1
|
Barton B, Ullah N, Koszelska K, Smarzewska S, Ciesielski W, Guziejewski D. Reviewing neonicotinoid detection with electroanalytical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37923-37942. [PMID: 38769264 PMCID: PMC11189332 DOI: 10.1007/s11356-024-33676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoids, as the fastest-growing class of insecticides, currently account for over 25% of the global pesticide market. Their effectiveness in controlling a wide range of pests that pose a threat to croplands, home yards/gardens, and golf course greens cannot be denied. However, the extensive use of neonicotinoids has resulted in significant declines in nontarget organisms such as pollinators, insects, and birds. Furthermore, the potential chronic, sublethal effects of these compounds on human health remain largely unknown. To address these pressing issues, it is crucial to explore and understand the capabilities of electrochemical sensors in detecting neonicotinoid residues. Surprisingly, despite the increasing importance of this topic, no comprehensive review article currently exists in the literature. Therefore, our proposed review aims to bridge this gap by providing a thorough analysis of the use of electrochemical methods for neonicotinoid determination. In this review article, we will delve into various aspects of electrochemical analysis, including the influence of electrode materials, employed techniques, and the different types of electrode mechanisms utilized. By synthesizing and analysing the existing research in this field, our review will offer valuable insights and guidance to researchers, scientists, and policymakers alike.
Collapse
Affiliation(s)
- Bartłomiej Barton
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland.
| | - Nabi Ullah
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Kamila Koszelska
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Sylwia Smarzewska
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Witold Ciesielski
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Dariusz Guziejewski
- Department of Instrumental Analysis, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| |
Collapse
|
2
|
Grabarczyk M, Wawruch A. Screen-Printed Carbon Electrode Modified with Carbon Nanotubes and Copper Film as a Simple Tool for Determination of Trace Concentrations of Lead Ions. MEMBRANES 2024; 14:53. [PMID: 38392680 PMCID: PMC10890294 DOI: 10.3390/membranes14020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
A copper film-modified, carboxyl-functionalized, and multi-walled carbon nanotube (MWCNT-COOH)-modified screen-printed carbon electrode (CuF/MWCNTs/SPCE) was used for lead determination using anodic stripping voltammetry. The main parameters were investigated and optimized during the development of the research procedure. The most optimal electrolyte concentrations were determined to be 0.4 M HCl and 6.3 × 10-5 M Cu(II). The optimal parameters for voltammetric stripping measurements are as follows: an accumulation potential of -0.7 V; an accumulation time of 120 s; and a pulse amplitude and pulse time of 120 mV and 2 ms, respectively. The effect of surface active substances and humic substances as potential interferents present in aqueous environmental samples was investigated. The validation of the procedure was carried out using certified reference materials, like waste water SPS-WW1 and environmental matrix TM-25.5. In addition, the developed procedure was applied to investigate lead recovery from natural environmental water, such as rivers and lakes.
Collapse
Affiliation(s)
- Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Agnieszka Wawruch
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|
3
|
Manikandan R, Yoon JH, Chang SC. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices. CHEMOSPHERE 2023; 344:140231. [PMID: 37775053 DOI: 10.1016/j.chemosphere.2023.140231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Heavy metal ions (HMIs) have become a significant contaminant in recent years. The increase in heavy metal pollution is a serious situation, requiring progressively robust, fast sensing, highly sensitive, and suitable techniques for heavy metal detection. Compared to other classical analytical methods, electroanalytical techniques, especially stripping voltammetric techniques with modified screen-printed electrodes (SPEs), have several advantages, such as fast sensing, great sensitivity, specificity, and long-time stability. Therefore, these techniques are more suitable for HMI detection. In this review, the nanostructured materials used to coat SPEs for the electrochemical determination of HMI are summarized. Additionally, the electrode fabrication method, modification steps, and electroanalytical study of these materials are systematically discussed. Hence, this review will support the researchers in precisely evaluating the electrochemical HMIs detection through highly sensitive stripping voltammetric techniques using SPE modified with nanostructured carbon and their allotropes, metal, metal oxides and their nanocomposites as sensor materials. Moreover, modified electrodes real time detection of HMIs in different food and environmental samples were briefly discussed.
Collapse
Affiliation(s)
- Ramalingam Manikandan
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Wygant BR, Lambert TN. Thin Film Electrodes for Anodic Stripping Voltammetry: A Mini-Review. Front Chem 2022; 9:809535. [PMID: 35186893 PMCID: PMC8847685 DOI: 10.3389/fchem.2021.809535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Anodic stripping voltammetry (ASV) is a powerful electrochemical analytical technique that allows for the detection and quantification of a variety of metal ion species at very low concentrations in aqueous media. While early, traditional ASV measurements relied on macroscopic electrodes like Hg drop electrodes to provide surfaces suitable for plating/stripping, more recent work on the technique has replaced these electrodes with thin film metal electrodes generated in situ. Such electrodes are plated alongside the analyte species onto the surface of a primary electrode, producing a composite metal electrode from which the analyte(s) can then be stripped, identified, and quantified. In this minireview, we will explore the development and use of these unique electrodes in a variety of different applications. A number of metals (e.g., Hg, Bi, Sn, etc.) have shown promise as thin film ASV electrodes in both acidic and alkaline media, and frequently multiple metals in addition to the analyte of interest are deposited together to optimize the plating/stripping behavior, improving sensitivity. Due to the relatively simple nature of the measurement and its suitability for a wide range of pH, it has been used broadly: To measure toxic metals in the environment, characterize battery materials, and enable biological assays, among other applications. We will discuss these applications in greater detail, as well as provide perspective on future development and uses of these thin film electrodes in ASV measurements.
Collapse
|
5
|
Wasąg J, Grabarczyk M. Copper Film Modified Glassy Carbon Electrode and Copper Film with Carbon Nanotubes Modified Screen-Printed Electrode for the Cd(II) Determination. MATERIALS 2021; 14:ma14185148. [PMID: 34576372 PMCID: PMC8466203 DOI: 10.3390/ma14185148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
A copper film modified glassy carbon electrode (CuF/GCE) and a novel copper film with carbon nanotubes modified screen-printed electrode (CuF/CN/SPE) for anodic stripping voltammetric measurement of ultratrace levels of Cd(II) are presented. During the development of the research procedure, several main parameters were investigated and optimized. The optimal electroanalytical performance of the working electrodes was achieved in electrolyte 0.1 M HCl and 2 × 10−4 M Cu(II). The copper film modified glassy carbon electrode exhibited operation in the presence of dissolved oxygen with a calculated limit of detection of 1.7 × 10−10 M and 210 s accumulation time, repeatability with RSD of 4.2% (n = 5). In the case of copper film with carbon nanotubes modified screen-printed electrode limit of detection amounted 1.3 × 10−10 M for accumulation time of 210 s and with RSD of 4.5% (n = 5). The calibration curve has a linear range in the tested concentration of 5 × 10−10–5 × 10−7 M (r = 0.999) for CuF/GCE and 3 × 10−10–3 × 10−7 M (r = 0.999) for CuF/CN/SPE with 210 s accumulation time in both cases. The used electrodes enable trace determination of cadmium in different environmental water samples containing organic matrix. The validation of the proposed procedures was carried out through analysis certified reference materials: TM-25.5, SPS-SW1, and SPS-WW1.
Collapse
Affiliation(s)
- Joanna Wasąg
- Department of Materials Engineering, Institute of Engineering and Technical Sciences, Faculty of Natural Sciences and Health, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
6
|
Electrocatalytic determination of mercury cations at the interfaces of gold electrodes modified with self-assembled monolayers of cobalt phthalocyanines and electropolymerized 3-hexylthiophene films. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kasuno M, Osuga H, Shina K, Yamazaki T. Coulometric Anodic Stripping Voltammetry of Lead at Copper Column Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Megumi Kasuno
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| | - Hitomi Osuga
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| | - Katsuya Shina
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| | - Takuya Yamazaki
- Department of Materials Chemistry Faculty of Science and Technology Ryukoku University Otsu Shiga 520-2194 Japan
| |
Collapse
|
8
|
High index facets-Ag nanoflower enabled efficient electrochemical detection of lead in blood serum and cosmetics. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
3D printing pen using conductive filaments to fabricate affordable electrochemical sensors for trace metal monitoring. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Finšgar M, Jezernik K. The Use of Factorial Design and Simplex Optimization to Improve Analytical Performance of In Situ Film Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3921. [PMID: 32674513 PMCID: PMC7411898 DOI: 10.3390/s20143921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
Abstract
This work presents a systematic approach to determining the significance of the individual factors affecting the analytical performance of in-situ film electrode (FE) for the determination of Zn(II), Cd(II), and Pb(II). Analytical parameters were considered simultaneously, where the lowest limit of quantification, the widest linear concentration range, and the highest sensitivity, accuracy, and precision of the method evidenced a better analytical method. Significance was evaluated by means of a fractional factorial (experimental) design using five factors, i.e., the mass concentrations of Bi(III), Sn(II), and Sb(III), to design the in situ FE, the accumulation potential, and the accumulation time. Next, a simplex optimization procedure was employed to determine the optimum conditions for these factors. Such optimization of the in situ FE showed significant improvement in analytical performance compared to the in situ FEs in the initial experiments and compared to pure in situ FEs (bismuth-film, tin-film, and antimony-film electrodes). Moreover, using the optimized in situ FE electrode, a possible interference effect was checked for different species and the applicability of the electrode was demonstrated for a real tap water sample.
Collapse
Affiliation(s)
- Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | | |
Collapse
|
11
|
|
12
|
Desai M, Jha S, Basu H, Singhal RK, Park TJ, Kailasa SK. Acid Oxidation of Muskmelon Fruit for the Fabrication of Carbon Dots with Specific Emission Colors for Recognition of Hg 2+ Ions and Cell Imaging. ACS OMEGA 2019; 4:19332-19340. [PMID: 31763557 PMCID: PMC6868887 DOI: 10.1021/acsomega.9b02730] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
In this study, water-soluble emissive carbon dots (CDs) are effectively fabricated with specific optical properties and colors by acid oxidation of muskmelon (Cucumis melo) fruit, which are termed as C. melo CDs (CMCDs). The fluorescence properties of CMCDs were tuned by controlling the experimental conditions that allow them to emit different colors, that is, blue (B-), green (G-), and yellow (Y-) CMCDs, with different emission wavelengths at 432, 515, and 554 nm when excited at 342, 415, and 425 nm, respectively. The fabricated multicolor-emissive CDs were confirmed by various analytical techniques. The sizes of B-, G-, and Y-CMCDs were found to be ∼3.5, ∼4.3, and ∼5.8 nm, respectively. The as-prepared CMCDs display stable emissions with quantum yields of 7.07, 26.9, and 14.3% for the three CMCDs, which could act as a promising probe for the selective detection of Hg2+ ions. Upon the addition of Hg2+ ions, the fluorescence intensity of G-CMCDs at 515 nm was quenched largely than that of B- and Y-CMCDs. The spectroscopic results display that the G-CMCDs acted as a sensor for the detection of Hg2+ ions with a wide linear range from 1.0 to 25 μM (R 2 = 0.9855) with a detection limit of 0.33 μM. This method was successfully applied to detect Hg2+ ions in biological and water samples. The fabricated multicolor-emissive CMCDs possess the cell (Cunninghamella elegans, Aspergillus flavus, and Rhizoctonia solani) imaging property, suggesting the biocompatible nature for multicolor imaging of various cells.
Collapse
Affiliation(s)
- Mittal
L. Desai
- Department
of Applied Chemistry, S. V. National Institute
of Technology, Surat 395 007, India
| | - Sanjay Jha
- Gujarat
Agricultural Biotechnology Institute, Navsari
Agricultural University, Surat 395007, India
| | - Hirakendu Basu
- Analytical
Chemistry Division, Bhabha Atomic Research
Center, Trombay, Mumbai 400085, India
| | - Rakesh Kumar Singhal
- Analytical
Chemistry Division, Bhabha Atomic Research
Center, Trombay, Mumbai 400085, India
| | - Tae-Jung Park
- Department
of Chemistry, Institute of Interdisciplinary Convergence Research,
Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic
of Korea
| | - Suresh Kumar Kailasa
- Department
of Applied Chemistry, S. V. National Institute
of Technology, Surat 395 007, India
| |
Collapse
|
13
|
Copper-film electrodes for Pb(II) trace analysis and a detailed electrochemical impedance spectroscopy study. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Insights into the anodic stripping voltammetric behaviour of copper film electrodes for determination of trace mercury. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
|
16
|
Trace Voltammetric Determination of Lead at a Recycled Battery Carbon Rod Electrode. SENSORS 2019; 19:s19040770. [PMID: 30781864 PMCID: PMC6412861 DOI: 10.3390/s19040770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Carbon rod electrodes (CREs) were obtained from recycled zinc–carbon batteries and were used without further modification for the measurement of trace concentrations of lead (Pb). The electrochemical behavior of Pb at these electrodes in a variety of supporting electrolytes was investigated by cyclic voltammetry. The anodic peaks obtained on the reverse scans were indicative of Pb being deposited as a thin layer on the electrode surface. The greatest signal–to–noise ratios were obtained in organic acids compared to mineral acids, and acetic acid was selected as the supporting electrolyte for further studies. Conditions were optimized, and it was possible to determine trace concentrations of Pb by differential pulse anodic stripping voltammetry. A supporting electrolyte of 4% v/v acetic acid, with a deposition potential of −1.5 V (vs. SCE) and a deposition time of 1100 s, was found to be optimum. A linear range of 2.8 µg/L to 110 µg/L was obtained, with an associated detection limit (3σ) of 2.8 µg/L. A mean recovery of 95.6% (CV=3.9%) was obtained for a tap water sample fortified with 21.3 µg/L.
Collapse
|
17
|
Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Finšgar M, Majer D, Maver U, Maver T. Reusability of SPE and Sb-modified SPE Sensors for Trace Pb(II) Determination. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3976. [PMID: 30445794 PMCID: PMC6263962 DOI: 10.3390/s18113976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023]
Abstract
In this work, unmodified screen-printed electrode (bare SPE) and Sb-film modified SPE (SbFSPE) sensors were employed for the analysis of trace amounts of Pb(II) in non-deaerated water solutions. The modified electrode was performed in situ in 0.5 mg/L Sb(III) and 0.01 M HCl. The methodology was validated for an accumulation potential of ⁻1.1 V vs. Ag/AgCl and an accumulation time of 60 s. A comparative analysis of bare SPE and SbFSPE showed that the detection and quantification limits decrease for the bare SPE. The method with the bare SPE showed a linear response in the 69.8⁻368.4 µg/L concentration range, whereas linearity for the SbFSPE was in the 24.0⁻319.1 µg/L concentration range. This work also reports the reason why the multiple standard addition method instead of a linear calibration curve for Pb(II) analysis should be employed. Furthermore, the analytical method employing SbFSPE was found to be more accurate and precise compared to the use of bare SPE when sensors were employed for the first time, however this performance changed significantly when these sensors were reused in the same manner. Furthermore, electrochemical impedance spectroscopy was used for the first time to analyse the electrochemical response of sensors after being used for multiple successive analyses. Surface characterisation before and after multiple successive uses of bare SPE and SbFSPE sensors, with atomic force microscopy and field emission scanning electron microscopy, showed sensor degradation. The interference effect of Cd(II), Zn(II), As(III), Fe(II), Na(I), K(I), Ca(II), Mg(II), NO₃⁻, Bi(III), Cu(II), Sn(II), and Hg(II) on the Pb(II) stripping signal was also studied. Finally, the application of SbFSPE was tested on a real water sample (from a local river), which showed high precision (RSD = 8.1%, n = 5) and accurate results.
Collapse
Affiliation(s)
- Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - David Majer
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia.
| | - Tina Maver
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
19
|
Finšgar M, Petovar B. Novel in situ
Bi−Sb-Film Electrodes for Trace Heavy Metal Analysis. ELECTROANAL 2018. [DOI: 10.1002/elan.201800545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matjaž Finšgar
- University of Maribor; Faculty of Chemistry and Chemical Engineering; Smetanova ulica 17 2000 Maribor Slovenia
| | - Barbara Petovar
- University of Maribor; Faculty of Chemistry and Chemical Engineering; Smetanova ulica 17 2000 Maribor Slovenia
| |
Collapse
|
20
|
Petovar B, Xhanari K, Finšgar M. A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Anal Chim Acta 2018; 1004:10-21. [DOI: 10.1016/j.aca.2017.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 01/16/2023]
|
21
|
A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018; 178:324-338. [DOI: 10.1016/j.talanta.2017.08.033] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
|
22
|
Li Y, Zhang ZY, Yang HF, Shao G, Gan F. Highly selective fluorescent carbon dots probe for mercury(ii) based on thymine–mercury(ii)–thymine structure. RSC Adv 2018. [DOI: 10.1039/c7ra11487g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A novel thymine-functional fluorescent sensor was developed for Hg2+detection with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yong Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zhan-Yao Zhang
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hao-Fan Yang
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Guang Shao
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Feng Gan
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
23
|
Recent Studies on the Speciation and Determination of Mercury in Different Environmental Matrices Using Various Analytical Techniques. Int J Anal Chem 2017; 2017:3624015. [PMID: 29348750 PMCID: PMC5733771 DOI: 10.1155/2017/3624015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
This paper reviews the current research on the speciation and determination of mercury by various analytical techniques, including the atomic absorption spectrometry (AAS), voltammetry, inductively coupled plasma optical emission spectrometry (ICP-OES), ICP-mass spectrometry (MS), atomic fluorescence spectrometry (AFS), spectrophotometry, spectrofluorometry, and high performance liquid chromatography (HPLC). Approximately 96 research papers on the speciation and determination of mercury by various analytical instruments published in international journals since 2015 were reviewed. All analytical parameters, including the limits of detection, linearity range, quality assurance and control, applicability, and interfering ions, evaluated in the reviewed articles were tabulated. In this review, we found a lack of information in speciation studies of mercury in recent years. Another important conclusion from this review was that there were few studies regarding the concentration of mercury in the atmosphere.
Collapse
|
24
|
Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta 2017; 990:11-53. [DOI: 10.1016/j.aca.2017.07.069] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023]
|
25
|
Suherman AL, Tanner EE, Compton RG. Recent developments in inorganic Hg 2+ detection by voltammetry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Huang J, Bai S, Yue G, Cheng W, Wang L. Coordination matrix/signal amplifier strategy for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii), and mercury(ii) ions based on polyfurfural film/multi-walled carbon nanotube modified electrode. RSC Adv 2017. [DOI: 10.1039/c7ra04029f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coordination matrix/signal amplifier strategy for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii) and mercury(ii) ions based on polyfurfural film/multi-walled carbon nanotubes modified electrode.
Collapse
Affiliation(s)
- Jianzhi Huang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Silan Bai
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Guoqing Yue
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Wenxue Cheng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
27
|
Shen H, Qin D, Li Y, Li S, Yang C, Yuan Q, Wagberg T, Hu G. In situ Magnesiothermal Synthesis of Mesoporous MgO/OMC Composite for Sensitive Detection of Lead Ions. ELECTROANAL 2016. [DOI: 10.1002/elan.201600348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hangjia Shen
- Xinjiang Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Danfeng Qin
- Xinjiang Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Urumqi 830011 Xinjiang China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuzhen Li
- Institute of Industrial Catalysis; Zhejiang University of Technology; Hangzhou 310014 China
| | - Shouzhu Li
- Xinjiang Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Urumqi 830011 Xinjiang China
| | - Chi Yang
- Department of Pharmacy; Nantong University; Nantong 226001 China
| | - Qunhui Yuan
- School of Materials Science and Engineering
; Harbin Institute of Technology
; Shenzhen
518055
China
| | - Thomas Wagberg
- Department of Physics; Umeå University; 901 87 Umeå Sweden
| | - Guangzhi Hu
- Xinjiang Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Urumqi 830011 Xinjiang China
- Department of Physics; Umeå University; 901 87 Umeå Sweden
| |
Collapse
|
28
|
Electromembrane extraction and anodic stripping voltammetric determination of mercury(II) using a glassy carbon electrode modified with gold nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1884-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 2016; 45:715-52. [DOI: 10.1039/c5cs00297d] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New synthetic approaches, materials, properties, electroanalytical applications and perspectives of carbon materials are presented.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuyun Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuang Han
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Lianzhe Hu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
30
|
Wang H, Zhang Y, Chu Y, Ma H, Li Y, Wu D, Du B, Wei Q. Disposable competitive-type immunoassay for determination of aflatoxin B1 via detection of copper ions released from Cu-apatite. Talanta 2016; 147:556-60. [DOI: 10.1016/j.talanta.2015.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
|
31
|
NIU X, ZHANG H, YU M, ZHAO H, LAN M, YU C. Combination of Microporous Hollow Carbon Spheres and Nafion for the Individual Metal-free Stripping Detection of Pb 2+ and Cd 2+. ANAL SCI 2016; 32:943-9. [DOI: 10.2116/analsci.32.943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xiangheng NIU
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| | - Hongwei ZHANG
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland
| | - Meihua YU
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland
| | - Hongli ZHAO
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology
| | - Minbo LAN
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology
| | - Chengzhong YU
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland
| |
Collapse
|
32
|
|