1
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
3
|
Bai L, Chen X, Zhang F, Zhou H, Li Y, Wang P, Li N, Xiao J. High-Stability Composite Solid Polymer Electrolyte Composed of PAEPU/PP Nonwoven Fabric for Lithium-Ion Batteries. ACS OMEGA 2024; 9:31620-31630. [PMID: 39072059 PMCID: PMC11270683 DOI: 10.1021/acsomega.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024]
Abstract
Solid polymer electrolytes have attracted considerable attention, owing to their flexibility and safety. At present, poly(ethylene oxide) is the most widely studied polymer electrolyte matrix. It exhibits higher safety than the polyolefin diaphragm used in traditional lithium-ion batteries. However, it readily crystallizes at room temperature, resulting in low ionic conductivity, and the preparation process involves organic solvents. In this study, from the perspective of molecular design, solvent-free polyaspartate polyurea (PAEPU) and the cheap and easily available polypropylene (PP) nonwoven fabric were used as support materials for the PAEPU/PP composite solid polymer electrolyte (PAEPU/PP m -CPE). This CPE has good thermal stability, dimensional stability, flexibility, and mechanical properties. Among the different CPEs that were analyzed, PAEPU/PP10-CPE@20 had the highest ionic conductivity, which was reinforced with 10 g/m2 PP nonwoven fabric and the content of lithium salt was 20 wt %. Furthermore, PAEPU/PP10-CPE@20 exhibited the highest electrochemical stability with an electrochemical window value of 5.53 V. Moreover, the capacity retention rate of the Li//PAEPU/PP10-CPE@20//LiFePO4 half-cell was 96.82% after 150 cycles at 0.05 C and 60 °C, and the capacity recovery rate in the rate test reached 98.81%.
Collapse
Affiliation(s)
- Lu Bai
- Institute
of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Xiaoqi Chen
- Institute
of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Fen Zhang
- Institute
of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Haijun Zhou
- Institute
of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Yantao Li
- Institute
of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Peng Wang
- Hebei
Key Laboratory of Flexible Functional Materials, School of Materials
Science and Engineering, Hebei University
of Science and Technology, Shijiazhuang 050000, China
| | - Na Li
- Hebei
Key Laboratory of Flexible Functional Materials, School of Materials
Science and Engineering, Hebei University
of Science and Technology, Shijiazhuang 050000, China
| | - Jijun Xiao
- Hebei
Key Laboratory of Flexible Functional Materials, School of Materials
Science and Engineering, Hebei University
of Science and Technology, Shijiazhuang 050000, China
| |
Collapse
|
4
|
Wang C, Zhang X, Sun X, Zhang Y, Wang Q, Sun J. Aliphatic Hyperbranched Polycarbonates Solid Polymer Electrolytes with High Li-Ion Transference Number for Lithium Metal Batteries. Macromol Rapid Commun 2024; 45:e2300645. [PMID: 38227948 DOI: 10.1002/marc.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Indexed: 01/18/2024]
Abstract
In this work, hyperbranched polycarbonate-poly(ethylene oxide) (PEO)-based solid polymer electrolytes (HBPC-SEs) are successfully synthesized via a straightforward organo-catalyzed "A1"+"B2"-ring-opening polymerization approach. The temperature-dependent ionic conductivity of HBPC-SEs, composed of different polycarbonate linkages and various LiTFSI concentrations, is investigated. The results demonstrate that HBPC-SE with an ether-carbonate alternating structure exhibits superior ionic conductivity, attributed to the solubility of Li salts in the polymer matrix and the mobility of the polymer segments. The HBPC1-SE with 30 wt% LiTFSI presents the highest ionic conductivities of 2.15 × 10-5, 1.78 × 10-4, and 6.07 × 10-4 Scm-1 at 30, 60, and 80 °C, respectively. Compared to traditional PEO-based electrolytes, the incorporation of polycarbonate segments significantly enhances the electrochemical stability window (5 V) and Li+ transference number (0.53) of HBPC-SEs. Furthermore, the LiFePO4/HBPC1-SE-3/Li cell exhibits exceptional rate capability and long-cycling performance, maintaining a discharge capacity of 130 mAh g-1 at 0.5C with a capacity retention of 95% after 300 cycles.
Collapse
Affiliation(s)
- Chengliang Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Xu Zhang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Xiaofei Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Yan Zhang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042, China
| |
Collapse
|
5
|
Su G, Zhang X, Xiao M, Wang S, Huang S, Han D, Meng Y. Polymeric Electrolytes for Solid-state Lithium Ion Batteries: Structure Design, Electrochemical Properties and Cell Performances. CHEMSUSCHEM 2024; 17:e202300293. [PMID: 37771268 DOI: 10.1002/cssc.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Solid-state electrolytes are key to achieving high energy density, safety, and stability for lithium-ion batteries. In this Review, core indicators of solid polymer electrolytes are discussed in detail including ionic conductivity, interface compatibility, mechanical integrity, and cycling stability. Besides, we also summarize how above properties can be improved by design strategies of functional monomers, groups, and assembly of batteries. Structures and properties of polymers are investigated here to provide a basis for all-solid-state electrolyte design strategies of multi-component polymers. In addition, adjustment strategies of quasi-solid-state polymer electrolytes such as adding functional additives and carrying out structural design are also investigated, aiming at solving problems caused by simply adding liquids or small molecular plasticizer. We hope that fresh and established researchers can achieve a general perspective of solid polymer electrolytes via this Review and spur more extensive interests for exploration of high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Gang Su
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuezhong Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450000, P. R. China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Wu L, Lv H, Zhang R, Ding P, Tang M, Liu S, Wang L, Liu F, Guo X, Yu H. Ferroelectric BaTiO 3 Regulating the Local Electric Field for Interfacial Stability in Solid-State Lithium Metal Batteries. ACS NANO 2024. [PMID: 38314720 DOI: 10.1021/acsnano.3c10870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Solid-state Li metal batteries (SSLMBs) are widely investigated since they possess promising energy density and high safety. However, the poor interfacial compatibility between the electrolyte and electrodes limits their promising development. Herein, a robust composite electrolyte (poly(vinyl ethylene carbonate) electrolyte with 3 wt % of BaTiO3, PVEC-3BTO) with excellent interfacial performance is rationally designed by incorporating ferroelectric BaTiO3 (BTO) nanoparticles into the poly(vinyl ethylene carbonate) (PVEC) electrolyte matrix. Benefiting from the high dielectric constant and ferroelectric properties of BTO, the interfacial compatibility between electrolytes and electrodes was significantly improved. The enhanced Li+ transference number (0.64) of solid electrolyte and in situ generated BaF2 inorganic interphase contribute to the enhanced cycling stability of PVEC-3BTO based Li//Li symmetrical batteries. Furthermore, the antioxidation ability of PVEC-3BTO has also been enhanced by modulating the local electric field for good pairing with high-voltage LiCoO2 material. Therefore, in this work, the mechanism of BTO for improving interfacial compatibility is revealed, and also useful methods for addressing the interface issues of SSLMBs have been provided.
Collapse
Affiliation(s)
- Lingqiao Wu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haoran Lv
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rui Zhang
- Beijing Huairou Laboratory, Beijing, 101400, P. R. China
| | - Peipei Ding
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing 100094, P. R. China
| | - Shiqi Liu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lihang Wang
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Fangzheng Liu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xianwei Guo
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haijun Yu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
7
|
Platen K, Langer F, Bayer R, Hollmann R, Schwenzel J, Busse M. Influence of Molecular Weight and Lithium Bis(trifluoromethanesulfonyl)imide on the Thermal Processability of Poly(ethylene oxide) for Solid-State Electrolytes. Polymers (Basel) 2023; 15:3375. [PMID: 37631431 PMCID: PMC10459147 DOI: 10.3390/polym15163375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
New energy systems such as all-solid-state battery (ASSB) technology are becoming increasingly important today. Recently, researchers have been investigating the transition from the lab-scale production of ASSB components to a larger scale. Poly(ethylene oxide) (PEO) is a promising candidate for the large-scale production of polymer-based solid electrolytes (SPEs) because it offers many processing options. Hence, in this work, the thermal processing route for a PEO-Lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) SPE in the ratio of 20:1 (EO:Li) is investigated using kneading experiments. Here, we clearly show the sensitivity of PEO during thermal processing, especially for high-molecular-weight PEO (Mw = 600,000 g mol-1). LiTFSI acts as a plasticizer for low-molecular-weight PEO (Mw = 100,000 g mol-1), while it amplifies the degradation of high-molecular-weight PEO. Further, LiTFSI affects the thermal properties of PEO and its crystallinity. This leads to a higher chain mobility in the polymer matrix, which improves the flowability. In addition, the spherulite size of the produced PEO electrolytes differs from the molecular weight. This work demonstrates that low-molecular-weight PEO is more suitable for thermal processing as a solid electrolyte due to the process stability. High-molecular-weight PEO, especially, is strongly influenced by the process settings and LiTFSI.
Collapse
Affiliation(s)
- Katharina Platen
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Lilienthalplatz 1, 38108 Braunschweig, Germany
| | - Frederieke Langer
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Lilienthalplatz 1, 38108 Braunschweig, Germany
| | - Roland Bayer
- DDP Specialty Products Germany GmbH & Co. KG, Business Unit Pharma Solutions/Health, International Flavors & Fragrances Inc. (IFF), August-Wolff-Straße 13, 29699 Walsrode-Bomlitz, Germany
| | - Robert Hollmann
- DDP Specialty Products Germany GmbH & Co. KG, Business Unit Pharma Solutions/Health, International Flavors & Fragrances Inc. (IFF), August-Wolff-Straße 13, 29699 Walsrode-Bomlitz, Germany
| | - Julian Schwenzel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany
| | - Matthias Busse
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Straße 12, 28359 Bremen, Germany
| |
Collapse
|
8
|
Goujon N, Mendes T, Barlow KJ, Kerr R, O'Dell LA, Chiefari J, Howlett PC, Forsyth M. Single‐ion conducting polymer as lithium salt additive in polymerized ionic liquid block copolymer electrolyte. J Appl Polym Sci 2023. [DOI: 10.1002/app.53809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Nicolas Goujon
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| | - Tiago Mendes
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| | - Kristine J. Barlow
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| | - Robert Kerr
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| | | | - Patrick C. Howlett
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| | - Maria Forsyth
- Institute for Frontier Materials Deakin University Burwood Victoria Australia
| |
Collapse
|
9
|
Gerlitz AI, Diddens D, Grünebaum M, Heuer A, Winter M, Wiemhöfer HD. Polypropylene carbonate-based electrolytes as model for a different approach towards improved ion transport properties for novel electrolytes. Phys Chem Chem Phys 2023; 25:4810-4823. [PMID: 36692378 DOI: 10.1039/d2cp03756d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Linear poly(alkylene carbonates) such as polyethylene carbonate (PEC) and polypropylene carbonate (PPC) have gained increasing interest due to their remarkable ion transport properties such as high Li+ transference numbers. The cause of these properties is not yet fully understood which makes it challenging to replicate them in other polymer electrolytes. Therefore, it is critical to understand the underlying mechanisms in polycarbonate electrolytes such as PPC. In this work we present insights from impedance spectroscopy, transference number measurements, PFG-NMR, IR and Raman spectroscopy as well as molecular dynamics simulations to address this issue. We find that in addition to plasticization, the lithium ion coordination by the carbonate groups of the polymer is weakened upon gelation, leading to a rapid exhange of the lithium ion solvation shell and consequently a strong increase of the conductivity. Moreover, we study the impact of the anions by employing different conducting salts. Interestingly, while the total conductivity decreases with increasing anion size, the reverse trend can be observed for the lithium ion transference numbers. Via our holistic approach, we demonstrate that this behavior can be attributed to differences in the collective ion dynamics.
Collapse
Affiliation(s)
- Anna I Gerlitz
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
| | - Diddo Diddens
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
| | - Mariano Grünebaum
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
| | - Andreas Heuer
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany. .,Institute of Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstaße 28/30, 48149 Münster, Germany
| | - Martin Winter
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
| | - Hans-Dieter Wiemhöfer
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
| |
Collapse
|
10
|
Cellulose acetate-promoted polymer-in-salt electrolytes for solid-state lithium batteries. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Wudy K, Sapishchuk S, Hofmann J, Schmidt J, Konwitschny F, Töpper H, Daub R. Polymer‐based separator for all‐solid‐state batteries produced by additive manufacturing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Katrin Wudy
- TUM School of Engineering and Design, Professorship of Laser‐based Additive Manufacturing Technical University of Munich Garching Germany
| | - Svitlana Sapishchuk
- TUM School of Engineering and Design, Professorship of Laser‐based Additive Manufacturing Technical University of Munich Garching Germany
| | - Joseph Hofmann
- TUM School of Engineering and Design, Professorship of Laser‐based Additive Manufacturing Technical University of Munich Garching Germany
| | - Jochen Schmidt
- Institute of Particle Technology Friedrich‐Alexander‐University Erlangen‐Nuernberg Erlangen Germany
| | - Fabian Konwitschny
- TUM School of Engineering and Design, Institute for Machine Tools and Industrial Management Technical University of Munich Garching Germany
| | - Hans‐Christoph Töpper
- TUM School of Engineering and Design, Institute for Machine Tools and Industrial Management Technical University of Munich Garching Germany
| | - Ruediger Daub
- TUM School of Engineering and Design, Institute for Machine Tools and Industrial Management Technical University of Munich Garching Germany
| |
Collapse
|
12
|
Raj A, Panchireddy S, Grignard B, Detrembleur C, Gohy JF. Bio-Based Solid Electrolytes Bearing Cyclic Carbonates for Solid-State Lithium Metal Batteries. CHEMSUSCHEM 2022; 15:e202200913. [PMID: 35839135 DOI: 10.1002/cssc.202200913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Green resources for lithium-based batteries excite many researchers due to their eco-friendly nature. In this work, a sustainable bio-based solid-state electrolyte was developed based on carbonated soybean oil (CSBO), obtained by organocatalyzed coupling of CO2 to epoxidized soybean oil. CSBO coupled with lithium bis(trifluoromethanesulfonyl)imide salt on a bio-based cellulose separator resulted in free-standing membranes. Those membranes on electrochemical measurements exhibited ionic conductivity of around 10-3 S cm-1 at 100 °C and around 10-6 S cm-1 at room temperature with wide electrochemical stability window (up to 4.6 V vs. Li/Li+ ) and transference number up to 0.39 at RT. Further investigations on the galvanostatic charge-discharge of LiFePO4 cathodes with CSBO-based electrolyte membranes and lithium metal anodes delivered the gravimetric capacity of 112 and 157 mAh g-1 at RT and 60 °C, respectively, providing a promising direction to further develop bio-based solid electrolytes for sustainable solid-state lithium batteries.
Collapse
Affiliation(s)
- Ashish Raj
- Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Satyannarayana Panchireddy
- Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 août, Building B6A, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 août, Building B6A, 4000, Liège, Belgium
| | - Jean-François Gohy
- Institute of Condensed Matter and Nanoscience (IMCN), Université catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Solid Polymer Electrolytes for Lithium Batteries: A Tribute to Michel Armand. INORGANICS 2022. [DOI: 10.3390/inorganics10080110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a previous publication, a tribute to Michel Armand was provided, which highlighted his outstanding contribution to all aspects of research and development of lithium-metal and lithium-ion batteries. This area is in constant progress and rather than an overview of the work of Armand et al. since the seventies, we mainly restrict this review to his contribution to advances in solid polymer electrolytes (SPEs) and their performance in all-solid-state lithium-metal batteries in recent years.
Collapse
|
14
|
Yunrui L, Weijin S, Jincheng W. Molecular Dynamics Simulation for Selecting Proportion of G2/CIIR Composite with Optimal Damping Properties. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lan Yunrui
- Department of Polymer Materials and Engineering College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 People's Republic of China
| | - Song Weijin
- Department of Polymer Materials and Engineering College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 People's Republic of China
| | - Wang Jincheng
- Department of Polymer Materials and Engineering College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 People's Republic of China
| |
Collapse
|
15
|
Dong K, Zhai Z, Jia B. Swelling Characteristics and Interaction Mechanism of High-Rank Coal during CO 2 Injection: A Molecular Simulation Study. ACS OMEGA 2022; 7:6911-6923. [PMID: 35252683 PMCID: PMC8892679 DOI: 10.1021/acsomega.1c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In CO2-enhanced coalbed methane (CO2-ECBM) engineering, accurate knowledge of the interaction mechanism of CO2 and coal matrix is crucial for improving the recovery of CH4 and contributing to the geological sequestration of CO2. This study is performed to prove the accuracy of molecular simulation and calculate the variation characteristics of pore structure, volumetric strain, mechanical properties, Fourier transform infrared (FT-IR) spectra, and the system free energy by molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods. According to the obtained results, a relationship between pore structure, swelling strain, mechanical properties, chemical structure, and surface free energy was established. Then, the correlation of various coal change characteristics was analyzed to elucidate the interaction mechanism between CO2 and coal. The results showed that (1) the molecular simulation method was able to estimate the swelling mechanism of CO2 and coal. However, because the adsorption capacity of the molecular simulate is greater than that of the experiment and the raw coal is softer than the macromolecular structure, the molecular results are slightly better than the experimental results. (2) As pressure increased from 0 to 4 MPa, the intramolecular pores and sorption-induced strain changed significantly, whereas when the pressure increased from 4 to 8 MPa (especially at 6-8 Mpa), there was an increase of the intermolecular pores and mechanical properties and transition from elastic to plastic. In addition, when the pressure was >8 MPa, the coal matrix changed slightly. ScCO2 with a higher adsorption capacity results in greater damage and causes larger alterations of coal mechanical properties. (3) The change of the coal matrix is essentially controlled by the surface free energy of the molecular system. E valence affects the aromatic structure and changes the volume of the intramolecular pores, thus affecting the sorption-induced strain change rate. E non affects the length of side chains and the disorder degree of coal molecules and changes the volume of the intramolecular pores, thus affecting the mechanical property change rate. Our findings shed light on the dynamic process of coal swelling and provide a theoretical basis for CO2 enhancing the recovery of CH4 gas in coal.
Collapse
Affiliation(s)
- Kui Dong
- Department
of Geoscience and Engineering, Key Laboratory of Coal and Coal-measure
Gas Geology in Shanxi Province, Taiyuan
University of Technology, Taiyuan 030024, China
| | - Zhiwei Zhai
- Shanxi
Institute of Energy, Taiyuan 030006, China
| | - Bingyi Jia
- Xi’an
Research Institute, China Coal Technology and Engineering Group Corp, Xi’an 710077, China
| |
Collapse
|
16
|
Wang J, Zhang C, Zhang Y, Xue Z. Advances in
host selection
and
interface regulation
of polymer electrolytes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Chi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Yong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
17
|
Yoshizawa‐Fujita M, Ota R, Ishii J, Takeoka Y, Rikukawa M. Ion Conductive Behavior of Oligoether/Zwitterion Diblock Copolymers Containing Magnesium Salt. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Yoshizawa‐Fujita
- Department of Materials and Life Sciences Sophia University 7‐1 Kioi‐cho, Chiyoda‐ku Tokyo 102‐8554 Japan
| | - Ryoma Ota
- Department of Materials and Life Sciences Sophia University 7‐1 Kioi‐cho, Chiyoda‐ku Tokyo 102‐8554 Japan
| | - Jun Ishii
- Department of Materials and Life Sciences Sophia University 7‐1 Kioi‐cho, Chiyoda‐ku Tokyo 102‐8554 Japan
| | - Yuko Takeoka
- Department of Materials and Life Sciences Sophia University 7‐1 Kioi‐cho, Chiyoda‐ku Tokyo 102‐8554 Japan
| | - Masahiro Rikukawa
- Department of Materials and Life Sciences Sophia University 7‐1 Kioi‐cho, Chiyoda‐ku Tokyo 102‐8554 Japan
| |
Collapse
|
18
|
Fan X, Wang C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem Soc Rev 2021; 50:10486-10566. [PMID: 34341815 DOI: 10.1039/d1cs00450f] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the advent of the Li ion batteries (LIBs), the energy density has been tripled, mainly attributed to the increase of the electrode capacities. Now, the capacity of transition metal oxide cathodes is approaching the limit due to the stability limitation of the electrolytes. To further promote the energy density of LIBs, the most promising strategies are to enhance the cut-off voltage of the prevailing cathodes or explore novel high-capacity and high-voltage cathode materials, and also replacing the graphite anode with Si/Si-C or Li metal. However, the commercial ethylene carbonate (EC)-based electrolytes with relatively low anodic stability of ∼4.3 V vs. Li+/Li cannot sustain high-voltage cathodes. The bottleneck restricting the electrochemical performance in Li batteries has veered towards new electrolyte compositions catering for aggressive next-generation cathodes and Si/Si-C or Li metal anodes, since the oxidation-resistance of the electrolytes and the in situ formed cathode electrolyte interphase (CEI) layers at the high-voltage cathodes and solid electrolyte interphase (SEI) layers on anodes critically control the electrochemical performance of these high-voltage Li batteries. In this review, we present a comprehensive and in-depth overview on the recent advances, fundamental mechanisms, scientific challenges, and design strategies for the novel high-voltage electrolyte systems, especially focused on stability issues of the electrolytes, the compatibility and interactions between the electrolytes and the electrodes, and reaction mechanisms. Finally, novel insights, promising directions and potential solutions for high voltage electrolytes associated with effective SEI/CEI layers are proposed to motivate revolutionary next-generation high-voltage Li battery chemistries.
Collapse
Affiliation(s)
- Xiulin Fan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Xu R, Xiao B, Xuan C, Gao S, Chai J, Liu S, Chen Y, Zheng Y, Cheng X, Guo Q, Liu Z. Facile and Powerful In Situ Polymerization Strategy for Sulfur-Based All-Solid Polymer Electrolytes in Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34274-34281. [PMID: 34255493 DOI: 10.1021/acsami.1c07805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All-solid-state polymer electrolytes can improve the safety of lithium batteries. However, the common Bellcore polymer electrolyte technology faces several issues such as wasting a mass of solvent, high manufacturing cost, and poor interfacial compatibility between polymer electrolytes and electrodes. Herein, we propose an in situ polymerization technique to synthesize all-solid-state polymer electrolytes by a thiol-Michael addition click reaction. The alternating copolymer is made from the Michael addition reaction of ethylene glycol dimethacrylate (EGDMA) and 1,2-ethane dithiol (EDT). At ambient temperature, the obtained composite polymer electrolyte displays an ionic conductivity of 3.02 × 10-5 S/cm, an electrochemical window of 4.5 V, and a lithium-ion transference number of 0.45. In light of this unique polymerization process, the traditional fabrication method of liquid electrolyte-based lithium batteries can be adopted in the current study for the preparation of all-solid-state Li/LiFePO4 batteries. It was found that the assembled all-solid-state Li/LiFePO4 batteries exhibited superior charging/discharging performance and preferable safety. Thus, this facile and powerful in situ polymerization strategy may open up a new approach for the design and fabrication of all-solid-state batteries with desirable performances.
Collapse
Affiliation(s)
- Rui Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Bowen Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Ce Xuan
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Shuyu Gao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Jingchao Chai
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Shujian Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Yang Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Xin Cheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Qingzhong Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhihong Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| |
Collapse
|
20
|
Zhao Y, Wang L, Zhou Y, Liang Z, Tavajohi N, Li B, Li T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003675. [PMID: 33854893 PMCID: PMC8025011 DOI: 10.1002/advs.202003675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/24/2020] [Indexed: 05/27/2023]
Abstract
Smart electronics and wearable devices require batteries with increased energy density, enhanced safety, and improved mechanical flexibility. However, current state-of-the-art Li-based rechargeable batteries (LBRBs) use highly reactive and flowable liquid electrolytes, severely limiting their ability to meet the above requirements. Therefore, solid polymer electrolytes (SPEs) are introduced to tackle the issues of liquid electrolytes. Nevertheless, due to their low Li+ conductivity and Li+ transference number (LITN) (around 10-5 S cm-1 and 0.5, respectively), SPE-based room temperature LBRBs are still in their early stages of development. This paper reviews the principles of Li+ conduction inside SPEs and the corresponding strategies to improve the Li+ conductivity and LITN of SPEs. Some representative applications of SPEs in high-energy density, safe, and flexible LBRBs are then introduced and prospected.
Collapse
Affiliation(s)
- Yun Zhao
- Engineering Laboratory for Next Generation Power and Energy Storage BatteriesGraduate School at ShenzhenTsinghua UniversityShenzhenGuangdong518055China
| | - Li Wang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084China
| | - Yunan Zhou
- Engineering Laboratory for Next Generation Power and Energy Storage BatteriesGraduate School at ShenzhenTsinghua UniversityShenzhenGuangdong518055China
| | - Zheng Liang
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | | | - Baohua Li
- Engineering Laboratory for Next Generation Power and Energy Storage BatteriesGraduate School at ShenzhenTsinghua UniversityShenzhenGuangdong518055China
| | - Tao Li
- Department of Chemistry and BiochemistryNorthern Illinois UniversityDeKalbIL60115USA
| |
Collapse
|
21
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 408:127240. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
22
|
Computational insight into the structural properties and redox chemistry of poly (ethylene carbonate) as electrolytes for Lithium batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Chen S, Zhang J, Nie L, Hu X, Huang Y, Yu Y, Liu W. All-Solid-State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet-Based Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002325. [PMID: 33241602 DOI: 10.1002/adma.202002325] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Metallic lithium (Li), considered as the ultimate anode, is expected to promise high-energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium-metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all-solid-state lithium-metal battery (ASSLMB) based on a garnet-oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long-term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high-voltage or high mass-loading cathode. This study sheds light on the practical high-energy all-solid-state batteries under the constrained condition of a limited Li metal anode.
Collapse
Affiliation(s)
- Shaojie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingxuan Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Nie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuanqi Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
24
|
Voropaeva DY, Novikova SA, Yaroslavtsev AB. Polymer electrolytes for metal-ion batteries. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4956] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of studies on polymer electrolytes for metal-ion batteries are analyzed and generalized. Progress in this field of research is driven by the need for solid-state batteries characterized by safety and stable operation. At present, a number of polymer electrolytes with a conductivity of at least 10−4 S cm−1 at 25 °C were synthesized. Main types of polymer electrolytes are described, viz., polymer/salt electrolytes, composite polymer electrolytes containing inorganic particles and anion acceptors, and polymer electrolytes based on cation-exchange membranes. Ion transport mechanisms and various methods for increasing the ionic conductivity in these systems are discussed. Prospects of application of polymer electrolytes in lithium- and sodium-ion batteries are outlined.
The bibliography includes 349 references.
Collapse
|
25
|
Zhang H, Armand M. History of Solid Polymer Electrolyte‐Based Solid‐State Lithium Metal Batteries: A Personal Account. Isr J Chem 2020. [DOI: 10.1002/ijch.202000066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road 1037 430074 Wuhan China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA) Álava Technology Park Albert Einstein 48 01510 Vitoria-Gasteiz Spain
| |
Collapse
|
26
|
Kobayashi K, Pagot G, Vezzù K, Bertasi F, Di Noto V, Tominaga Y. Effect of plasticizer on the ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes. Polym J 2020. [DOI: 10.1038/s41428-020-00397-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Girard GMA, Wang X, Yunis R, Howlett PC, Forsyth M. Stable performance of an all-solid-state Li metal cell coupled with a high-voltage NCA cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04775-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Wang X, Kerr R, Chen F, Goujon N, Pringle JM, Mecerreyes D, Forsyth M, Howlett PC. Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905219. [PMID: 31961989 DOI: 10.1002/adma.201905219] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/29/2019] [Indexed: 06/10/2023]
Abstract
With increasing demands for safe, high capacity energy storage to support personal electronics, newer devices such as unmanned aerial vehicles, as well as the commercialization of electric vehicles, current energy storage technologies are facing increased challenges. Although alternative batteries have been intensively investigated, lithium (Li) batteries are still recognized as the preferred energy storage solution for the consumer electronics markets and next generation automobiles. However, the commercialized Li batteries still have disadvantages, such as low capacities, potential safety issues, and unfavorable cycling life. Therefore, the design and development of electromaterials toward high-energy-density, long-life-span Li batteries with improved safety is a focus for researchers in the field of energy materials. Herein, recent advances in the development of novel organic electrolytes are summarized toward solid-state Li batteries with higher energy density and improved safety. On the basis of new insights into ionic conduction and design principles of organic-based solid-state electrolytes, specific strategies toward developing these electrolytes for Li metal anodes, high-energy-density cathode materials (e.g., high voltage materials), as well as the optimization of cathode formulations are outlined. Finally, prospects for next generation solid-state electrolytes are also proposed.
Collapse
Affiliation(s)
- Xiaoen Wang
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
| | - Robert Kerr
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
| | - Nicolas Goujon
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastian, Spain
| | - Jennifer M Pringle
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastian, Spain
| | - Maria Forsyth
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastian, Spain
| | - Patrick C Howlett
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC, 3217, Australia
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC, 3125, Australia
| |
Collapse
|
29
|
Boujioui F, Damerow H, Zhuge F, Gohy J. Solid Polymer Electrolytes Based on Copolymers of Cyclic Carbonate Acrylate and
n
‐Butylacrylate. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fadoi Boujioui
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| | - Helen Damerow
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| | - Flanco Zhuge
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| | - Jean‐François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de Louvain Place L. Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| |
Collapse
|
30
|
Mauger A, Julien CM, Paolella A, Armand M, Zaghib K. Building Better Batteries in the Solid State: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3892. [PMID: 31775348 PMCID: PMC6926585 DOI: 10.3390/ma12233892] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li-O2, and Li-S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.
Collapse
Affiliation(s)
- Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 place Jussieu, 75005 Paris, France;
| | - Andrea Paolella
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada;
| | - Michel Armand
- CIC Energigune, Parque Tecnol Alava, 01510 Minano, Spain;
| | - Karim Zaghib
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet blvd., Varennes, QC J3X 1S1, Canada;
| |
Collapse
|
31
|
Tian G, Zhao Z, Zinkevich T, Elies K, Scheiba F, Ehrenberg H. A Crosslinked Polyethyleneglycol Solid Electrolyte Dissolving Lithium Bis(trifluoromethylsulfonyl)imide for Rechargeable Lithium Batteries. CHEMSUSCHEM 2019; 12:4708-4718. [PMID: 31386794 PMCID: PMC6856689 DOI: 10.1002/cssc.201901587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Indexed: 05/20/2023]
Abstract
Replacing liquid electrolytes with solid ones can provide advantages in safety, and all-solid-state batteries with solid electrolytes are proposed to solve the issue of the formation of lithium dendrites. In this study, a crosslinked polymer composite solid electrolyte was presented, which enabled the construction of lithium batteries with outstanding electrochemical behavior over long-term cycling. The crosslinked polymeric host was synthesized through polymerization of the terminal amines of O,O-bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol and terminal epoxy groups of bisphenol A diglycidyl ether at 90 °C and provided an amorphous matrix for Li+ dissolution. This composite solid electrolyte containing Li+ salt and garnet filler exhibited high flexibility, which supported the formation of favorable interfaces with the active materials, and possessed enough mechanical strength to suppress the penetration of lithium dendrites. Ionic conductivities higher than 5.0×10-4 S cm-1 above 45 °C were obtained as well as a wide electrochemical stability window (>4.51 V vs. Li/Li+ ) and a high Li+ diffusion coefficient (≈16.6×10-13 m2 s-1 ). High cycling stability (>500 cycles or 1000 h) was demonstrated.
Collapse
Affiliation(s)
- Guiying Tian
- Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Zijian Zhao
- Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Tatiana Zinkevich
- Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU)Helmholtzstrasse 1189081UlmGermany
| | - Katharina Elies
- Institute for Biological Interfaces (IBG)Karlsruhe Institute of Technology (KIT)Engesserstraße 1876128KarlsruheGermany
| | - Frieder Scheiba
- Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU)Helmholtzstrasse 1189081UlmGermany
| | - Helmut Ehrenberg
- Institute for Applied Materials (IAM)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU)Helmholtzstrasse 1189081UlmGermany
| |
Collapse
|
32
|
Jusys Z, Binder M, Schnaidt J, Behm RJ. A novel DEMS approach for studying gas evolution at battery-type electrode|electrolyte interfaces: High-voltage LiNi0.5Mn1.5O4 cathode in ethylene and dimethyl carbonate electrolytes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Tominaga Y, Nakano K, Morioka T. Random copolymers of ethylene carbonate and ethylene oxide for Li-Ion conductive solid electrolytes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C. Understanding the Effect of UV-Induced Cross-Linking on the Physicochemical Properties of Highly Performing PEO/LiTFSI-Based Polymer Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8210-8219. [PMID: 31125520 DOI: 10.1021/acs.langmuir.9b00041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a thorough, multitechnique investigation of the structure and transport properties of a UV-cross-linked polymer electrolyte based on poly(ethylene oxide), tetra(ethylene glycol)dimethyl ether (G4), and lithium bis(trifluoromethane)sulfonimide. The properties of the cross-linked polymer electrolyte are compared to those of a non-cross-linked sample of same composition. The effect of UV-induced cross-linking on the physico/chemical characteristics is evaluated by X-ray diffraction, differential scanning calorimetry, shear rheology, 1H and 7Li magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, 19F and 7Li pulsed field gradient stimulated echo NMR analyses, electrochemical impedance spectroscopy, and Fourier transform Raman spectroscopy. Comprehensive analysis confirms that UV-induced cross-linking is an effective technique to suppress the crystallinity of the polymer matrix and reduce ion aggregation, yielding improved Li+ transport number (>0.5) and ionic conductivity (>0.1 mS cm?1) at ambient temperature, by tailoring the structural/morphological characteristics of the polymer matrix. Finally, the polymer electrolyte allows reversible operation with stable profile for hundreds of cycles upon galvanostatic test at ambient temperature of LiFePO4-based lithium-metal cells, which deliver full capacity at 0.05 or 0.1C current rate and keep high rate capabilities up to 1C. This enforces the role of UV-induced cross-linking in achieving excellent electrochemical characteristics, exploiting a practical, easy up-scalable process.
Collapse
Affiliation(s)
- Marisa Falco
- GAME Lab, Department of Applied Science and Technology (DISAT) , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Torino , Italy
| | - Cataldo Simari
- Dipartimento di Chimica e Tecnologie Chimiche , Universita? della Calabria , Via P. Bucci , 87036 Rende (CS) , Italy
| | - Chiara Ferrara
- Department of Chemistry/INSTM , University of Pavia , Via Taramelli 16 , 27100 Pavia , Italy
| | - Jijeesh Ravi Nair
- Helmholtz-Institute Mu?nster (HI MS), IEK-12, Forschungszentrum Ju?lich GmbH, and MEET Battery Research Center , University of Mu?nster , Corrensstra?e 46 , 48149 Mu?nster , Germany
| | - Giuseppina Meligrana
- GAME Lab, Department of Applied Science and Technology (DISAT) , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Torino , Italy
| | - Federico Bella
- GAME Lab, Department of Applied Science and Technology (DISAT) , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Torino , Italy
| | - Isabella Nicotera
- Dipartimento di Chimica e Tecnologie Chimiche , Universita? della Calabria , Via P. Bucci , 87036 Rende (CS) , Italy
| | - Piercarlo Mustarelli
- Department of Materials Science , University of Milano ? Bicocca , Via Cozzi 55 , 20125 Milano , Italy
| | - Martin Winter
- Helmholtz-Institute Mu?nster (HI MS), IEK-12, Forschungszentrum Ju?lich GmbH, and MEET Battery Research Center , University of Mu?nster , Corrensstra?e 46 , 48149 Mu?nster , Germany
| | - Claudio Gerbaldi
- GAME Lab, Department of Applied Science and Technology (DISAT) , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Torino , Italy
| |
Collapse
|
35
|
Cho YG, Hwang C, Cheong DS, Kim YS, Song HK. Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804909. [PMID: 30387233 DOI: 10.1002/adma.201804909] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A gel polymer electrolyte (GPE) is a liquid electrolyte (LE) entrapped by a small amount of polymer network less than several wt%, which is characterized by properties between those of liquid and solid electrolytes in terms of the ionic conductivity and physical phase. Electrolyte leakage and flammability, demerits of liquid electrolytes, can be mitigated by using GPEs in electrochemical cells. However, the contact problems between GPEs and porous electrodes are challenging because it is difficult to incorporate GPEs into the pores and voids of electrodes. Herein, the focus is on GPEs that are gelated in situ within cells instead of covering comprehensive studies of GPEs. A mixture of LE and monomer or polymer in a liquid phase is introduced into a pre-assembled cell without electrolyte, followed by thermal gelation based on physical gelation, monomer polymerization, or polymer cross-linking. Therefore, GPEs are formed omnipresent in cells, covering the pores of electrode material particles, and even the pores of separators. As a result, different from ex situ formed GPEs, the in situ GPEs have no electrode/electrolyte contact problems. Functional GPEs are introduced as a more advanced form of GPEs, improving lithium-ion transference number or capturing transition metals released from electrode materials.
Collapse
Affiliation(s)
- Yoon-Gyo Cho
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Chihyun Hwang
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Do Sol Cheong
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Young-Soo Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| |
Collapse
|
36
|
An end-capped poly(ethylene carbonate)-based concentrated electrolyte for stable cyclability of lithium battery. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Li Z, Mindemark J, Brandell D, Tominaga Y. A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery. Polym J 2019. [DOI: 10.1038/s41428-019-0184-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Huang S, Cui Z, Qiao L, Xu G, Zhang J, Tang K, Liu X, Wang Q, Zhou X, Zhang B, Cui G. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Feng H, Ma C, Dai K, Kuang G, Ivey DG, Wei W. High Ion Conducting Solid Composite Electrolytes with Enhanced Interfacial Compatibility for Lithium Metal Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201801894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haoyu Feng
- State Key Laboratory of Powder Metallurgy; Central South University Changsha; Hunan 410083 People's Republic of China
| | - Cheng Ma
- State Key Laboratory of Powder Metallurgy; Central South University Changsha; Hunan 410083 People's Republic of China
| | - Kuan Dai
- State Key Laboratory of Powder Metallurgy; Central South University Changsha; Hunan 410083 People's Republic of China
| | - Guichao Kuang
- State Key Laboratory of Powder Metallurgy; Central South University Changsha; Hunan 410083 People's Republic of China
| | - Douglas G. Ivey
- Department of Chemical & Materials Engineering; University of Alberta Edmonton; Alberta Canada T6G 1H9
| | - Weifeng Wei
- State Key Laboratory of Powder Metallurgy; Central South University Changsha; Hunan 410083 People's Republic of China
| |
Collapse
|
40
|
Aziz AA, Yoshimoto N, Yamabuki K, Tominaga Y. Ion-conductive, Thermal and Electrochemical Properties of Poly(ethylene carbonate)-Mg Electrolytes with Glyme Solution. CHEM LETT 2018. [DOI: 10.1246/cl.180544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Azlini Ab Aziz
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Nobuko Yoshimoto
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Kazuhiro Yamabuki
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Yoichi Tominaga
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
41
|
Wang Y, Darensbourg DJ. Carbon dioxide-based functional polycarbonates: Metal catalyzed copolymerization of CO2 and epoxides. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.06.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G. Aliphatic Polycarbonate-Based Solid-State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800821. [PMID: 30073772 DOI: 10.1002/smll.201800821] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Conventional liquid electrolytes based lithium-ion batteries (LIBs) might suffer from serious safety hazards. Solid-state polymer electrolytes (SPEs) are very promising candidate with high security for advanced LIBs. However, the quintessential frailties of pristine polyethylene oxide/lithium salts SPEs are poor ionic conductivity (≈10-8 S cm-1 ) at 25 °C and narrow electrochemical window (<4 V). Many innovative researches are carried out to enhance their lithium-ion conductivity (10-4 S cm-1 at 25 °C), which is still far from meeting the needs of high-performance power LIBs at ambient temperature. Therefore, it is a pressing urgency of exploring novel polymer host materials for advanced SPEs aimed to develop high-performance solid lithium batteries. Aliphatic polycarbonate, an emerging and promising solid polymer electrolyte, has attracted much attention of academia and industry. The amorphous structure, flexible chain segments, and high dielectric constant endow this class of polymer electrolyte excellent comprehensive performance especially in ionic conductivity, electrochemical stability, and thermally dimensional stability. To date, many types of aliphatic polycarbonate solid polymer electrolyte are discovered. Herein, the latest developments on aliphatic polycarbonate SPEs for solid-state lithium batteries are summarized. Finally, main challenges and perspective of aliphatic polycarbonate solid polymer electrolytes are illustrated at the end of this review.
Collapse
Affiliation(s)
- Jianjun Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Min Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Jingchao Chai
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Tianyuan Wu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xinhong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
43
|
Di Lecce D, Hassoun J. Lithium Metal Battery Using LiFe 0.5Mn 0.5PO 4 Olivine Cathode and Pyrrolidinium-Based Ionic Liquid Electrolyte. ACS OMEGA 2018; 3:8583-8588. [PMID: 31458987 PMCID: PMC6644812 DOI: 10.1021/acsomega.8b01328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/20/2018] [Indexed: 06/10/2023]
Abstract
Ionic liquids (ILs) represent the most suitable electrolyte media for a safe application in high-energy lithium metal batteries because of their remarkable thermal stability promoted by the room-temperature molten salt nature. In this work, we exploit this favorable characteristic by combining a pyrrolidinium-based electrolyte and a LiFe0.5Mn0.5PO4 mixed olivine cathode in a lithium metal cell. The IL solution, namely N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) dissolving LiTFSI, is designed as viscous electrolyte, particularly suited for cells operating at temperatures higher than 40 °C, as demonstrated by electrochemical impedance spectroscopy. The olivine electrode, characterized by remarkable structural stability at high temperature, is studied in the lithium metal cell using the Pyr14TFSI-LiTFSI medium above the room temperature. The Li/Pyr14TFSI-LiTFSI/LiFe0.5Mn0.5PO4 cell delivers a capacity of about 100 mA h g-1 through two voltage plateaus at about 3.5 and 4.1 V, ascribed to the iron and manganese redox reaction, respectively. The cycling stability, satisfactory levels of the energy density, and a relevant safety content suggest the cell studied herein as a viable energy storage system for future applications.
Collapse
Affiliation(s)
- Daniele Di Lecce
- Department
of Chemical and Pharmaceutical Sciences and National Interuniversity Consortium
of Materials Science and Technology (INSTM) University of Ferrara
Research Unit, University of Ferrara, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Jusef Hassoun
- Department
of Chemical and Pharmaceutical Sciences and National Interuniversity Consortium
of Materials Science and Technology (INSTM) University of Ferrara
Research Unit, University of Ferrara, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| |
Collapse
|
44
|
Effect of Li salt addition on electrochemical properties of poly(ethylene carbonate)-Mg salt electrolytes. Polym J 2018. [DOI: 10.1038/s41428-018-0113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.12.004] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Mizuno Y, Nakano K. Block Copolymers of Aliphatic Polycarbonates: Combination of Immortal Epoxide/Carbon-dioxide Copolymerization and Atom Transfer Radical Polymerization of Vinyl Monomers. CHEM LETT 2018. [DOI: 10.1246/cl.180045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yuri Mizuno
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Nakano
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
47
|
Wang B, Lou H, Xu H, Zhao J, Wang Q, Shi Q, Deng Y. High voltage, solvent-free solid polymer electrolyte based on a star-comb PDLLA-PEG copolymer for lithium ion batteries. RSC Adv 2018; 8:6373-6380. [PMID: 35540385 PMCID: PMC9078313 DOI: 10.1039/c7ra13664a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/01/2018] [Indexed: 11/30/2022] Open
Abstract
In this work, a novel star-comb copolymer based on poly(d,l-lactide) (PDLLA) macromonomer and poly(ethylene glycol)methyl ether methacrylate (PEGMA) was prepared, and the electrochemical properties were studied, with the aim of using it as a solid polymer electrolyte in lithium ion batteries. The six-arm vinyl functionalized PDLLA macromonomer was synthesized by a ring-opening polymerization (ROP) of d,l-lactide and subsequently an acylation of the hydroxy end-groups. A series of free-standing solid polymer electrolyte membranes from different ratios of PDLLA, PEGMA and LiTFSI were prepared through solvent-free free radical polymerization under UV radiation. The chemical structure of the obtained polymers was confirmed by 1H NMR and FTIR. The as-prepared six-arm star-comb solid polymer electrolytes (PDLLA-SPEs) exhibit good thermal stability with T d 5%s of ∼270 °C and low T gs of -48 to -34 °C. The electrochemical characterization shows that the PDLLA-SPEs possess a wide electrochemical window up to 5.1 V with an optimal ionic conductivity of 9.7 × 10-5 S cm-1 at 60 °C at an EO/Li+ ratio of 16 : 1. Furthermore, the all-solid-state LiFePO4/Li cells display extraordinary cycling and rate performances at 60 °C by curing the PDLLA-SPEs directly on the cathode. These superior properties of the six-arm star-comb PDLLA-SPE make it a promising candidate solid electrolyte for lithium batteries.
Collapse
Affiliation(s)
- Bingbing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 516640 China
- Department of Materials Science and Engineering, South University of Science and Technology of China Shenzhen 518055 China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 516640 China
| | - Hongli Xu
- Department of Materials Science and Engineering, South University of Science and Technology of China Shenzhen 518055 China
| | - Junpeng Zhao
- Research Institute of Materials Science, South China University of Technology Guangzhou 510640 China
| | - Qiujun Wang
- Shenzhen Capchem Technology Co., LTD Shenzhen 518118 China
| | - Qiao Shi
- Shenzhen Capchem Technology Co., LTD Shenzhen 518118 China
| | - Yonghong Deng
- Department of Materials Science and Engineering, South University of Science and Technology of China Shenzhen 518055 China
| |
Collapse
|
48
|
Preparation and characterization of poly(ethylene carbonate)/poly(lactic acid) blends. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Sun B, Asfaw HD, Rehnlund D, Mindemark J, Nyholm L, Edström K, Brandell D. Toward Solid-State 3D-Microbatteries Using Functionalized Polycarbonate-Based Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2407-2413. [PMID: 29199816 DOI: 10.1021/acsami.7b13788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
3D microbatteries (3D-MBs) impose new demands for the selection, fabrication, and compatibility of the different battery components. Herein, solid polymer electrolytes (SPEs) based on poly(trimethylene carbonate) (PTMC) have been implemented in 3D-MB systems. 3D electrodes of two different architectures, LiFePO4-coated carbon foams and Cu2O-coated Cu nanopillars, have been coated with SPEs and used in Li cells. Functionalized PTMC with hydroxyl end groups was found to enable uniform and well-covering coatings on LiFePO4-coated carbon foams, which was difficult to achieve for nonfunctionalized polymers, but the cell cycling performance was limited. By employing a SPE prepared from a copolymer of TMC and caprolactone (CL), with higher ionic conductivity, Li cells composed of Cu2O-coated Cu nanopillars were constructed and tested both at ambient temperature and 60 °C. The footprint areal capacity of the cells was ca. 0.02 mAh cm-2 for an area gain factor (AF) of 2.5, and 0.2 mAh cm-2 for a relatively dense nanopillar-array (AF = 25) at a current density of 0.008 mA cm-2 under ambient temperature (22 ± 1 °C). These results provide new routes toward the realization of all-solid-state 3D-MBs.
Collapse
Affiliation(s)
- Bing Sun
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| | - Habtom Desta Asfaw
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| | - David Rehnlund
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| | - Jonas Mindemark
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| | - Leif Nyholm
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| | - Kristina Edström
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry - Ångström Laboratory, Uppsala University , 75121 Uppsala, Sweden
| |
Collapse
|
50
|
Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. Sci Rep 2017; 7:17482. [PMID: 29235501 PMCID: PMC5727542 DOI: 10.1038/s41598-017-17697-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi0.6Co0.2Mn0.2O2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g-1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
Collapse
|