1
|
Saleem M, Hanif M, Rafiq M, Ali A, Raza H, Kim SJ, Lu C. Recent Development on Sensing Strategies for Small Molecules Detections. J Fluoresc 2024; 34:1493-1525. [PMID: 37644375 DOI: 10.1007/s10895-023-03387-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV-visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Punjab, 30000, Bhakkar, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah-31200, Layyah, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Anser Ali
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Sun J, Liu W, He Z, Li B, Dong H, Liu M, Huang J, Li P, Li D, Xu Y, Zhao S, Guo Y, Sun X. Novel electrochemiluminescence aptasensor based on AuNPs-ABEI encapsulated TiO 2 nanorod for the detection of acetamiprid residues in vegetables. Talanta 2024; 269:125471. [PMID: 38061203 DOI: 10.1016/j.talanta.2023.125471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Gold nanoparticles (AuNPs)@N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@Titanium dioxide nanorods (TiO2NRs) were used as sensing materials to produce a unique encapsulated nanostructure aptasensor for the detection of acetamiprid residues in this work. ABEI, an analog of luminol, was extensively used as an electrochemiluminescence (ECL) reagent. The ECL mechanism of ABEI- hydrogen peroxide (H2O2) system had connections to a number of oxygen-centered free radicals. TiO2NRs improved ECL response with high electron transfer and a specific surface area. AuNPs were easy to biolabel and could catalyze H2O2 to enhance ECL signal. AuNPs were wrapped around TiO2NRs by utilizing the reduction property of ABEI to form wrapped modified nanomaterials. The sulfhydryl-modified aptamer bound to the nanomaterial by forming gold-sulfur (Au-S) bonds. The aptamer selectively bound to its target with the addition of acetamiprid, which caused a considerable decrease in ECL intensity and enabled quantitative detection of acetamiprid. The aptasensor showed good stability, repeatability and specificity with a broad detection range (1×10-2-1×103 nM) and a lower limit of detection (3 pM) for acetamiprid residues in vegetables. Overall, this aptasensor presents a simple and highly sensitive method for ECL detecting acetamiprid, with potential applications in vegetable safety monitoring.
Collapse
Affiliation(s)
- Jiashuai Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wenzheng Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhenying He
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Baoxin Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Peisen Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Donghan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yingchao Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shancang Zhao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
3
|
Das N, Samanta T, Rajwar S, Shunmugam R. Unique Reaction-Based Polynorbornene Sensing Probes for Ultrasensitive Detection of Hydrazine in Both Environmental and Biological Systems. Biomacromolecules 2024; 25:990-996. [PMID: 38262046 DOI: 10.1021/acs.biomac.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Hydrazine-mediated formation of 1,4-phthalazinedione analogues from phthalimide-like components has been utilized to formulate fluorescent probe NorTh. A turn-on fluorescent process has been evaluated to detect hydrazine in a highly selective manner by a small molecular probe NorTh and its homopolymer Poly-NorTh. Both these probes have been evaluated as excellent candidates for nanomolar level detection of hydrazine with a time frame of <15 min, which is rapid in terms of real application. Due to the reaction-based detection process, we have achieved high selectivity for our probes toward the identification of hydrazine in the presence of metal ions, anions, amino acids, and various amines. Limit of detection values are 16 and 35 nM for NorTh and Poly-NorTh, respectively, which are well below the permissible limit given by WHO and EPA. Poly-NorTh has been utilized to detect hydrazine in environmental water samples, soil samples, and biological samples to establish the applicability of our probes in real-field scenarios. We introduce an easy-to-synthesize, cheap, and small molecular probe and its polymer for ultrafast, highly selective, and sensitive detection of hydrazine in all possible mediums to counter the hydrazine toxicity through fluorescence turn-on signal output.
Collapse
Affiliation(s)
- Narayan Das
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Kolkata, West Bengal 741246, India
| | - Tapendu Samanta
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Kolkata, West Bengal 741246, India
| | - Sangita Rajwar
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Kolkata, West Bengal 741246, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
4
|
Płócienniczak-Bywalska P, Rębiś T, Leda A, Milczarek G. Lignosulfonate-Assisted In Situ Deposition of Palladium Nanoparticles on Carbon Nanotubes for the Electrocatalytic Sensing of Hydrazine. Molecules 2023; 28:7076. [PMID: 37894555 PMCID: PMC10609262 DOI: 10.3390/molecules28207076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This paper presents a novel modified electrode for an amperometric hydrazine sensor based on multi-walled carbon nanotubes (MWCNTs) modified with lignosulfonate (LS) and decorated with palladium nanoparticles (NPds). The MWCNT/LS/NPd hybrid was characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The electrochemical properties of the electrode material were evaluated using cyclic voltammetry and chronoamperometry. The results showed that GC/MWCNT/LS/NPd possesses potent electrocatalytic properties towards the electro-oxidation of hydrazine. The electrode demonstrated exceptional electrocatalytic activity coupled with a considerable sensitivity of 0.166 μA μM-1 cm-2. The response was linear from 3.0 to 100 µM L-1 and 100 to 10,000 µM L-1, and the LOD was quantified to 0.80 µM L-1. The efficacy of the modified electrode as an electrochemical sensor was corroborated in a study of hydrazine determination in water samples.
Collapse
Affiliation(s)
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Amanda Leda
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland;
| |
Collapse
|
5
|
Sarentuya, Bai H, Amurishana. Synthesis of Bi2S3-TiO2 nanocomposite and its electrochemical and enhanced photocatalytic properties for phenol degradation. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Ahmad K, Kim H. A brief overview of electrode materials for hydrazine sensors and dye-sensitized solar cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine in real water samples and its bioimaging in vivo and in vitro. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Dai W, Wei W, Yao Z, Xiang S, Zhang Z. A photochromic NDI-based framework for the facile hydrazine sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zhou W, Liu G, Yang B, Ji Q, Xiang W, He H, Xu Z, Qi C, Li S, Yang S, Xu C. Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146483. [PMID: 33773344 DOI: 10.1016/j.scitotenv.2021.146483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Environment pollution is getting serious and various poisonous contaminants with chemical durability, biotoxicity and bioaccumulation have been widespreadly discovered in municipal wastewaters and surface water. The detection and removal of pollutants show great significance for the protection of human health and other organisms. Due to its distinctive physical and chemical properties, perylene diimide (PDI) has received widespread attention from different research fields, especially in the area of environment. In this review, a comprehensive summary of the development of PDI-based materials in fluorescence detection and advanced oxidation technology for environment was introduced. Firstly, we chiefly presented the recent progress about the synthesis of PDI and PDI-based nanomaterials. Then, their application in fluorescence detection for environment was presented and categorized, principally including the detection of heavy metal ions, harmful anions and organic contaminants in the environment. In addition, the application of PDI and PDI-based materials in different advanced oxidation technologies for environment, such as photocatalysis, photoelectrocatalysis, Fenton and Fenton-like reaction and persulfate activation, was also summarized. At last, the challenges and future prospects of PDI-based materials in environmental applications were discussed. This review focuses on presenting the practical applications of PDI and PDI-based materials as fluorescent probes or catalysts (especially photocatalysts) in the detection of hazardous substances or catalytic elimination of organic contaminants. The contents are aimed at supplying the researchers with a deeper understanding of PDI and PDI-based materials and encouraging their further development in environmental applications.
Collapse
Affiliation(s)
- Wenwu Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bing Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiuyi Ji
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Weiming Xiang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhe Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shiyin Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chenmin Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Likhatskii MN, Karacharov AA, Romanchenko AS, Zaikovskii VI, Mikhlin YL. A COMPARATIVE STUDY OF THE DEPOSITION OF NANOSCALE Au–S INTERMEDIATES FROM AQUEOUS SOLUTIONS ON CuO, TiO2, AND α-Fe2O3 SURFACES. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Recent Advances in Perylene Diimide-Based Active Materials in Electrical Mode Gas Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9020030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review provides an update on advances in the area of electrical mode sensors using organic small molecule n-type semiconductors based on perylene. Among small organic molecules, perylene diimides (PDIs) are an important class of materials due to their outstanding thermal, chemical, electronic, and optical properties, all of which make them promising candidates for a wide range of organic electronic devices including sensors, organic solar cells, organic field-effect transistors, and organic light-emitting diodes. This is mainly due to their electron-withdrawing nature and significant charge transfer properties. Perylene-based sensors of this type show high sensing performance towards various analytes, particularly reducing gases like ammonia and hydrazine, but there are several issues that need to be addressed including the selectivity towards a specific gas, the effect of relative humidity, and operating temperature. In this review, we focus on the strategies and design principles applied to the gas-sensing performance of PDI-based devices, including resistive sensors, amperometric sensors, and operating at room temperature. The device properties and sensing mechanisms for different analytes, focusing on hydrazine and ammonia, are studied in detail, and some future research perspectives are discussed for this promising field. We hope the discussed results and examples inspire new forms of molecular engineering and begin to open opportunities for other rylene diimide classes to be applied as active materials.
Collapse
|
12
|
Guria UN, Manna SK, Maiti K, Samanta SK, Ghosh A, Datta P, Mandal D, Mahapatra AK. A xanthene-based novel colorimetric and fluorometric chemosensor for the detection of hydrazine and its application in the bio-imaging of live cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj02943f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient xanthene-based colorimetric and fluorometric probe (MXI) for the selective detection of hydrazine in solution and in living cells.
Collapse
Affiliation(s)
- Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal-721657, India
| | - Kalipada Maiti
- Department of Chemistry, University of Calcutta, University College of Science, 92, A. P. C. Road, Kolkata 700009, India
| | - Sandip Kumar Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| | - Aritri Ghosh
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Pallab Datta
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
| |
Collapse
|
13
|
Cheng S, Zhang H, Huang J, Xu R, Sun X, Guo Y. Highly sensitive electrochemiluminescence aptasensor based on dual-signal amplification strategy for kanamycin detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139785. [PMID: 32516665 DOI: 10.1016/j.scitotenv.2020.139785] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
In order to effectively monitor the residue of kanamycin (KAN), a dual-signal-amplified electrochemiluminescence (ECL) aptasensor based on multi-walled carbon nanotubes@titanium dioxide/thionine (MWCNTs@TiO2/Thi) was proposed. MWCNTs@TiO2 with large specific surface area and favorable biocompatibility could accelerate charge transfer and enable high loading of luminol to enhance ECL response. As a perfect electronic mediator, Thi could also accelerate electron conductivity to further enhance ECL intensity. The ECL intensity of MWCNTs@TiO2/Thi was enhanced for 3.6-fold compared with that of individual Thi because Thi could strongly interact with MWCNTs through π-π stacking force to enhance the electronic transmission. With the outstanding electron transfer property of MWCNTs@TiO2 and Thi, ECL intensity of the proposed aptasensor was obviously increased. Upon addition of KAN, the aptamer bound to its target, which caused that the ECL intensity decrease significantly. Therefore, KAN concentration could be monitored on the basis of signal intensity. Under optimal conditions, the constructed aptasensor exhibited a sensitive response towards KAN and a low detection limit of 0.049 ng mL-1 was obtained. It also possessed the excellent specificity, favorable stability and good reproducibility. Importantly, the application of proposed ECL aptasensor provides an efficient approach for highly sensitive detection of various small molecular contaminants.
Collapse
Affiliation(s)
- Shuting Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Hui Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Rui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.12 Zhangzhou Road, Zibo 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.12 Zhangzhou Road, Zibo 255049, China.
| |
Collapse
|
14
|
Wuamprakhon P, Krittayavathananon A, Kosasang S, Ma N, Maihom T, Limtrakul J, Chanlec N, Kidkhunthod P, Sawangphruk M. Effect of Intercalants inside Birnessite-Type Manganese Oxide Nanosheets for Sensor Applications. Inorg Chem 2020; 59:15595-15605. [PMID: 32815371 DOI: 10.1021/acs.inorgchem.0c01592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrazine is a common reducing agent widely used in many industrial and chemical applications; however, its high toxicity causes severe human diseases even at low concentrations. To detect traces of hydrazine released into the environment, a robust sensor with high sensitivity and accuracy is required. An electrochemical sensor is favored for hydrazine detection owing to its ability to detect a small amount of hydrazine without derivatization. Here, we have investigated the electrocatalytic activity of layered birnessite manganese oxides (MnO2) with different intercalants (Li+, Na+, and K+) as the sensor for hydrazine detection. The birnessite MnO2 with Li+ as an intercalant (Li-Bir) displays a lower oxidation peak potential, indicating a catalytic activity higher than the activities of others. The standard heterogeneous electron transfer rate constant of hydrazine oxidation at the Li-Bir electrode is 1.09- and 1.17-fold faster than those at the Na-Bir and K-Bir electrodes, respectively. In addition, the number of electron transfers increases in the following order: K-Bir (0.11 mol) < Na-Bir (0.17 mol) < Li-Bir (0.55 mol). On the basis of the density functional theory calculation, the Li-Bir sensor can strongly stabilize the hydrazine molecule with a large adsorption energy (-0.92 eV), leading to high electrocatalytic activity. Li-Bir also shows the best hydrazine detection performance with the lowest limit of detection of 129 nM at a signal-to-noise ratio of ∼3 and a linear range of 0.007-10 mM at a finely tuned rotation speed of 2000 rpm. Additionally, the Li-Bir sensor exhibits excellent sensitivity, which can be used to detect traces of hydrazine without any effect of interference at high concentrations and in real aqueous-based samples, demonstrating its practical sensing applications.
Collapse
Affiliation(s)
- Phatsawit Wuamprakhon
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Atiweena Krittayavathananon
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Soracha Kosasang
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Nattapol Ma
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Thana Maihom
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.,Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Jumras Limtrakul
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Narong Chanlec
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Montree Sawangphruk
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
15
|
Synthesis, crystal structure, and characterization of two Cu(II) and Ni(II) complexes of a tetradentate N2O2 Schiff base ligand and their application in fabrication of a hydrazine electrochemical sensor. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119537] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Iron-Doped Titanium Dioxide Nanoparticles As Potential Scaffold for Hydrazine Chemical Sensor Applications. COATINGS 2020. [DOI: 10.3390/coatings10020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Herein, we report the fabrication of a modified glassy carbon electrode (GCE) with high-performance hydrazine sensor based on Fe-doped TiO2 nanoparticles prepared via a facile and low-cost hydrothermal method. The structural morphology, crystalline, crystallite size, vibrational and scattering properties were examined through different characterization techniques, including FESEM, XRD, FTIR, UV–Vis, Raman and photoluminescence spectroscopy. FESEM analysis revealed the high-density synthesis of Fe-doped TiO2 nanoparticles with the average diameter of 25 ± 5 nm. The average crystallite size of the synthesized nanoparticles was found to be around 14 nm. As-fabricated hydrazine chemical sensors exhibited 1.44 μA µM−1 cm−2 and 0.236 µM sensitivity and limit of detection (LOD), respectively. Linear dynamic ranged from 0.2 to 30 µM concentrations. Furthermore, the Fe-doped TiO2 modified GCE showed a negligible inference behavior towards ascorbic acid, uric acid, glucose, SO42−, NO3−, Pb2+ and Ca2+ ions on the hydrazine sensing performance. Thus, Fe-doped TiO2 modified GCE can be efficiently used as an economical, easy to fabricate and selective sensing of hydrazine and its derivatives.
Collapse
|
17
|
Amperometric hydrazine sensor based on the use of a gold nanoparticle-modified nanocomposite consisting of porous polydopamine, multiwalled carbon nanotubes and reduced graphene oxide. Mikrochim Acta 2020; 187:89. [DOI: 10.1007/s00604-019-4014-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023]
|
18
|
Du J, Li X, Ruan S, Li Y, Ren F, Cao Y, Wang X, Zhang Y, Wu S, Li J. Rational design of a novel turn-on fluorescent probe for the detection and bioimaging of hydrazine with barbituric acid as a recognition group. Analyst 2020; 145:636-642. [DOI: 10.1039/c9an02058f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel turn-on fluorescent probe with barbituric acid as a unique recognition group has been rationally designed and synthesized using a facile method for detecting hydrazine.
Collapse
|
19
|
Coumarinocoumarin-based fluorescent probe for the sensitive and selective detection of hydrazine in living cells and zebra fish. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Novel hydrazine sensors based on Pd electrodeposited on highly dispersed lanthanide-doped TiO2 nanotubes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Nandi S, SK M, Biswas S. Rapid switch-on fluorescent detection of nanomolar-level hydrazine in water by a diacetoxy-functionalized MOF: application in paper strips and environmental samples. Dalton Trans 2020; 49:12565-12573. [DOI: 10.1039/d0dt02491k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A diacetoxy-functionalized Zr-based metal–organic framework was employed for the selective, ultra-sensitive, turn-on fluorescent detection of hydrazine in an aqueous medium.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Mostakim SK
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|
22
|
Rajkumar C, Nehru R, Chen SM, Kim H, Arumugam S, Sankar R. Electrosynthesis of carbon aerogel-modified AuNPs@quercetin via an environmentally benign method for hydrazine (HZ) and hydroxylamine (HA) detection. NEW J CHEM 2020. [DOI: 10.1039/c9nj05360c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive electrochemical sensor fabricated using a hydrothermal and environmentally benign methods for the detection of environmental pollutions, namely, hydrazine (HZ) and hydroxylamine (HA) has been described.
Collapse
Affiliation(s)
- Chellakannu Rajkumar
- School of Materials Science and Engineering
- Yeungnam University
- Gyeongsan 712 749
- Republic of Korea
- Institute of Physics
| | - Raja Nehru
- Institute of Physics
- Academia Sinica
- Taipei 10617
- Taiwan
- Centre for Condensed Matter Sciences
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Haekyoung Kim
- School of Materials Science and Engineering
- Yeungnam University
- Gyeongsan 712 749
- Republic of Korea
| | - S. Arumugam
- Center for High Pressure Research
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Raman Sankar
- Institute of Physics
- Academia Sinica
- Taipei 10617
- Taiwan
- Centre for Condensed Matter Sciences
| |
Collapse
|
23
|
Liu W, Wang B, Jia H, Wang J, Song Y. A dual-excitation fluorescent probe EuIII-dtpa-bis(HBT) for hydrazine detection in aqueous solutions and living cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj03972d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EuIII-dtpa-bis(HBT) dual-excitation fluorescence probe has good selectivity and strong anti-interference ability for the detection of N2H4.
Collapse
Affiliation(s)
- Wenfang Liu
- College of Chemistry
- Liaoning University
- Shenyang
- China
- Department of Chemistry
| | - Bingqiang Wang
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen
- China
| | - Haishuang Jia
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Jun Wang
- College of Chemistry
- Liaoning University
- Shenyang
- China
| | - Youtao Song
- College of Environment
- Liaoning University
- Shenyang
- China
| |
Collapse
|
24
|
Zhang P, Gong Y, Zhang Q, Guo X, Ding C. In situ generated chromophore as the indicator for background-free sensing strategy of hydrazine with high sensitivity with in vitro and in vivo applications. J Mater Chem B 2019; 7:5182-5189. [DOI: 10.1039/c9tb00769e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A background-free sensing assay for hydrazine was developed by using a fluorescent chromophore generated in situ as the signal indicator.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Yan Gong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
| |
Collapse
|
25
|
Nguyen D, Bui Q. Three-dimensional mesoporous hierarchical carbon nanotubes/nickel foam-supported gold nanoparticles as a free-standing sensor for sensitive hydrazine detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Lei M, Guo S, Wang Z, Zhu L, Tang H. Ultrarapid and Deep Debromination of Tetrabromodiphenyl Ether over Noble-Metal-Free Cu/TiO 2 Nanocomposites under Mild Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11743-11751. [PMID: 30207447 DOI: 10.1021/acs.est.8b03202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fast and deep debromination of polybrominated diphenyl ethers (PBDEs) under mild conditions is a challenge in the field of pollution control. A strategy was developed to achieve it by exploiting Cu/TiO2 composites as a noble-metal-free catalyst. Toward the debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE47) as a typical PBDE, the use of Cu/TiO2 as a catalyst and hydrazine hydrate (N2H4·H2O) as a reducing agent yielded a degradation removal of 100% and a debromination efficiency of 87.7% in 3 s. A complete debromination of BDE47 at 1500 mg L-1 was possible by successively adding N2H4·H2O. A debromination pathway involving active H atom species was proposed for the catalytic transfer hydrogenation (CTH) of PBDEs according to the identified degradation intermediates. A mechanism was further clarified by density functional theory calculations: electrons are delivered from N2H4·H2O to the metallic Cu atom via a coordination of N in N2H4·H2O with Cu atoms. The electron-trapped Cu atom interacts with adsorbed BDE47 to form a transition complex, and then the debromination of this complex occurs on the surface of Cu nanoparticles due to the hydrogen donation of N2H4·H2O through the CTH process. The new method provides a highly efficient method to remove brominated pollutants.
Collapse
Affiliation(s)
- Ming Lei
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Shun Guo
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Zhiying Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Heqing Tang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science , South-Central University for Nationalities , Wuhan 430074 , People's Republic of China
| |
Collapse
|
27
|
Zhang X, Wang Y, Ning X, Li L, Chen J, Shan D, Gao R, Lu X. Three-dimensional porous self-assembled chestnut-like nickel-cobalt oxide structure as an electrochemical sensor for sensitive detection of hydrazine in water samples. Anal Chim Acta 2018; 1022:28-36. [PMID: 29729735 DOI: 10.1016/j.aca.2018.03.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Three-dimensional NiCo2O4 is a kind of superior sensing material owing to its high electron transfer capability, large available surface area and numbers of active sites. In this work, NiCo2O4 of the three-dimensional chestnut-like structure were easily achieved through a one step hydrothermal process. Afterwards, the morphology and structure were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Based on the three-dimensional porous chestnut-like NiCo2O4, an electrochemical sensor for hydrazine (N2H4) detection is fabricated. This electrochemical platform can realize good selectivity, excellent stability, high sensitivity (∼2154.4 μA mM-1 cm-2), and low detection limit (0.3 μM), as well as a wide linear range from 1 μM to 1096 μM. The synergistic effect of nickel-cobalt in such mixed transition metal oxides which Co in Co3O4 is partially replaced by Ni are beneficial for enhancing sensing properties. This study proves that three-dimensional porous chestnut-like NiCo2O4 is electrochemically active for catalytic performance which is particular and promising material for good application in the practical detection of N2H4.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yanfeng Wang
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300072, PR China
| | - Linfang Li
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Jing Chen
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Duoliang Shan
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Ruiqin Gao
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China; Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
28
|
Multiple detection for hydrazine based on reduction of the 1,6,7,12-tetrachloroperylene diimide derivative. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Shahid MM, Rameshkumar P, Basirunc WJ, Wijayantha U, Chiu WS, Khiew PS, Huang NM. An electrochemical sensing platform of cobalt oxide@gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.157] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wuamprakhon P, Krittayavathananon A, Ma N, Phattharasupakun N, Maihom T, Limtrakul J, Sawangphruk M. Layered manganese oxide nanosheets coated on N-doped graphene aerogel for hydrazine detection: Reaction mechanism investigated by in situ electrochemical X-ray absorption spectroscopy. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Rajkumar C, Thirumalraj B, Chen SM, Veerakumar P, Liu SB. Ruthenium Nanoparticles Decorated Tungsten Oxide as a Bifunctional Catalyst for Electrocatalytic and Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31794-31805. [PMID: 28850211 DOI: 10.1021/acsami.7b07645] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The syntheses of highly stable ruthenium nanoparticles supported on tungsten oxides (Ru-WO3) bifunctional nanocomposites by means of a facial microwave-assisted route are reported. The physicochemical properties of these Ru-WO3 catalysts with varied Ru contents were characterized by a variety of analytical and spectroscopic methods such as XRD, SEM/TEM, EDX, XPS, N2 physisorption, TGA, UV-vis, and FT-IR. The Ru-WO3 nanocomposite catalysts so prepared were utilized for electrocatalytic of hydrazine (N2H4) and catalytic oxidation of diphenyl sulfide (DPS). The Ru-WO3-modified electrodes were found to show extraordinary electrochemical performances for sensitive and selective detection of N2H4 with a desirable wide linear range of 0.7-709.2 μM and a detection limit and sensitivity of 0.3625 μM and 4.357 μA μM-1 cm-2, respectively, surpassing other modified electrodes. The modified GCEs were also found to have desirable selectivity, stability, and reproducibility as N2H4 sensors, even for analyses of real samples. This is ascribed to the well-dispersed metallic Ru NPs on the WO3 support, as revealed by UV-vis and photoluminescence studies. Moreover, these Ru-WO3 bifunctional catalysts were also found to exhibit excellent catalytic activities for oxidation of DPS in the presence of H2O2 oxidant with desirable sulfoxide yields.
Collapse
Affiliation(s)
- Chellakannu Rajkumar
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , Taipei 10608, Taiwan
| | - Balamurugan Thirumalraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , Taipei 10608, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 10607, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , Taipei 10608, Taiwan
| | - Pitchaimani Veerakumar
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Shang-Bin Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 10617, Taiwan
| |
Collapse
|
32
|
Guo H, Hou W, Yang J, Yu L, Liang B, Zhang H. A Novel Chemical Sensor Based on Sb2
S3
Film for Highly Sensitive Detection of Hydrazine. ELECTROANAL 2017. [DOI: 10.1002/elan.201700452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Huiyun Guo
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004, PR China
| | - Wenlong Hou
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004, PR China
- Analysis and Test Center; Hebei Normal University of Science and Technology; Qinhuangdao 066004, PR China
| | - Jingkai Yang
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004, PR China
| | - Lan Yu
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004, PR China
| | - Bo Liang
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004, PR China
| | - Haiquan Zhang
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004, PR China
| |
Collapse
|
33
|
Roy B, Halder S, Guha A, Bandyopadhyay S. Highly Selective Sub-ppm Naked-Eye Detection of Hydrazine with Conjugated-1,3-Diketo Probes: Imaging Hydrazine in Drosophila Larvae. Anal Chem 2017; 89:10625-10636. [DOI: 10.1021/acs.analchem.7b03503] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Biswajit Roy
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Sudipta Halder
- Department
of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Abhishek Guha
- Department
of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Subhajit Bandyopadhyay
- Department
of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
34
|
Helal A, Qamaruddin M, Aziz MA, Shaikh MN, Yamani ZH. MB-UiO-66-NH2
Metal-Organic Framework as Chromogenic and Fluorogenic Sensor for Hydrazine Hydrate in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201701230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aasif Helal
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia, E-mail address
| | - Muhammad Qamaruddin
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia, E-mail address
| | - Muhammad A. Aziz
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia, E-mail address
| | - Muhammad N. Shaikh
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia, E-mail address
| | - Zain H. Yamani
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia, E-mail address
| |
Collapse
|
35
|
Ali SM, Emran KM, Al lehaibi HA. Enhancement of the Electrocatalytic Activity of Conducting Polymer/Pd Composites for Hydrazine Oxidation by Copolymerization. INT J ELECTROCHEM SC 2017; 12:8733-8744. [DOI: 10.20964/2017.09.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
36
|
Lu Z, Fan W, Shi X, Lu Y, Fan C. Two Distinctly Separated Emission Colorimetric NIR Fluorescent Probe for Fast Hydrazine Detection in Living Cells and Mice upon Independent Excitations. Anal Chem 2017; 89:9918-9925. [DOI: 10.1021/acs.analchem.7b02149] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhengliang Lu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenlong Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaomin Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanan Lu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunhua Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
37
|
Simple synthesis of hierarchical AuPt alloy nanochains for construction of highly sensitive hydrazine and nitrite sensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1317-1325. [DOI: 10.1016/j.msec.2017.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|
38
|
Synthesis of Co-CeO 2 nanoflake arrays and their application to highly sensitive and selective electrochemical sensing of hydrazine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Habibi E, Heidari H. High-sensitive amperometric hydrazine sensor based on chemically synthesized zinc nitroprusside nanoparticle-supported carbon ceramic electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1080-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Zhou T, Gao W, Gao Y, Wang Q, Umar A. Co3O4 nanoparticles/MWCNTs composites: a potential scaffold for hydrazine and glucose electrochemical detection. RSC Adv 2017. [DOI: 10.1039/c7ra10892c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the successful formation of cobalt oxide (Co3O4) nanoparticles/multi-walled carbon nanotubes (Co3O4/MWCNTs) composites as efficient electrocatalytic materials for chemical sensing.
Collapse
Affiliation(s)
- Tuantuan Zhou
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Wanlin Gao
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Yanshan Gao
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Qiang Wang
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Ahmad Umar
- Department of Chemistry
- College of Science and Arts
- Najran University
- Najran-11001
- Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Sakthinathan S, Kubendhiran S, Chen SM, Sireesha P, Karuppiah C, Su C. Functionalization of Reduced Graphene Oxide with β-cyclodextrin Modified Palladium Nanoparticles for the Detection of Hydrazine in Environmental Water Samples. ELECTROANAL 2016. [DOI: 10.1002/elan.201600339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Subramanian Sakthinathan
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
| | - Subbiramaniyan Kubendhiran
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
| | - Pedaballi Sireesha
- Institute of Organic and Polymeric Materials; National Taipei University of Technology; Taipei 106 Taiwan ROC
| | - Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab; Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; No. 1, Section 3, Chung-Hsiao East Road Taipei 106 Taiwan ROC
- Department of Chemistry; National Taiwan University; No. 1, Section 4, Roosevelt Road Taipei 106 Taiwan ROC
| | - Chaochin Su
- Institute of Organic and Polymeric Materials; National Taipei University of Technology; Taipei 106 Taiwan ROC
| |
Collapse
|
42
|
Abdelhamid ME, Snook GA, O'Mullane AP. Electrochemical Tailoring of Fibrous Polyaniline and Electroless Decoration with Gold and Platinum Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8834-8842. [PMID: 27531044 DOI: 10.1021/acs.langmuir.6b02058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Presented in this work is a facile and quick electrochemical method for controlling the morphology of thick polyaniline (PANi) films, without the use of templates. By stepping the polymerization potential from high voltages to a lower (or series of lower) voltage(s), we successfully controlled the morphology of the polymer, and fibrous structures, unique to each potential step, were achieved. In addition, the resultant film was tested electrochemically for its viability as an electrode material for flexible batteries and supercapacitors. Furthermore, the PANi film was decorated with gold and platinum nanoparticles via an electroless deposition process for possible electrocatalytic applications, whereby the oxidation of hydrazine at the composite was investigated.
Collapse
Affiliation(s)
- Muhammad E Abdelhamid
- School of Applied Sciences, RMIT University , GPO Box 2476V, Melbourne, VIC 3001, Australia
- Mineral Resources, Commonwealth Science and Industrial Research Organisation (CSIRO) , Private Bag 10, Clayton, VIC 3169, Australia
| | - Graeme A Snook
- Mineral Resources, Commonwealth Science and Industrial Research Organisation (CSIRO) , Private Bag 10, Clayton, VIC 3169, Australia
| | - Anthony P O'Mullane
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
43
|
Heydari H, Gholivand MB, Abdolmaleki A. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:16-24. [DOI: 10.1016/j.msec.2016.04.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
|
44
|
Samanta S, Srivastava R. CuCo 2 O 4 based economical electrochemical sensor for the nanomolar detection of hydrazine and metol. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Karthik R, Chen SM, Elangovan A, Muthukrishnan P, Shanmugam R, Lou BS. Phyto mediated biogenic synthesis of gold nanoparticles using Cerasus serrulata and its utility in detecting hydrazine, microbial activity and DFT studies. J Colloid Interface Sci 2016; 468:163-175. [DOI: 10.1016/j.jcis.2016.01.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
46
|
Gao X, Du C, Zhang C, Chen W. Copper Nanoclusters on Carbon Supports for the Electrochemical Oxidation and Detection of Hydrazine. ChemElectroChem 2016. [DOI: 10.1002/celc.201600036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohui Gao
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Cheng Du
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Chunmei Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| |
Collapse
|
47
|
Maji R, Mahapatra AK, Maiti K, Mondal S, Ali SS, Sahoo P, Mandal S, Uddin MR, Goswami S, Quah CK, Fun HK. A highly sensitive fluorescent probe for detection of hydrazine in gas and solution phases based on the Gabriel mechanism and its bioimaging. RSC Adv 2016. [DOI: 10.1039/c6ra14212e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new probe 2-benzo[1,2,5]thiadiazol-4-yl-isoindole-1,3-dione (BTI) based on the Gabriel reaction was developed for hydrazine which shows promising selectivity towards hydrazine over other analytes.
Collapse
|
48
|
Kaur B, Srivastava R, Satpati B. Copper nanoparticles decorated polyaniline–zeolite nanocomposite for the nanomolar simultaneous detection of hydrazine and phenylhydrazine. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01064k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high electrocatalytic activity of the CuNPs–PANI–Nano-ZSM-5 nanocomposite can be attributed to the synergistic contribution provided by the highly dispersed copper nanoparticles and conductive PANI film on high surface area Nano-ZSM-5.
Collapse
Affiliation(s)
- Balwinder Kaur
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Rajendra Srivastava
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar-140001
- India
| | - Biswarup Satpati
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700 064
- India
| |
Collapse
|
49
|
Ali F, A. AH, Taye N, Mogare DG, Chattopadhyay S, Das A. Specific receptor for hydrazine: mapping the in situ release of hydrazine in live cells and in an in vitro enzymatic assay. Chem Commun (Camb) 2016; 52:6166-9. [DOI: 10.1039/c6cc01787h] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New chemodosimetric reagent for the specific detection of hydrazine in physiological conditions as well as for the mapping of its in situ generation in live Hct116 and HepG2 cells by enzymatic transformations.
Collapse
Affiliation(s)
- Firoj Ali
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Anila H. A.
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Nandaraj Taye
- Chromatin and Disease Biology Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Devraj G. Mogare
- Chromatin and Disease Biology Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Amitava Das
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
50
|
Liu Y, Qiu Z, Wan Q, Wang Z, Wu K, Yang N. High-Performance Hydrazine Sensor Based on Graphene Nano Platelets Supported Metal Nanoparticles. ELECTROANAL 2015. [DOI: 10.1002/elan.201500531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|