 2001 to November 2019. The search combined the terms, “atherosclerosis,” “inflammation,” “FDG,” and “plaque imaging.” The search criteria included all types of studies, with a primary outcome of the degree of arterial vascular inflammation determined by 18F-FDG uptake. This review examines the role of 18F-FDG PET imaging in the characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Reddy Ravikanth
- Department of Radiology, St. John's Hospital, Kattappana, Kerala, India
| |
Collapse
|
28
|
Fabiani I, Palombo C, Caramella D, Nilsson J, De Caterina R. Imaging of the vulnerable carotid plaque: Role of imaging techniques and a research agenda. Neurology 2020; 94:922-932. [PMID: 32393647 DOI: 10.1212/wnl.0000000000009480] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/18/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Atherothrombosis in the carotid arteries is a main cause of ischemic stroke and may depend on plaque propensity to complicate with rupture or erosion, in turn related to vulnerability features amenable to in vivo imaging. This would provide an opportunity for risk stratification and-potentially-local treatment of more vulnerable plaques. We here review current information on this topic. METHODS We systematically reviewed the literature for concepts derived from pathophysiologic, histopathologic, and clinical studies on imaging techniques attempting at identifying vulnerable carotid lesions. RESULTS Ultrasound, MRI, CT, and nuclear medicine-based techniques, alone or with multimodality approaches, all have a link to pathophysiology and describe different-potentially complementary-aspects of lesions prone to complications. There is also, however, a true paucity of head-to-head comparisons of such techniques for practical implementation of a thorough and cost-effective diagnostic strategy based on evaluation of outcomes. Especially in asymptomatic patients, major international societies leave wide margins of indecision in the advice to techniques guiding interventions to prevent atherothrombotic stroke. CONCLUSIONS To improve practical management of such patients-in addition to the patient's vulnerability for systemic reasons-a more precise identification of the vulnerable plaque is needed. A better definition of the diagnostic yield of each imaging approach in comparison with the others should be pursued for a cost-effective translation of the single techniques. Practical translation to guide future clinical practice should be based on improved knowledge of the specific pathophysiologic correlates and on a comparative modality approach, linked to subsequent stroke outcomes.
Collapse
Affiliation(s)
- Iacopo Fabiani
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Carlo Palombo
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Davide Caramella
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Jan Nilsson
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy
| | - Raffaele De Caterina
- From the University Cardiology (I.F., C.P., R.D.C.) and Radiology Divisions (D.C.), Pisa University Hospital; Dipartimento di Patologia Chirurgica (I.F., D.C., C.P., R.D.C.), Medica, Molecolare e dell'Area Critica, University of Pisa Medical School, Italy; Department of Clinical Sciences (J.N.), Malmö University Hospital, University of Lund, Sweden; and Fondazione VillaSerena per la Ricerca (R.D.C.), Città Sant' Angelo, Pescara, Italy.
| |
Collapse
|
29
|
Daghem M, Bing R, Fayad ZA, Dweck MR. Noninvasive Imaging to Assess Atherosclerotic Plaque Composition and Disease Activity: Coronary and Carotid Applications. JACC Cardiovasc Imaging 2020; 13:1055-1068. [PMID: 31422147 PMCID: PMC10661368 DOI: 10.1016/j.jcmg.2019.03.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/07/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is one of the leading causes of mortality and morbidity worldwide. Atherosclerosis imaging has traditionally focused on detection of obstructive luminal stenoses or measurements of plaque burden. However, with advances in imaging technology it has now become possible to noninvasively interrogate plaque composition and disease activity, thereby differentiating stable from unstable patterns of disease and potentially improving risk stratification. This manuscript reviews multimodality imaging in this field, focusing on carotid and coronary atherosclerosis and how these novel techniques have the potential to complement current imaging assessments and improve clinical decision making.
Collapse
Affiliation(s)
- Marwa Daghem
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Vigne J, Hyafil F. Inflammation imaging to define vulnerable plaque or vulnerable patient. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:21-34. [DOI: 10.23736/s1824-4785.20.03231-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Abstract
Atherosclerosis is a chronic and most often progressive disease with a long clinically apparently silent period, and can become unstable at any time, due to a plaque rupture or erosion, leading to an acute atherothrombotic event. Atherosclerosis has a progression rate that is highly variable among patients and in the same patient. The progression of atherosclerotic plaque from asymptomatic to symptomatic phase depends on its structure and composition in which inflammation plays an essential role. Prototype of the ruptured plaque contains a large, soft, lipid-rich necrotic core with intraplaque hemorrhage that accounts for more than half of the volume of the plaque covered by a thin and inflamed fibrous cap with few smooth muscle cells, and a heavy infiltrate of inflammatory cells. Noninvasive imaging modalities might provide an assessment of the atherosclerotic disease process through the exploration of these plaque features. Computed tomography angiography and magnetic resonance imaging can characterize plaque morphology, whereas molecular imaging, owing to the high sensitivity of nuclear medicine for the detection of radiopharmaceuticals in tissues, allows to explore plaque biology. During the last 2 decades, FDG-PET imaging has also emerged as a powerful tool to explore noninvasively inflammatory activities in atherosclerotic plaques providing new insights on the evolution of metabolic activities in the vascular wall over time. This review highlights the role of PET imaging for the exploration of metabolic activities in atherosclerotic plaques. It will resume the evidence that have been gathered from clinical studies using FDG-PET and will discuss the perspectives of new radiopharmaceuticals for vulnerable plaque imaging.
Collapse
Affiliation(s)
- Olivier Lairez
- Cardiac Imaging Centre, Rangueil University Hospital, Toulouse, France
| | - Fabien Hyafil
- Department of Nuclear Medicine, Bichat University Hospital, Hôpitaux de Paris, Université René Diderot, Paris, France.
| |
Collapse
|
32
|
Kelly PJ, Camps-Renom P, Giannotti N, Martí-Fàbregas J, McNulty JP, Baron JC, Barry M, Coutts SB, Cronin S, Delgado-Mederos R, Dolan E, Fernández-León A, Foley S, Harbison J, Horgan G, Kavanagh E, Marnane M, McCabe J, McDonnell C, Sharma VK, Williams DJ, O’Connell M, Murphy S. A Risk Score Including Carotid Plaque Inflammation and Stenosis Severity Improves Identification of Recurrent Stroke. Stroke 2020; 51:838-845. [DOI: 10.1161/strokeaha.119.027268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background and Purpose—
In randomized trials of symptomatic carotid endarterectomy, only modest benefit occurred in patients with moderate stenosis and important subgroups experienced no benefit. Carotid plaque
18
F-fluorodeoxyglucose uptake on positron emission tomography, reflecting inflammation, independently predicts recurrent stroke. We investigated if a risk score combining stenosis and plaque
18
F-fluorodeoxyglucose would improve the identification of early recurrent stroke.
Methods—
We derived the score in a prospective cohort study of recent (<30 days) non-severe (modified Rankin Scale score ≤3) stroke/transient ischemic attack. We derived the SCAIL (symptomatic carotid atheroma inflammation lumen-stenosis) score (range, 0–5) including
18
F-fluorodeoxyglucose standardized uptake values (SUV
max
<2 g/mL, 0 points; SUV
max
2–2.99 g/mL, 1 point; SUV
max
3–3.99 g/mL, 2 points; SUV
max
≥4 g/mL, 3 points) and stenosis (<50%, 0 points; 50%–69%, 1 point; ≥70%, 2 points). We validated the score in an independent pooled cohort of 2 studies. In the pooled cohorts, we investigated the SCAIL score to discriminate recurrent stroke after the index stroke/transient ischemic attack, after positron emission tomography-imaging, and in mild or moderate stenosis.
Results—
In the derivation cohort (109 patients), recurrent stroke risk increased with increasing SCAIL score (
P
=0.002, C statistic 0.71 [95% CI, 0.56–0.86]). The adjusted (age, sex, smoking, hypertension, diabetes mellitus, antiplatelets, and statins) hazard ratio per 1-point SCAIL increase was 2.4 (95% CI, 1.2–4.5,
P
=0.01). Findings were confirmed in the validation cohort (87 patients, adjusted hazard ratio, 2.9 [95% CI, 1.9–5],
P
<0.001; C statistic 0.77 [95% CI, 0.67–0.87]). The SCAIL score independently predicted recurrent stroke after positron emission tomography-imaging (adjusted hazard ratio, 4.52 [95% CI, 1.58–12.93],
P
=0.005). Compared with stenosis severity (C statistic, 0.63 [95% CI, 0.46–0.80]), prediction of post-positron emission tomography stroke recurrence was improved with the SCAIL score (C statistic, 0.82 [95% CI, 0.66–0.97],
P
=0.04). Findings were confirmed in mild or moderate stenosis (adjusted hazard ratio, 2.74 [95% CI, 1.39–5.39],
P
=0.004).
Conclusions—
The SCAIL score improved the identification of early recurrent stroke. Randomized trials are needed to test if a combined stenosis-inflammation strategy improves selection for carotid revascularization where benefit is currently uncertain.
Collapse
Affiliation(s)
- Peter J. Kelly
- From the UCD Neurovascular Clinical Science Unit, Stroke Service/Department of Neurology, Mater University Hospital, Dublin, Ireland (P.J.K., N.G., G.H., M.M., J.M., S.M.)
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
| | - Pol Camps-Renom
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (Department of Medicine), Spain (P.C.-R., J.M.-F., R.D.-M.)
| | - Nicola Giannotti
- From the UCD Neurovascular Clinical Science Unit, Stroke Service/Department of Neurology, Mater University Hospital, Dublin, Ireland (P.J.K., N.G., G.H., M.M., J.M., S.M.)
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin (N.G., J.P.M., S.F.), Mater University Hospital, University College Dublin, Ireland
| | - Joan Martí-Fàbregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (Department of Medicine), Spain (P.C.-R., J.M.-F., R.D.-M.)
| | - Jonathan P. McNulty
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin (N.G., J.P.M., S.F.), Mater University Hospital, University College Dublin, Ireland
| | - Jean-Claude Baron
- Department of Neurology, Université de Paris, Hopital Sainte-Anne, Inserm U1266, Paris, France (J.-C.B.)
| | - Mary Barry
- Department of Vascular Surgery, St Vincent’s University Hospital (M.B.), Mater University Hospital, University College Dublin, Ireland
| | - Shelagh B. Coutts
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Canada (S.B.C.)
| | - Simon Cronin
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
- Department of Neurology and Clinical Neuroscience, Cork University Hospital/University College Cork, Ireland (S.C.)
| | - Raquel Delgado-Mederos
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (Department of Medicine), Spain (P.C.-R., J.M.-F., R.D.-M.)
| | - Eamon Dolan
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
- Connolly Hospital Dublin/Royal College of Surgeons Ireland (E.D.)
| | - Alejandro Fernández-León
- Department of Nuclear Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (A.F.-L.)
| | - Shane Foley
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin (N.G., J.P.M., S.F.), Mater University Hospital, University College Dublin, Ireland
| | - Joseph Harbison
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
- Stroke Service, Department of Geriatric Medicine, St James’ Hospital/Trinity College Dublin (J.H.)
| | - Gillian Horgan
- From the UCD Neurovascular Clinical Science Unit, Stroke Service/Department of Neurology, Mater University Hospital, Dublin, Ireland (P.J.K., N.G., G.H., M.M., J.M., S.M.)
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
| | - Eoin Kavanagh
- Department of Radiology (E.K., M.O.), Mater University Hospital, University College Dublin, Ireland
| | - Michael Marnane
- From the UCD Neurovascular Clinical Science Unit, Stroke Service/Department of Neurology, Mater University Hospital, Dublin, Ireland (P.J.K., N.G., G.H., M.M., J.M., S.M.)
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
| | - John McCabe
- From the UCD Neurovascular Clinical Science Unit, Stroke Service/Department of Neurology, Mater University Hospital, Dublin, Ireland (P.J.K., N.G., G.H., M.M., J.M., S.M.)
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
| | - Ciaran McDonnell
- Department of Vascular Surgery (C.M.), Mater University Hospital, University College Dublin, Ireland
| | - Vijay K. Sharma
- Division of Neurology, National University Health System/Yong Loo Lin School of Medicine, National University of Singapore (V.K.S.)
| | - David J. Williams
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
- Royal College of Surgeons in Ireland/Beaumont Hospital, Dublin (D.J.W.)
| | - Martin O’Connell
- Department of Radiology (E.K., M.O.), Mater University Hospital, University College Dublin, Ireland
| | - Sean Murphy
- From the UCD Neurovascular Clinical Science Unit, Stroke Service/Department of Neurology, Mater University Hospital, Dublin, Ireland (P.J.K., N.G., G.H., M.M., J.M., S.M.)
- HRB Stroke Clinical Trials Network, Ireland (P.J.K., S.C., E.D., J.H., G.H., M.M., J.M., D.J.W., S.M.)
- Royal College of Surgeons in Ireland, Dublin (S.M.)
| |
Collapse
|
33
|
Calcagno C, Fayad ZA. Clinical imaging of cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:74-84. [PMID: 32077666 DOI: 10.23736/s1824-4785.20.03228-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one cause of morbidity and mortality worldwide. In the past twenty years, compelling preclinical and clinical data have indicated that a maladaptive inflammatory response plays a crucial role in the development of atherosclerosis initiation and progression in the vasculature, all the way to the onset of life-threatening cardiovascular events. Furthermore, inflammation is key to heart and brain damage and healing after myocardial infarction or stroke. Recent evidence indicates that this interplay between the vasculature, organs target of ischemia and the immune system is mediated by the activation of hematopoietic organs (bone marrow and spleen). In this evolving landscape, non-invasive imaging is becoming more and more essential to support either mechanistic preclinical studies to investigate the role of inflammation in cardiovascular disease (CVD), or as a translational tool to quantify inflammation in the cardiovascular system and hematopoietic organs in patients. In this review paper, we will describe the clinical applications of non-invasive imaging to quantify inflammation in the vasculature, infarcted heart and brain, and hematopoietic organs in patients with cardiovascular disease, with specific focus on [18F]FDG PET and other novel inflammation-specific radiotracers. Furthermore, we will briefly describe the most recent clinical applications of other imaging techniques such as MRI, SPECT, CT, CEUS and OCT in this arena.
Collapse
Affiliation(s)
- Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA - .,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Berchiolli R, Erba PA, Slart RHJA. Hunting the Carotid Culprit: An Intriguing Game. Stroke 2020; 51:701-702. [PMID: 31948358 DOI: 10.1161/strokeaha.119.027945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raffaella Berchiolli
- From the Vascular Surgery Unit, Cardiothoracic and Vascular Department (R.B.), University of Pisa, Italy
| | - Paola A Erba
- Department of Nuclear Medicine (P.A.E.), University of Pisa, Italy.,Department of Translational Research and New Technology in Medicine (P.A.E.), University of Pisa, Italy.,Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, the Netherlands (P.A.E., R.H.J.A.S.)
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, the Netherlands (P.A.E., R.H.J.A.S.).,Department of Biomedical Photonic Imaging, TechMed Centre, University of Twente, Enschede, the Netherlands (R.H.J.A.S.)
| |
Collapse
|
35
|
Strauss HW, Nakahara T, Narula N, Narula J. Vascular Calcification: The Evolving Relationship of Vascular Calcification to Major Acute Coronary Events. J Nucl Med 2019; 60:1207-1212. [PMID: 31350320 DOI: 10.2967/jnumed.119.230276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Calcification in a coronary artery is accepted as definite evidence of coronary atherosclerosis. The extent and density of calcification, as combined in the Agatston score, is associated with the risk of a patient experiencing a major acute coronary event. Atherosclerosis occurs because damaged endothelial cells allow low-density lipoprotein cholesterol (LDLc) to leak into subintimal tissue. Proteoglycans in subendothelial collagen have a high affinity for LDLc, retaining the lipoprotein cholesterol complex. As the endothelial damage is repaired, the subintimal LDLc is trapped. Retained LDLc induces an inflammatory response in the overlying endothelium, causing the endothelium to express chemotactic peptides. Chemotactic peptides attract circulating monocytes, which follow the concentration gradient, enter the tissue, and become tissue macrophages to phagocytize and digest the irritating LDLc in the atheroma. In the process of digesting LDLc, enzymes in the macrophages oxidize the LDLc complex. Oxidized LDL is toxic to macrophages; when present in sufficient quantity, it may cause death of macrophages, contributing to inflammation in the atheroma. In a necrotic inflammatory lesion, the regulatory mechanisms that control tissue concentrations of calcium and phosphorus are lost, allowing the solubility product of calcium phosphate to be exceeded, resulting in the formation of microscopic calcium-phosphate crystals. With ongoing inflammation, additional calcium-phosphate crystals are formed, which may aggregate. When these aggregated calcium phosphate crystals exceed 1 mm, the lesions become visible on clinical CT as coronary calcifications. Serial gated CT scans of the heart have demonstrated that once formed, CT-visible calcifications do not decrease significantly in size but may increase.
Collapse
Affiliation(s)
- H William Strauss
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takehiro Nakahara
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Navneet Narula
- Department of Pathology, New York University School of Medicine, New York, New York; and
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
36
|
Abstract
Noninvasive imaging technologies offer to identify several anatomic and molecular features of high-risk plaques. For the noninvasive molecular imaging of atherosclerotic plaques, nuclear medicine constitutes one of the best imaging modalities, thanks to its high sensitivity for the detection of probes in tissues. 18F-fluorodeoxyglucose (FDG) is currently the most widely used radiopharmaceutical for molecular imaging of atherosclerotic plaques with positron emission tomography. The intensity of FDG uptake in the vascular wall correlates closely with the degree of macrophage infiltration in atherosclerotic plaques. FDG positron emission tomographic imaging has become a powerful tool to identify and monitor noninvasively inflammatory activities in atherosclerotic plaques over time. This review examines how FDG positron emission tomographic imaging has given us deeper insight into the role of inflammation in atherosclerotic plaque progression and discusses perspectives for alternative radiopharmaceuticals to FDG that could provide a more specific and simple identification of high-risk lesions and help improve risk stratification of atherosclerotic patients.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Fabien Hyafil
- From the Department of Nuclear Medicine, Bichat University Hospital, Assistance Publique–Hôpitaux de Paris (F.H.), University Paris 7 René Diderot, France
- INSERM U1148, Laboratory for Vascular Translational Science, DHU FIRE (F.H., J.V.), University Paris 7 René Diderot, France
| | - Jonathan Vigne
- INSERM U1148, Laboratory for Vascular Translational Science, DHU FIRE (F.H., J.V.), University Paris 7 René Diderot, France
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie University, UNICAEN, France (J.V.)
| |
Collapse
|
37
|
Kelly PJ, Camps-Renom P, Giannotti N, Martí-Fàbregas J, Murphy S, McNulty J, Barry M, Barry P, Calvet D, Coutts SB, Cronin S, Delgado-Mederos R, Dolan E, Fernández-León A, Foley S, Harbison J, Horgan G, Kavanagh E, Marnane M, McDonnell C, O'Donohoe M, Sharma V, Walsh C, Williams D, O'Connell M. Carotid Plaque Inflammation Imaged by 18F-Fluorodeoxyglucose Positron Emission Tomography and Risk of Early Recurrent Stroke. Stroke 2019; 50:1766-1773. [PMID: 31167623 DOI: 10.1161/strokeaha.119.025422] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background and Purpose- Plaque inflammation contributes to stroke and coronary events. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) identifies plaque inflammation-related metabolism. Almost no prospective data exist on the relationship of carotid 18F-FDG uptake and early recurrent stroke. Methods- We did a multicenter prospective cohort study BIOVASC (Biomarkers/Imaging Vulnerable Atherosclerosis in Symptomatic Carotid disease) of patients with carotid stenosis and recent stroke/transient ischemic attack with 90-day follow-up. On coregistered carotid 18F-FDG PET/computed tomography angiography, 18F-FDG uptake was expressed as maximum standardized uptake value (SUVmax) in the axial single hottest slice. We then conducted a systematic review of similar studies and pooled unpublished individual-patient data with 2 highly similar independent studies (Dublin and Barcelona). We analyzed the association of SUVmax with all recurrent nonprocedural stroke (before and after PET) and with recurrent stroke after PET only. Results- In BIOVASC (n=109, 14 recurrent strokes), after adjustment (for age, sex, stenosis severity, antiplatelets, statins, diabetes mellitus, hypertension, and smoking), the hazard ratio for recurrent stroke per 1 g/mL SUVmax was 2.2 (CI, 1.1-4.5; P=0.025). Findings were consistent in the independent Dublin (n=52, hazard ratio, 2.2; CI, 1.1-4.3) and Barcelona studies (n=35, hazard ratio, 2.8; CI, 0.98-5.5). In the pooled cohort (n=196), 37 recurrent strokes occurred (29 before and 8 after PET). Plaque SUVmax was higher in patients with all recurrence ( P<0.0001) and post-PET recurrence ( P=0.009). The fully adjusted hazard ratio of any recurrent stroke was 2.19 (CI, 1.41-3.39; P<0.001) and for post-PET recurrent stroke was 4.57 (CI, 1.5-13.96; P=0.008). Recurrent stroke risk increased across SUVmax quartiles (log-rank P=0.003). The area under receiver operating curve for all recurrence was 0.70 (CI, 0.59-0.78) and for post-PET recurrence was 0.80 (CI, 0.64-0.96). Conclusions- Plaque inflammation-related 18F-FDG uptake independently predicted future recurrent stroke post-PET. Although further studies are needed, 18F-FDG PET may improve patient selection for carotid revascularization and suggest that anti-inflammatory agents may have benefit for poststroke vascular prevention.
Collapse
Affiliation(s)
- Peter J Kelly
- From the Neurovascular Clinical Science Unit, Stroke Service and Department of Neurology (P.J.K., N.G., S.M., G.H., M.M.), University College Dublin, Ireland.,HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.)
| | - Pol Camps-Renom
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (Department of Medicine), Barcelona, Spain (P.C.-R., J.M.-F., R.D.-M.)
| | - Nicola Giannotti
- From the Neurovascular Clinical Science Unit, Stroke Service and Department of Neurology (P.J.K., N.G., S.M., G.H., M.M.), University College Dublin, Ireland.,Mater University Hospital, Radiography and Diagnostic Imaging, School of Medicine (N.G., J.M., S.F.), University College Dublin, Ireland
| | - Joan Martí-Fàbregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (Department of Medicine), Barcelona, Spain (P.C.-R., J.M.-F., R.D.-M.)
| | - Sean Murphy
- From the Neurovascular Clinical Science Unit, Stroke Service and Department of Neurology (P.J.K., N.G., S.M., G.H., M.M.), University College Dublin, Ireland.,HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.)
| | - Jonathan McNulty
- Mater University Hospital, Radiography and Diagnostic Imaging, School of Medicine (N.G., J.M., S.F.), University College Dublin, Ireland
| | - Mary Barry
- Department of Vascular Surgery, St Vincent's University Hospital (M.B.), University College Dublin, Ireland
| | - Patrick Barry
- Stroke Service, Departments of Geriatric Medicine, Cork University Hospital, Ireland (P.B.)
| | - David Calvet
- Université Paris Descartes, INSERM UMR S 894, Service de Neurologie et Unité Neurovasculaire, Hôpital Sainte-Anne, Paris, France (D.C.)
| | - Shelagh B Coutts
- Departments of Clinical Neurosciences, Radiology and Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, AB, Canada (S.B.C.)
| | - Simon Cronin
- HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.).,Department of Neurology, Cork University Hospital, and Department of Clinical Neuroscience, College of Medicine and Health, University College Cork, Ireland (S.C.)
| | - Raquel Delgado-Mederos
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (Department of Medicine), Barcelona, Spain (P.C.-R., J.M.-F., R.D.-M.)
| | - Eamon Dolan
- HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.).,Connolly Hospital Dublin and Royal College of Surgeons Ireland (E.D.)
| | - Alejandro Fernández-León
- Department of Nuclear Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (A.F.-L.)
| | - Shane Foley
- Mater University Hospital, Radiography and Diagnostic Imaging, School of Medicine (N.G., J.M., S.F.), University College Dublin, Ireland
| | - Joseph Harbison
- HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.).,Stroke Service, Department of Geriatric Medicine, St James' Hospital and Trinity College Dublin, Ireland (J.H.)
| | - Gillian Horgan
- From the Neurovascular Clinical Science Unit, Stroke Service and Department of Neurology (P.J.K., N.G., S.M., G.H., M.M.), University College Dublin, Ireland.,HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.)
| | - Eoin Kavanagh
- Department of Radiology (E.K., M. O'Connell), University College Dublin, Ireland
| | - Michael Marnane
- From the Neurovascular Clinical Science Unit, Stroke Service and Department of Neurology (P.J.K., N.G., S.M., G.H., M.M.), University College Dublin, Ireland.,HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.)
| | - Ciaran McDonnell
- Department of Vascular Surgery (C.M., M. O'Donohoe), University College Dublin, Ireland
| | - Martin O'Donohoe
- Department of Vascular Surgery (C.M., M. O'Donohoe), University College Dublin, Ireland
| | - Vijay Sharma
- Division of Neurology, National University Health System, and Yong Loo Lin School of Medicine, National University of Singapore (V.S.)
| | - Cathal Walsh
- Health Research Institute and Department of Biostatistics, University of Limerick, Ireland (C.W.)
| | - David Williams
- HRB Stroke Clinical Trials Network Ireland (P.J.K., S.M., S.C., E.D., J.H., G.H., M.M., D.W.).,Department of Geriatric and Stroke Medicine, Royal College of Surgeons in Ireland/Beaumont Hospital Dublin Ireland (D.W.)
| | - Martin O'Connell
- Department of Radiology (E.K., M. O'Connell), University College Dublin, Ireland
| |
Collapse
|
38
|
Chen X, Zheng Y, Tatsuoka C, Muzic RF, Okoye CC, O'Donnell JK, Zidar D, Avril N, Oliveira GH, Liu H, Bucher J, Machtay M, Yao M, Dorth JA. Chemoradiotherapy-related carotid artery inflammation in head and neck cancer patients quantified by [ 18F]FDG PET/CT. Oral Oncol 2019; 93:101-106. [PMID: 31109689 DOI: 10.1016/j.oraloncology.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Radiotherapy (RT) is associated with an increased risk of cardiovascular disease (CVD), but little is known about the mechanism for vascular injury and methods for early detection. MATERIALS AND METHODS We conducted a prospective, pilot study of carotid artery inflammation using 18F-labeled 2-fluoro-2-deoxy-d-glucose ([18F]FDG) PET/CT imaging pre- and 3 months post-RT in head-and-neck cancer (HNC) patients. [18F]FDG uptake by the carotid arteries was measured by the maximum and mean target to background ratio (TBRMAX, TBRMEAN) and the mean partial volume corrected standardized uptake value (pvcSUVMEAN). RESULTS Of the 22 patients who completed both pre and post-RT scans, the majority (82%) had stage III or stage IV disease and received concurrent chemotherapy. TBRMAX, TBRMEAN, and pvcSUVMEAN were all significantly higher 3 months after RT versus before RT with mean difference values (95% CI; p-value) of 0.17 (0.1-0.25; 0.0001), 0.19 (0.12-0.25; 0.0001), and 0.31 g/ml (0.12-0.5; 0.002), respectively. Fifteen patients (68%) had HPV-positive tumors, which were associated with lower pre-RT [18F]FDG signal, but a greater increase in TBRMAX (19% vs 5%), TBRMEAN (21% vs 11%) and pvcSUVMEAN (20% increase vs 3% decrease), compared to HPV negativity. CONCLUSION There is a significant increase in carotid artery inflammation in HNC patients due to CRT that amounts to a degree that has previously been associated with higher risk for future CVD events. The subset of patients with HPV-positive tumors experienced the greatest increases in vascular inflammation due to CRT. Carotid [18F]FDG uptake may be an early biomarker of RT-related vascular injury.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yiran Zheng
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Curtis Tatsuoka
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Raymond F Muzic
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, United States
| | - Christian C Okoye
- Department of Radiation Oncology, St. Bernards Medical Group, Jonesboro, AR, United States
| | - James K O'Donnell
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University Cleveland, OH, United States
| | - David Zidar
- Harrington Heart and Vascular Institute, Department of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Norbert Avril
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University Cleveland, OH, United States
| | - Guilherme H Oliveira
- Onco-Cardiology Program, and Advanced Heart Failure and Transplant Center, Harrington Heart and Vascular Institute, Department of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Hongyan Liu
- Department of Neurology, University Hospitals Cleveland Medical Center and Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Jessica Bucher
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Mitchell Machtay
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Min Yao
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jennifer A Dorth
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
39
|
de Borst GJ. What Are We Looking For? The Needle in the Haystack or the Usual Suspect? Eur J Vasc Endovasc Surg 2018; 56:180. [PMID: 29804747 DOI: 10.1016/j.ejvs.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|