1
|
Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA, Goldstein SL, Dandurand A, Jiang H, Jadhav P, Debuque L. Estimating risk of rapid disease progression in pediatric patients with autosomal dominant polycystic kidney disease: a randomized trial of tolvaptan. Pediatr Nephrol 2024; 39:1481-1490. [PMID: 38091246 PMCID: PMC10942936 DOI: 10.1007/s00467-023-06239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND Tolvaptan preserves kidney function in adults with autosomal dominant polycystic kidney disease (ADPKD) at elevated risk of rapid progression. A trial (NCT02964273) evaluated tolvaptan safety and pharmacodynamics in children (5-17 years). However, progression risk was not part of study eligibility criteria due to lack of validated criteria for risk assessment in children. As risk estimation is important to guide clinical management, baseline characteristics of the study participants were retrospectively evaluated to determine whether risk of rapid disease progression in pediatric ADPKD can be assessed and to identify parameters relevant for risk estimation. METHODS Four academic pediatric nephrologists reviewed baseline data and rated participant risk from 1 (lowest) to 5 (highest) based on clinical judgement and the literature. Three primary reviewers independently scored all cases, with each case reviewed by two primary reviewers. For cases with discordant ratings (≥ 2-point difference), the fourth reviewer provided a secondary rating blinded to the primary evaluations. Study participants with discordant ratings and/or for whom data were lacking were later discussed to clarify parameters relevant to risk estimation. RESULTS Of 90 evaluable subjects, primary reviews of 69 (77%) were concordant. The proportion considered at risk of rapid progression (final mean rating ≥ 3.5) by age group was: 15-17 years, 27/34 (79%); 12- < 15, 9/32 (28%); 4- < 12, 8/24 (33%). The panelists agreed on characteristics important for risk determination: age, kidney imaging, kidney function, blood pressure, urine protein, and genetics. CONCLUSIONS High ratings concordance and agreement among reviewers on relevant clinical characteristics support the feasibility of pediatric risk assessment.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium.
- Department of Pediatric Nephrology, University Hospital of Leuven, Herestraat 49, B-3000, Louvain, Belgium.
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC, USA
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian/St. Luke's Medical Center, Denver, CO, USA
| | - Stuart L Goldstein
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ann Dandurand
- Cerevel Therapeutics, Cambridge, MA, USA
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | - Huan Jiang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | | | - Laurie Debuque
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| |
Collapse
|
2
|
Dachy A, Van Loo L, Mekahli D. Autosomal Dominant Polycystic Kidney Disease in Children and Adolescents: Assessing and Managing Risk of Progression. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:236-244. [PMID: 37088526 DOI: 10.1053/j.akdh.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 04/25/2023]
Abstract
The clinical management of autosomal dominant polycystic kidney disease (ADPKD) in adults has shifted from managing complications to delaying disease progression through newly emerging therapies. Regarding pediatric management of the disease, there are still specific hurdles related to the management of children and adolescents with ADPKD and, unlike adults, there are no specific therapies for pediatric ADPKD or stratification models to identify children and young adults at risk of rapid decline in kidney function. Therefore, early identification and management of factors that may modify disease progression, such as hypertension and obesity, are of most importance for young children with ADPKD. Many of these risk factors could promote disease progression in both ADPKD and chronic kidney disease. Hence, nephroprotective measures applied early in life can represent a window of opportunity to prevent the decline of the glomerular filtration rate especially in young patients with ADPKD. In this review, we highlight current challenges in the management of patients with pediatric ADPKD, the importance of early modifying factors in disease progression as well as the gaps and future perspectives in the pediatric ADPKD research field.
Collapse
Affiliation(s)
- Angélique Dachy
- PKD Research Group, Department of Cellular and MoleculMedar icine, KU Leuven, Leuven, Belgium; Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium; Laboratory of Translational Research in Nephrology (LTRN), GIGA Cardiovascular Sciences, ULiège, Liège, Belgium
| | - Liselotte Van Loo
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and MoleculMedar icine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Breysem L, De Keyzer F, Schellekens P, Dachy A, De Rechter S, Janssens P, Vennekens R, Bammens B, Irazabal MV, Van Ongeval C, Harris PC, Mekahli D. Risk Severity Model for Pediatric Autosomal Dominant Polycystic Kidney Disease Using 3D Ultrasound Volumetry. Clin J Am Soc Nephrol 2023; 18:581-591. [PMID: 36800517 PMCID: PMC10278786 DOI: 10.2215/cjn.0000000000000122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Height-adjusted total kidney volume (htTKV) measured by imaging defined as Mayo Imaging Class (MIC) is a validated prognostic measure for autosomal dominant polycystic kidney disease (ADPKD) in adults to predict and stratify disease progression. However, no stratification tool is currently available in pediatric ADPKD. Because magnetic resonance imaging and computed tomography in children are difficult, we propose a novel 3D ultrasound-based pediatric Leuven Imaging Classification to complement the MIC. METHODS A prospective study cohort of 74 patients with genotyped ADPKD (37 female) was followed longitudinally with ultrasound, including 3D ultrasound, and they underwent in total 247 3D ultrasound assessments, with patients' median age (interquartile range [IQR]) at diagnosis of 3 (IQR, 0-9) years and at first 3D ultrasound evaluation of 10 (IQR, 5-14) years. First, data matching was done to the published MIC classification, followed by subsequent optimization of parameters and model type. RESULTS PKD1 was confirmed in 70 patients (95%), PKD2 in three (4%), and glucosidase IIα unit only once (1%). Over these 247 evaluations, the median height was 143 (IQR, 122-166) cm and total kidney volume was 236 (IQR, 144-344) ml, leading to an htTKV of 161 (IQR, 117-208) ml/m. Applying the adult Mayo classification in children younger than 15 years strongly underestimated ADPKD severity, even with correction for height. We therefore optimized the model with our pediatric data and eventually validated it with data of young patients from Mayo Clinic and the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease used to establish the MIC. CONCLUSIONS We proposed a five-level Leuven Imaging Classification ADPKD pediatric model as a novel classification tool on the basis of patients' age and 3D ultrasound-htTKV for reliable discrimination of childhood ADPKD severity.
Collapse
Affiliation(s)
- Luc Breysem
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | | | - Pieter Schellekens
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals of Leuven, Leuven, Belgium
| | - Angélique Dachy
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium
| | - Stephanie De Rechter
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Janssens
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Rudi Vennekens
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals of Leuven, Leuven, Belgium
| | - Maria V. Irazabal
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Peter C. Harris
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA, Greenbaum LA, Litwin M, Seeman T, Dandurand A, Shi L, Sikes K, Shoaf SE, Schaefer F. Tolvaptan for Children and Adolescents with Autosomal Dominant Polycystic Kidney Disease: Randomized Controlled Trial. Clin J Am Soc Nephrol 2023; 18:36-46. [PMID: 36719158 PMCID: PMC10101612 DOI: 10.2215/cjn.0000000000000022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2022] [Accepted: 11/03/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Tolvaptan slows expansion of kidney volume and kidney function decline in adults with autosomal dominant polycystic kidney disease (ADPKD). Progression during childhood could be treated before irreversible kidney damage occurs, but trial data are lacking. We evaluated the safety and efficacy of tolvaptan in children/adolescents with ADPKD. METHODS This was the 1-year, randomized, double-blind, portion of a phase 3b, two-part trial being conducted at 20 academic pediatric nephrology centers. Key eligibility criteria were ADPKD and eGFR ≥60 ml/min per 1.73 m2. Participants aged 12-17 years were the target group (group 1, enrollment goal n≥60); participants aged 4-11 years could additionally enroll (group 2, anticipated enrollment approximately 40). Treatments were tolvaptan or placebo titrated by body weight and tolerability. Coprimary end points, change from baseline in spot urine osmolality and specific gravity at week 1, assessed inhibition of antidiuretic hormone activity. The key secondary end point was change in height-adjusted total kidney volume (htTKV) to month 12 in group 1. Additional end points were safety/tolerability and quality of life. Statistical comparisons were exploratory and post hoc. RESULTS Among the 91 randomized (group 1, n=66; group 2, n=25), least squares (LS) mean reduction (±SEM) in spot urine osmolality at week 1 was greater with tolvaptan (-390 [28] mOsm/kg) than placebo (-90 [29] mOsm/kg; P<0.001), as was LS mean reduction in specific gravity (-0.009 [0.001] versus -0.002 [0.001]; P<0.001). In group 1, the 12-month htTKV increase was 2.6% with tolvaptan and 5.8% with placebo (P>0.05). For tolvaptan and placebo, respectively, 65% and 16% of subjects experienced aquaretic adverse events, and 2% and 0% experienced hypernatremia. There were no elevated transaminases or drug-induced liver injuries. Four participants discontinued tolvaptan, and three discontinued placebo. Quality-of-life assessments remained stable. CONCLUSIONS Tolvaptan exhibited pharmacodynamic activity in pediatric ADPKD. Aquaretic effects were manageable, with few discontinuations. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Safety, Pharmacokinetics, Tolerability and Efficacy of Tolvaptan in Children and Adolescents With ADPKD (Autosomal Dominant Polycystic Kidney Disease) NCT02964273.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospital of Leuven, Leuven, Belgium
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC
| | - Melissa A. Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian/St. Luke's Medical Center, Denver, Colorado
| | - Larry A. Greenbaum
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Mieczyslaw Litwin
- Department of Nephrology, Kidney Transplantation and Arterial Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Tomas Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Ann Dandurand
- Cerevel Therapeutics, Cambridge, Massachusetts
- Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (former)
| | - Lily Shi
- Otsuka Pharmaceutical Development & Commercialization, Rockville, Maryland
| | - Kimberly Sikes
- Otsuka Pharmaceutical Development & Commercialization, Rockville, Maryland
| | - Susan E. Shoaf
- Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey
| | - Franz Schaefer
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Polycystic Kidney Disease Drug Development: A Conference Report. Kidney Med 2022; 5:100596. [PMID: 36698747 PMCID: PMC9867973 DOI: 10.1016/j.xkme.2022.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is part of a spectrum of inherited diseases that also includes autosomal recessive polycystic kidney disease, autosomal dominant polycystic liver disease, and an expanding group of recessively inherited disorders collectively termed hepatorenal fibrocystic disorders. ADPKD is the most common monogenic disorder frequently leading to chronic kidney failure with an estimated prevalence of 12 million people worldwide. Currently, only one drug (tolvaptan) has been approved by regulatory agencies as disease-modifying therapy for ADPKD, but, given its mechanism of action and side effect profile, the need for an improved therapy for ADPKD remains a priority. Although significant regulatory progress has been made, with qualification of total kidney volume as a prognostic enrichment biomarker and its later designation as a reasonably likely surrogate endpoint for progression of ADPKD within clinical trials, further work is needed to accelerate drug development efforts for all forms of PKD. In May 2021, the PKD Outcomes Consortium at the Critical Path Institute and the PKD Foundation organized a PKD Regulatory Summit to spur conversations among patients, industry, academic, and regulatory stakeholders regarding future development of tools and drugs for ADPKD and autosomal recessive polycystic kidney disease. This Special Report reviews the key points discussed during the summit and provides future direction related to PKD drug development tools.
Collapse
|
6
|
Oberdhan D, Schaefer F, Cole JC, Palsgrove AC, Dandurand A, Guay-Woodford L. Polycystic Kidney Disease–Related Disease Burden in Adolescents With Autosomal Dominant Polycystic Kidney Disease: An International Qualitative Study. Kidney Med 2022; 4:100415. [PMID: 35386599 PMCID: PMC8978137 DOI: 10.1016/j.xkme.2022.100415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Abstract
Rationale & Objective Little is known about symptoms and disease impacts in adolescents with autosomal dominant polycystic kidney disease (ADPKD). The objective of the study was to explore these issues from the adolescent patient’s perspective. Study Design Observational, qualitative study. Setting & Participants Eligible participants were 12-17 years old and had a diagnosis of ADPKD. Semi-structured interviews were conducted in 18 cities in 13 countries to elicit participant experiences of ADPKD-related symptoms and physical, social, and emotional impacts. Analytical Approach Interviews were recorded, transcribed, and coded. Symptom and impact frequencies from the interviews were calculated, and representative quotes concerning elicited concepts were collated. Results Thirty-three participants (mean age, 14.6 years; 42.4% female) completed interviews. Frequently reported symptoms included urinary urgency (n = 10; 30.3%) and back pain (n = 9; 27.3%). Consistent with previous findings in adults, participants experienced 3 primary types of pain: dull kidney pain, severe or sharp kidney pain, and a feeling of fullness and/or discomfort. Reported disease impacts included avoiding sports and physical activity (n = 10; 30.3%), missing school (n = 6; 18.2%) and social activities (n = 6; 18.2%), and feeling worried (n = 6; 18.2%), sad (n = 4; 12.1%), or frustrated (n = 3; 9.1%) about the disease and their future. Approximately one-fifth of participants (n = 7; 21.2%) reported that they were bothered or impacted by dietary limitations (primarily the need for reduced sodium intake and increased water intake). Limitations The study had a small sample size. The researchers were unable to conduct focus groups with participants because of parental preferences. Conclusions The findings from this exploratory study indicate that a substantial proportion of adolescents with ADPKD experience physical, social, and emotional impacts from their disease.
Collapse
|
7
|
The wind of change in the management of autosomal dominant polycystic kidney disease in childhood. Pediatr Nephrol 2022; 37:473-487. [PMID: 33677691 PMCID: PMC8921141 DOI: 10.1007/s00467-021-04974-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
Significant progress has been made in understanding the genetic basis of autosomal dominant polycystic kidney disease (ADPKD), quantifying disease manifestations in children, exploring very-early onset ADPKD as well as pharmacological delay of disease progression in adults. At least 20% of children with ADPKD have relevant, yet mainly asymptomatic disease manifestations such as hypertension or proteinuria (in line with findings in adults with ADPKD, where hypertension and cardiovascular damage precede decline in kidney function). We propose an algorithm for work-up and management based on current recommendations that integrates the need to screen regularly for hypertension and proteinuria in offspring of affected parents with different options regarding diagnostic testing, which need to be discussed with the family with regard to ethical and practical aspects. Indications and scope of genetic testing are discussed. Pharmacological management includes renin-angiotensin system blockade as first-line therapy for hypertension and proteinuria. The vasopressin receptor antagonist tolvaptan is licensed for delaying disease progression in adults with ADPKD who are likely to experience kidney failure. A clinical trial in children is currently ongoing; however, valid prediction models to identify children likely to suffer kidney failure are lacking. Non-pharmacological interventions in this population also deserve further study.
Collapse
|
8
|
Pagliarini R, Podrini C. Metabolic Reprogramming and Reconstruction: Integration of Experimental and Computational Studies to Set the Path Forward in ADPKD. Front Med (Lausanne) 2021; 8:740087. [PMID: 34901057 PMCID: PMC8652061 DOI: 10.3389/fmed.2021.740087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic reprogramming is a key feature of Autosomal Dominant Polycystic Kidney Disease (ADPKD) characterized by changes in cellular pathways occurring in response to the pathological cell conditions. In ADPKD, a broad range of dysregulated pathways have been found. The studies supporting alterations in cell metabolism have shown that the metabolic preference for abnormal cystic growth is to utilize aerobic glycolysis, increasing glutamine uptake and reducing oxidative phosphorylation, consequently resulting in ADPKD cells shifting their energy to alternative energetic pathways. The mechanism behind the role of the polycystin proteins and how it leads to disease remains unclear, despite the identification of numerous signaling pathways. The integration of computational data analysis that accompanies experimental findings was pivotal in the identification of metabolic reprogramming in ADPKD. Here, we summarize the important results and argue that their exploitation may give further insights into the regulative mechanisms driving metabolic reprogramming in ADPKD. The aim of this review is to provide a comprehensive overview on metabolic focused studies and potential targets for treatment, and to propose that computational approaches could be instrumental in advancing this field of research.
Collapse
Affiliation(s)
- Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Liebau MC, Mekahli D. Translational research approaches to study pediatric polycystic kidney disease. Mol Cell Pediatr 2021; 8:20. [PMID: 34882278 PMCID: PMC8660924 DOI: 10.1186/s40348-021-00131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Polycystic kidney diseases (PKD) are severe forms of genetic kidney disorders. The two main types of PKD are autosomal recessive and autosomal dominant PKD (ARPKD, ADPKD). While ARPKD typically is a disorder of early childhood, patients with ADPKD often remain pauci-symptomatic until adulthood even though formation of cysts in the kidney already begins in children. There is clinical and genetic overlap between both entities with very variable clinical courses. Subgroups of very early onset ADPKD may for example clinically resemble ARPKD. The basis of the clinical variability in both forms of PKD is not well understood and there are also limited prediction markers for disease progression for daily clinical life or surrogate endpoints for clinical trials in ARPKD or early ADPKD. As targeted therapeutic approaches to slow disease progression in PKD are emerging, it is becoming more important to reliably identify patients at risk for rapid progression as they might benefit from early therapy. Over the past years regional, national and international data collections to jointly analyze the clinical courses of PKD patients have been set up. The clinical observations are complemented by genetic studies and biorepositories as well as basic science approaches to elucidate the underlying molecular mechanisms in the PKD field. These approaches may serve as a basis for the development of novel therapeutic interventions in specific subgroups of patients. In this article we summarize some of the recent developments in the field with a focus on kidney involvement in PKD during childhood and adolescence and findings obtained in pediatric cohorts.
Collapse
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics, Center for Rare Diseases and Center for Molecular Medicine, University Hospital Cologne and Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Djalila Mekahli
- Department of Pediatric Nephrology and Organ Transplantation, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium. .,Department of Development and Regeneration, PKD Research Group, Laboratory of Pediatrics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Liu F, Feng C, Shen H, Fu H, Mao J. Tolvaptan in Pediatric Autosomal Dominant Polycystic Kidney Disease: From Here to Where? KIDNEY DISEASES 2021; 7:343-349. [PMID: 34604341 DOI: 10.1159/000517186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder, accounting for approximately 5% of all ESRD cases worldwide. As a vasopressin receptor 2 antagonist, tolvaptan is the FDA-approved therapeutic agent for ADPKD, which is only made available to a limited number of adult patients; however, its efficacy in pediatric patients has not been reported widely. Summary Tolvaptan was shown to delay ADPKD progression in the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4 study, Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and Efficacy in ADPKD (REPRISE) trial, and other clinical studies. In addition to its effects on aquaretic adverse events and alanine aminotransferase elevation, the effect of tolvaptan on ADPKD is clear, sustained, and cumulative. While ADPKD is a progressive disease, the early intervention has been shown to be important and beneficial in hypotheses as well as in trials. The use of tolvaptan in pediatric ADPKD involves the following challenges: patient assessment, quality of life assessment, cost-effectiveness, safety, and tolerability. The ongoing, phase 3b, 2-part study (ClinicalTrials.gov identifier: NCT02964273) on the evaluation of tolvaptan in pediatric ADPKD (patients aged 12-17 years) may help obtain some insights. Key Messages This review focuses on the rationality of tolvaptan use in pediatric patients with ADPKD, the associated challenges, and the suggested therapeutic approaches.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyue Feng
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaidong Fu
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
12
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
13
|
Janssens P, Jouret F, Bammens B, Liebau MC, Schaefer F, Dandurand A, Perrone RD, Müller RU, Pao CS, Mekahli D. Implications of early diagnosis of autosomal dominant polycystic kidney disease: A post hoc analysis of the TEMPO 3:4 trial. Sci Rep 2020; 10:4294. [PMID: 32152377 PMCID: PMC7062834 DOI: 10.1038/s41598-020-61303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2019] [Accepted: 02/21/2020] [Indexed: 11/18/2022] Open
Abstract
It is unknown whether early diagnosis of autosomal dominant polycystic kidney disease (ADPKD) can enable earlier management and improve outcomes. We conducted a post hoc analysis of data from the TEMPO 3:4 trial. Subjects were stratified by ADPKD diagnosis at age ≤18 (childhood diagnosis [CD]) or>18 (adulthood diagnosis [AD]). Groups were compared for baseline characteristics and total kidney volume (TKV) growth and estimated glomerular filtration rate (eGFR) decline over 3 years. 294 CD and 1148 AD subjects were analyzed. At inclusion, CD subjects were younger (mean age 34.2 versus 39.8 years; p < 0.0001) and had better eGFR (mean ± SD 87.4 ± 23.9 versus 80.1 ± 20.7 mL/min/1.73 m2; p < 0.0001), while CD had more severe Mayo risk classification (p < 0.0001) and more PKD1 mutations (p = 0.003). No statistical differences were found in TKV or eGFR change. At study end, placebo-treated CD subjects had better eGFR than projected by a prediction equation (mean difference ±SD for observed versus predicted eGFR: 2.18 ± 10.7 mL/min/1.73 m2; p = 0.0475). However, these results are not confirmed when excluding stage 1 CKD. Whether CD subjects, despite their risk profile, have a slower disease course than predicted remains inconclusive. Future studies are needed to confirm that early diagnosis and management can alter the disease course of ADPKD.
Collapse
Affiliation(s)
- Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Brussels, Brussels, Belgium
| | - François Jouret
- Division of Nephrology, University of Liège Hospital (ULiège CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, ULiège, Liège, Belgium
| | - Bert Bammens
- Department of Microbiology & Immunology, KU Leuven, Leuven, Belgium.,Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Ann Dandurand
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts Medical Center and Tufts University School of Medicine, Boston, USA
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Christina S Pao
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, USA
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium. .,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|