1
|
Ghorpade CM, Umarji GG, Hanamsagar RA, Arbuj SS, Shinde MD, Rane SB. Simplistic approach to formulate an ionophore-based membrane and its study for nitrite ion sensing. RSC Adv 2024; 14:33592-33601. [PMID: 39444943 PMCID: PMC11497119 DOI: 10.1039/d4ra04590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
A polymeric membrane based on a N,N'-bis(salicylidene)ethylenediaminocobalt(ii) complex as a cobalt ionophore (CI) was fabricated and optimized for nitrite ion sensing application. The membrane contained CI, 2-nitrophenyl octyl ether (2-NPOE) as a plasticizer and hexadecyl trimethyl ammonium bromide (HTAB) as a cationic additive in a polyvinyl chloride (PVC) matrix. The Nernstian slope (-0.020 mV per decade), detection limit (1 × 10-7 M to 3 M), and response (107 milliseconds) and recovery (22 milliseconds) times were recorded for optimum membrane composition. The ionophore functionality in the polymer matrix and their interaction were studied using Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), and optical microscopy analyses.
Collapse
Affiliation(s)
- Chandrashekhar M Ghorpade
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2) Division, Centre for Materials for Electronics Technology Off Pashan Road, Panchawati Pune-411008 India
| | - Govind G Umarji
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2) Division, Centre for Materials for Electronics Technology Off Pashan Road, Panchawati Pune-411008 India
| | - Rohit A Hanamsagar
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2) Division, Centre for Materials for Electronics Technology Off Pashan Road, Panchawati Pune-411008 India
| | - Sudhir S Arbuj
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2) Division, Centre for Materials for Electronics Technology Off Pashan Road, Panchawati Pune-411008 India
| | - Manish D Shinde
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2) Division, Centre for Materials for Electronics Technology Off Pashan Road, Panchawati Pune-411008 India
| | - Sunit B Rane
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2) Division, Centre for Materials for Electronics Technology Off Pashan Road, Panchawati Pune-411008 India
| |
Collapse
|
2
|
Daga P, Majee P, Singha DK, Manna P, Hui S, Ghosh AK, Mahata P, Mondal SK. Dramatic luminescence signal from a Co(ii)-based metal–organic compound due to the construction of charge-transfer bands with Al3+ and Fe3+ ions in water: steady-state and time-resolved spectroscopic studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00295j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co(ii)-based metal–organic compound exhibits luminescence turn-on by Al3+ and quenching by Fe3+ due to the formation of charge-transfer complexes/adducts.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Debal Kanti Singha
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Priyanka Manna
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
3
|
Ali TA, Mahmoud WH, Mohamed GG. Construction and characterization of nano iron complex ionophore for electrochemical determination of Fe(III) in pure and various real water samples. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tamer Awad Ali
- Egyptian Petroleum Research Institute (EPRI) 11727 Cairo Egypt
| | - Walaa H. Mahmoud
- Chemistry Department, Faculty of ScienceCairo University 12613 Giza Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of ScienceCairo University 12613 Giza Egypt
- Egypt Nanotechnology CenterCairo University 6th October City Giza Egypt
| |
Collapse
|
4
|
K. Mittal S, Kumar S, Kaur N. Enhanced Performance of CNT‐doped Imine Based Receptors as Fe(III) Sensor Using Potentiometry and Voltammetry. ELECTROANAL 2018. [DOI: 10.1002/elan.201800100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susheel K. Mittal
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Punjab 147004 India
| | - Sanjeev Kumar
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Punjab 147004 India
| | - Navneet Kaur
- Department of ChemistryPanjab University Chandigarh Punjab 160014 India
| |
Collapse
|
5
|
Waller AW, Lotton JL, Gaur S, Andrade JM, Andrade JE. Evaluation of Micronutrient Sensors for Food Matrices in Resource-Limited Settings: A Systematic Narrative Review. J Food Sci 2018; 83:1792-1804. [PMID: 29928780 DOI: 10.1111/1750-3841.14202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
In resource-limited settings, mass food fortification is a common strategy to ensure the population consumes appropriate quantities of essential micronutrients. Food and government organizations in these settings, however, lack tools to monitor the quality and compliance of fortified products and their efficacy to enhance nutrient status. The World Health Organization has developed general guidelines known as ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users) to aid the development of useful diagnostic tools for these settings. These guidelines assume performance aspects such as sufficient accuracy, reliability, and validity. The purpose of this systematic narrative review is to examine the micronutrient sensor literature on its adherence towards the ASSURED criteria along with accuracy, reliability, and validation when developing micronutrient sensors for resource-limited settings. Keyword searches were conducted in three databases: Web of Science, PubMed, and Scopus and were based on 6-point inclusion criteria. A 16-question quality assessment tool was developed to determine the adherence towards quality and performance criteria. Of the 2,365 retrieved studies, 42 sensors were included based on inclusion/exclusion criteria. Results showed that improvements to the current sensor design are necessary, especially their affordability, user-friendliness, robustness, equipment-free, and deliverability within the ASSURED criteria, and accuracy and validity of the additional criteria to be useful in resource-limited settings. Although it requires further validation, the 16-question quality assessment tool can be used as a guide in the development of sensors for resource-limited settings.
Collapse
Affiliation(s)
- Anna W Waller
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| | - Jennifer L Lotton
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| | - Shashank Gaur
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A.,Innovations, John I. Haas, Yakima, WA, 98902
| | - Jeanette M Andrade
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A.,School of Family and Consumer Sciences, Eastern Illinois Univ., Charleston, IL, 61920, U.S.A
| | - Juan E Andrade
- Div. of Nutritional Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| |
Collapse
|
6
|
El-Ghany NAA, Frag EY, El Fattah MA. Fabrication of chemically modified carbon paste electrode based on functionalized biopolymer for potentiometric determination of Al (III) ion in real water and pharmaceutical samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ghanei-Motlagh M, Karami C, Taher MA, Hosseini-Nasab SJ. Stripping voltammetric detection of copper ions using carbon paste electrode modified with aza-crown ether capped gold nanoparticles and reduced graphene oxide. RSC Adv 2016. [DOI: 10.1039/c6ra10267k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel electrochemical sensor based on reduced graphene oxide (RGO) and kryptofix 21-capped gold nanoparticles (GNPs) has been proposed.
Collapse
Affiliation(s)
- M. Ghanei-Motlagh
- Young Researchers and Elite Club
- Kerman Branch
- Islamic Azad University
- Kerman
- Iran
| | - Ch. Karami
- Department of Chemistry
- Kermanshah Branch
- Islamic Azad University
- Kermanshah
- Iran
| | - M. A. Taher
- Department of Chemistry
- Faculty of Sciences
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | - S. J. Hosseini-Nasab
- Department of Chemistry
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| |
Collapse
|
8
|
Novel solid-state mercury(II)-selective electrode based on symmetrical sulfur-containing carrier. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ali TA, Farag AA, Mohamed GG. Potentiometric determination of iron in polluted water samples using new modified Fe(III)-screen printed ion selective electrode. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Bandi KR, Singh AK, Upadhyay A. Construction and performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe³⁺ ion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 36:187-93. [PMID: 24433903 DOI: 10.1016/j.msec.2013.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/20/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Novel Fe(3+) ion-selective polymeric membrane electrodes (PMEs) were prepared using three different ionophores N-(4-(dimethylamino)benzylidene)thiazol-2-amine [L1], 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol [L2] and N-((3-methylthiophene-2yl)methylene)thiazol-2-amine [L3] and their potentiometric characteristics were discussed. Effect of various plasticizers and anion excluders was also studied in detail and improved performance was observed. The best performance was obtained for the membrane electrode having a composition of L2:PVC:o-NPOE:NaTPB as 3:38.5:56:2.5 (w/w; mg). A coated graphite electrode (CGE) was also prepared with the same composition and compared. CGE is found to perform better as it shows a wider working concentration range of 8.3×10(-8)-1.0×10(-1)molL(-1), a lower detection limit of 2.3×10(-8)molL(-1), and a near Nernstian slope of 19.5 ± 0.4 mVdecade(-1) of activity with a response time of 10s. The CGE shows a shelf life of 6 weeks and in view of high selectivity, it can be used to quantify Fe(3+) ion in water, soil, vegetable and medicinal plants. It can also be used as an indicator electrode in potentiometric titration of EDTA with Fe(3+) ion.
Collapse
Affiliation(s)
- Koteswara Rao Bandi
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India
| | - Ashok K Singh
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India.
| | - Anjali Upadhyay
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India
| |
Collapse
|
11
|
|
12
|
An efficient and selective flourescent chemical sensor based on 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a new fluoroionophore for determination of iron(III) ions. A novel probe for iron speciation. Anal Chim Acta 2012; 761:169-77. [PMID: 23312328 DOI: 10.1016/j.aca.2012.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 11/20/2022]
Abstract
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe(3+) ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe(3+)-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe(3+) ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10(-4) to 1.0 × 10(-7) M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe(3+) ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe(3+)/Fe(2+) speciation in aqueous solution.
Collapse
|
13
|
Taher MA, Fayazi M, Pooramiri B, Ghanei-Motlagh M, Dorehgiraee A. Lanthanum-selective sensors based on 3-amino-2-mercapto-3H-quinazolin-4-one in PVC matrix. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
A novel sensor for monitoring of iron(III) ions based on porphyrins. SENSORS 2012; 12:8193-203. [PMID: 22969395 PMCID: PMC3436024 DOI: 10.3390/s120608193] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/27/2012] [Accepted: 06/08/2012] [Indexed: 11/17/2022]
Abstract
Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.
Collapse
|
15
|
|
16
|
Affiliation(s)
- Danielle W. Kimmel
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - Gabriel LeBlanc
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - Mika E. Meschievitz
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - David E. Cliffel
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| |
Collapse
|
17
|
Iodide selective membrane electrodes based on a Molybdenum–Salen as a neutral carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Theoretical and practical investigations of copper ion selective electrode with polymeric membrane based on N,N′-(2,2-dimethylpropane-1,3-diyl)-bis(dihydroxyacetophenone). Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.03.098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
|