1
|
Pellé J, Longo M, Le Poul N, Hellio C, Rioual S, Lescop B. Electrochemical monitoring of the Pseudomonas aeruginosa growth and the formation of a biofilm in TSB media. Bioelectrochemistry 2023; 150:108344. [PMID: 36509018 DOI: 10.1016/j.bioelechem.2022.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Understanding and sensing microbial biofilm formation onto surfaces remains highly challenging for preventing corrosion and biofouling processes. For that purpose, we have thoroughly investigated biofilm formation onto glassy carbon electrode surfaces by using electrochemical technics. Pseudomonas aeruginosa was studied because of its remarkable ability to form biofilms in many environments. The modification of the electrode-solution interface during biofilm growth was monitored by in-situ measurement of the open-circuit potential and correlated with results obtained by electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy and bioassays. The sensing of the biofilm formation hence suggests a multi-steps mechanism, which may include pre-formation of an insulating layer onto the surface prior to the bacteria adhesion and biofilm formation.
Collapse
Affiliation(s)
- J Pellé
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
| | - M Longo
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France; Univ Brest, BIODIMAR/LEMAR, CNRS, UMR 6539, F-29200 Brest, France
| | - N Le Poul
- Univ Brest, CEMCA, CNRS, UMR 6521, F-29200 Brest, France
| | - C Hellio
- Univ Brest, BIODIMAR/LEMAR, CNRS, UMR 6539, F-29200 Brest, France
| | - S Rioual
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
| | - B Lescop
- Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
| |
Collapse
|
2
|
Sridharan D, Karthikeyan C, Maruthamuthu S, Palaniswamy N. Electrochemical investigation of freshwater biofilm on FTO surface: Oxide film perspective. ChemistrySelect 2022. [DOI: 10.1002/slct.202202955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dharmarajan Sridharan
- Department of Chemical Sciences and Engineering Anjalai Ammal Mahalingam Engineering College Kovilvenni 614 403 Tamil Nadu India
- Corrosion and Materials Protection Division CSIR-Central Electrochemical Research Institute Karaikudi 630 006 Tamil Nadu India
| | - Chandrasekaran Karthikeyan
- Corrosion and Materials Protection Division CSIR-Central Electrochemical Research Institute Karaikudi 630 006 Tamil Nadu India
| | - Sundaram Maruthamuthu
- Corrosion and Materials Protection Division CSIR-Central Electrochemical Research Institute Karaikudi 630 006 Tamil Nadu India
| | - Narayanan Palaniswamy
- Corrosion and Materials Protection Division CSIR-Central Electrochemical Research Institute Karaikudi 630 006 Tamil Nadu India
| |
Collapse
|
3
|
A new angle to control concentration profiles at electroactive biofilm interfaces: investigating a microfluidic perpendicular flow approach. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Nowaczyk PM, Bajerska J, Lasik-Kurdyś M, Radziejewska-Kubzdela E, Szwengiel A, Woźniewicz M. The effect of cranberry juice and a cranberry functional beverage on the growth and metabolic activity of selected oral bacteria. BMC Oral Health 2021; 21:660. [PMID: 34930215 PMCID: PMC8686276 DOI: 10.1186/s12903-021-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oral microbiota is a significant risk indicator for oral diseases, such as dental caries and periodontal inflammation. Much attention is presently paid to the development of functional foods (e.g. beverages containing cranberry constituents, or foods containing probiotics) that may serve as adjuncts for oral disease treatments (e.g. periodontitis and caries). Cranberry fruit, due to its unique chemical composition and antimicrobial potential, is a possible ingredient of such foods. The study aimed to investigate the effects of cranberry juice (CJ) and a cranberry functional beverage (mixture of 80% v/v apple juice, 20% v/v cranberry juice, and 0.25 g/100 mL ground cinnamon; CFB) on the growth and metabolic activity of selected oral bacteria. METHODS Serial dilution pour plate method (SDPP) was used to examine the effect of CJ and CFB on the growth of Actinomyces naeslundii, Streptococcus mutans, and Lactobacillus paracasei subsp. paracasei. 48-h electrical impedance measurements (EIM) during the cultivation of A. naeslundii were applied to evaluate the utility of the method as a rapid alternative for the assessment of the antimicrobial potential of cranberry beverages. RESULTS The tested bacteria differed in their susceptibility to the antimicrobial action of CJ and CFB, with L. paracasei subsp. paracasei being least vulnerable to CFB (according to SDPP). Although CJ at a concentration of 0.5 mL/mL, showed a bactericidal effect on the growth of S. mutans, A. naeslundii was more sensitive to CJ (SDPP). Its inhibitory effect on A. naeslundii was seen even at concentrations as small as 0.03125-0.125 mL/mL (SDPP and EIM). On the other hand, S. mutans seemed to be more vulnerable to CFB than A. naeslundii (SDPP). CONCLUSIONS CFB may be considered an adjunct in the treatment of oral diseases due to its action against selected oral pathogens, and not against the presumably beneficial L. paracasei subsp. paracasei. Bioelectrical impedance measurements appear to be a quick alternative to evaluating the antimicrobial activity of fruit beverages, but their utility should be confirmed with tests on other bacteria.
Collapse
Affiliation(s)
- Paulina M Nowaczyk
- Department of Sports Dietetics, Faculty of Health Sciences, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznan, Poland
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Małgorzata Lasik-Kurdyś
- Department of Food Technology of Plant Origin, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Małgorzata Woźniewicz
- Department of Human Nutrition and Dietetics, Faculty of Food Sciences and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland.
| |
Collapse
|
5
|
Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique. Biomed Microdevices 2021; 23:26. [PMID: 33885989 DOI: 10.1007/s10544-021-00564-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
A continuous rise in the wastes from industrial effluents, bio-waste, and pharmaceuticals has deteriorated surface water and drinking water sources. Standard laboratory tests of total coliform are time-consuming and logistically inefficient for field data generation. Better and portable sensing technologies are needed. This paper reports an electrical impedance spectroscopic technique incorporated in a micro-fluidic chip with interdigitated microelectrodes to monitor the growth of microbial cells. Lag, log, and stationary phases of Escherichia coli cell growth with an integrated electrode are successfully detected, for samples of reverse osmosis water, standard treated tap water, and recycled water respectively. The results indicate that reverse osmosis water has a higher probability of contamination with bacterial pathogens compared to the other two types of water samples when subjected to the same amount of added nutrients. The statistical analysis shows a possible single detection range with higher-order regression, and repeat use of a single chip with the electrode was found to be within an acceptable limit. The interdigitated electrodes exposed to in-situ cell growth conditions and repeated electrical measurements have shown a promise for possible periodic or continuous monitoring. The paper further identifies several complimentary analysis methodologies that are robust towards phase noise in the measured impedance and are suited particularly for early-stage detection of bacterial contamination. The cell adhesion tendencies over the microelectrode due to the electric field need to be further analyzed.
Collapse
|
6
|
Lekbach Y, Liu T, Li Y, Moradi M, Dou W, Xu D, Smith JA, Lovley DR. Microbial corrosion of metals: The corrosion microbiome. Adv Microb Physiol 2021; 78:317-390. [PMID: 34147188 DOI: 10.1016/bs.ampbs.2021.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.
Collapse
Affiliation(s)
- Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Tao Liu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Yingchao Li
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, China
| | - Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Wenwen Dou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China.
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, CT, United States
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China; Department of Microbiology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
7
|
Begly C, Ackart D, Mylius J, Basaraba R, Chicco AJ, Chen TW. Study of Real-Time Spatial and Temporal Behavior of Bacterial Biofilms Using 2-D Impedance Spectroscopy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1051-1064. [PMID: 32746361 DOI: 10.1109/tbcas.2020.3011918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The purpose of this paper is to demonstrate the use of 2-D impedance spectroscopy to identify areas of biofilm growth on a CMOS biosensor microelectrode-array. METHODS This paper presents the design and use of a novel multichannel impedance spectroscopy instrument to allow 2-D spatial and temporal evaluation of biofilm growth. The custom-designed circuits can provide a wide range of frequencies (1 Hz-100 kHz) to allow customization of impedance measurements, as the frequency of interest varies based on the type and state of biofilm under measurement. The device is capable of taking measurements as fast as once per second on the entire set of impedance sensors, allowing real-time observation. It also supports adjustable stimulus voltages. The distance between neighboring sensors is 220 micrometers which provides reasonable spatial resolution for biofilm study. RESULTS Biofilm was grown on the surface of the chip, occupancy was measured using the new tool, and the results were validated optically using fluorescent staining. The results show that the developed tool can be used to determine the bacterial biofilm presence at a given location. CONCLUSION This paper confirms that 2-D impedance spectroscopy can be used to measure biofilm occupancy. The new tool developed to perform the measurements was able to display real-time results, and determine biofilm coverage of the array electrodes. SIGNIFICANCE The system presented in this report is the first fully integrated 2-D EIS measurement system with full software support for capturing biofilm growth dynamics in real-time. Due to its ability to nondestructively monitor biofilms over time, 2-D impedance spectroscopy using a microelectrode-array is a useful tool for studying biofilms.
Collapse
|
8
|
Song J, Li Y, Yin F, Zhang Z, Ke D, Wang D, Yuan Q, Zhang XE. Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically In Situ Generated Graphene Interface. ACS Sens 2020; 5:1795-1803. [PMID: 32397709 DOI: 10.1021/acssensors.0c00570] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms can cause many bacterial diseases, such as dental disease. An in vitro detection of biofilms may help to screen antibiofilm drugs. An impedance measurement based on an Au electrode has been successfully used for in vitro real-time monitoring of animal and human cell growth. However, microbial growth on the Au electrode produced a poor signal because of the small size of microbial cells. We have recently demonstrated that graphene derivatives can be produced on a carbon electrode through facile electrochemical activation, thus forming a reduced graphene oxide-carbon electrode (rGO-CE). Based on this fact, we hypothesized that an in vitro formed rugose graphene layer of rGO-CE may provide a large surface area for the growth of microbial biofilms and can therefore produce a strong impedance signal in response to a change in the biomass. In this study, three oral bacteria, Streptococcus mutans (S. mutans), Actinomyces viscosus (A. viscosus), and Lactobacillus fermentum (L. fermentum), were cultured on the surfaces of rGO-CE. As a result, the impedance response signal of the rGO-CE for the growth of S. mutans and A. viscosus was found to be 3.3 times and 6.0 times stronger than that of the Au electrode at 1.17 and 54.7 kHz, respectively. In particular, the poorly adhering strain of L. fermentum also produced a detectable signal on the graphene electrode but not on the Au electrode at 1.17 kHz. Furthermore, destructions of the biofilms grown on the rGO-CE by cetylpyridinium chloride were successfully monitored by impedance changes. Overall, it is promising to develop a graphene-based impedance biosensor platform for biofilm study and antibiofilm drug screening.
Collapse
Affiliation(s)
- Jin Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yiwei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiao Hong Shan No. 44, Wuhan 430071, China
| | - Fang Yin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhitao Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dingkun Ke
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
9
|
Yang D, Reyes-De-Corcuera JI. Continuous flow system for biofilm formation using controlled concentrations of Pseudomonas putida from chicken carcass and coupled to electrochemical impedance detection. BIOFOULING 2020; 36:389-402. [PMID: 32434379 DOI: 10.1080/08927014.2020.1763966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Most studies dealing with monitoring the dynamics of biofilm formation use microbial suspensions at high concentrations. These conditions do not always represent food or water distribution systems. A continuous flow system capable of controlling the concentration of the microbial suspension stream from 104 to 106 CFU ml-1 is reported. Pseudomonas putida biofilms formed using 100-fold, 1,000-fold or 10,000-fold diluted bacterial suspensions were monitored in-line by electrochemical impedance spectroscopy (EIS) and total plate counts. Randles equivalent circuit model and a modified Randles model with biofilm elements were used to fit the EIS data. In Randles equivalent circuit, the charge transfer resistance decreased as the biofilm formed. The log colony counts of the biofilm correlated to the charge transfer resistance. In the biofilm model, the biofilm resistance and the double layer capacitance decreased as the biofilm formed. The log colony counts of the biofilm correlated to the biofilm resistance.
Collapse
Affiliation(s)
- Daoyuan Yang
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
10
|
Bharatula LD, Marsili E, Kwan JJ. Impedimetric detection of Pseudomonas aeruginosa attachment on flexible ITO-coated polyethylene terephthalate substrates. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Vamshi Krishna K, Venkata Mohan S. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity. Front Microbiol 2019; 10:880. [PMID: 31133996 PMCID: PMC6513898 DOI: 10.3389/fmicb.2019.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, transport of electrons from bacteria to an electrode is the key to its functioning. However, the roles of several electron transport proteins, especially the membrane-bound dehydrogenases which link cellular metabolism to EET pathway are yet to be identified. NDH-2 is a non-proton pumping NADH dehydrogenase located in the inner membrane of several bacteria like Bacillus subtilis, Escherichia coli, etc. Unlike NADH dehydrogenase I, NDH-2 is not impeded by a high proton motive force thus helping in the increase of metabolic flux and carbon utilization. In the current study, NADH dehydrogenase II protein (NDH-2) was heterologously expressed from B. subtilis into E. coli BL21 (DE3) for enhancing electron flux through EET pathway and to understand its role in bioelectrogenesis. We found that E. coli expressing NDH-2 has increased the electron flux through EET and has shown a ninefold increase in current (4.7 μA) production when compared to wild strain with empty vector (0.52 μA). Furthermore, expression of NDH-2 also resulted in increased biofilm formation which can be corroborated with the decrease in charge transfer resistance of NDH-2 strain and increased NADH oxidation. It was also found that NDH-2 strain can reduce ferric citrate at a higher rate than wild type strain suggesting increased electron flux through electron transport chain due to NADH dehydrogenase II activity. Purified NDH-2 was found to be ∼42 kDa and has FAD as a cofactor. This work demonstrates that the primary dehydrogenases like NADH dehydrogenases can be overexpressed to increase the electron flux in EET pathway which can further enhance the microbial fuel cells performance.
Collapse
Affiliation(s)
- K Vamshi Krishna
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
12
|
Méndez-Tovar M, García-Meza JV, González I. Electrochemical monitoring of Acidithiobacillus thiooxidans biofilm formation on graphite surface with elemental sulfur. Bioelectrochemistry 2019; 128:30-38. [PMID: 30909069 DOI: 10.1016/j.bioelechem.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023]
Abstract
Inorganic wastewaters and sediments from the mining industry and mineral bioleaching processes have not been fully explored in bioelectrochemical systems (BES). Knowledge of interfacial changes due to biofilm evolution under acidic conditions may improve applications in electrochemical processes, specifically those related to sulfur compounds. Biofilm evolution of Acidithiobacillus thiooxidans on a graphite plate was monitored by electrochemical techniques, using the graphite plate as biofilm support and elemental sulfur as the only energy source. Even though the elemental sulfur was in suspension, S0 particles adhered to the graphite surface favoring biofilm development. The biofilms grown at different incubation times (without electric perturbation) were characterized in a classical three electrode electrochemical cell (sulfur and bacteria free culture medium) by non-invasive electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The biofilm structure was confirmed by Environmental Scanning Electrode Microscopy, while the relative fractions of exopolysaccharides and extracellular hydrophobic compounds at different incubation times were evaluated by Confocal Laser Scanning Microscopy. The experimental conditions chosen in this work allowed the EIS monitoring of the biofilm growth as well as the modification of Extracellular Polymeric Substances (EPS) composition (hydrophobic/ exopolysaccharides EPS ratio). This strategy could be useful to control biofilms for BES operation under acidic conditions.
Collapse
Affiliation(s)
- Marcela Méndez-Tovar
- Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186. Col. Vicentina, 09340 Ciudad de México, Mexico
| | - J Viridiana García-Meza
- Geomicrobiología, Facultad de Ingeniería-Metalurgia, UASLP. Sierra Leona 550, Lomas 2°, San Luis Potosí 78210, SLP, Mexico
| | - Ignacio González
- Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186. Col. Vicentina, 09340 Ciudad de México, Mexico.
| |
Collapse
|
13
|
Stöckl M, Teubner NC, Holtmann D, Mangold KM, Sand W. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8961-8968. [PMID: 30730701 DOI: 10.1021/acsami.8b14340] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioelectrochemical systems (BESs) are hybrid systems using electroactive bacteria and solid electrodes, which serve as electron donor or acceptor for microorganisms. When forming a biofilm on the electrode, bacteria secrete extracellular polymeric substances (EPSs). However, EPS excretion of electroactive biofilms in BES has been rarely studied so far. Consequently, the aim of this study is to develop a routine including the electrochemical cultivation, biofilm harvesting, fractionation, and biochemical analysis of the EPS secreted by Geobacter sulfurreducens under electroactive conditions. G. sulfurreducens was cultivated in microbial fuel cell mode on graphite-based electrodes polarized to +400 mV versus Ag/AgCl for 8 d. A maximum current density of 172 ± 29 μA cm-2 was reached after 7 d. The EPS secreted from the biofilms were harvested and fractioned into soluble, loosely bound, and tightly bound EPS and biochemically analyzed. Electroactive cultures secreted significantly more EPSs compared to cells grown under standard heterotrophic conditions (fumarate respiration). With 116 pg per cell, the highest amount of EPSs was measured for the soluble EPS fraction of G. sulfurreducens using anodic respiration, followed by the tightly bound (18 pg cell-1) and loosely bound (11 pg cell-1) fractions of the EPS. Proteins were found to dominate all EPS fractions of the biofilms grown under electrochemical conditions. To the best of the authors' knowledge, these experiments are the first approach toward a complete analysis of the main EPS components of G. sulfurreducens under anode-respiring conditions.
Collapse
Affiliation(s)
| | | | | | | | - Wolfgang Sand
- Biofilm Centre , University of Duisburg-Essen , Universitätsstr. 5 , 45141 Essen , Germany
- College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
- Technical Universtiy and Mining Academy , 09599 Freiberg , Germany
| |
Collapse
|
14
|
Pousti M, Zarabadi MP, Abbaszadeh Amirdehi M, Paquet-Mercier F, Greener J. Microfluidic bioanalytical flow cells for biofilm studies: a review. Analyst 2019; 144:68-86. [PMID: 30394455 DOI: 10.1039/c8an01526k] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial biofilms are among the oldest and most prevalent multicellular life forms on Earth and are increasingly relevant in research areas related to industrial fouling, medicine and biotechnology. The main hurdles to obtaining definitive experimental results include time-varying biofilm properties, structural and chemical heterogeneity, and especially their strong sensitivity to environmental cues. Therefore, in addition to judicious choice of measurement tools, a well-designed biofilm study requires strict control over experimental conditions, more so than most chemical studies. Due to excellent control over a host of physiochemical parameters, microfluidic flow cells have become indispensable in microbiological studies. Not surprisingly, the number of lab-on-chip studies focusing on biofilms and other microbiological systems with expanded analytical capabilities has expanded rapidly in the past decade. In this paper, we comprehensively review the current state of microfluidic bioanalytical research applied to bacterial biofilms and offer a perspective on new approaches that are expected to drive continued advances in this field.
Collapse
Affiliation(s)
- Mohammad Pousti
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Mir Pouyan Zarabadi
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Mehran Abbaszadeh Amirdehi
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - François Paquet-Mercier
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada and CHU de Quebec Research Centre, Laval University, 10 rue de l'Espinay, Quebec City, (QC) G1L 3L5, Canada
| |
Collapse
|
15
|
Liu L, Xu Y, Cui F, Xia Y, Chen L, Mou X, Lv J. Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip. Biosens Bioelectron 2018; 112:86-92. [DOI: 10.1016/j.bios.2018.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
|
16
|
Zarabadi MP, Paquet-Mercier F, Charette SJ, Greener J. Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2041-2049. [PMID: 28147485 DOI: 10.1021/acs.langmuir.6b03889] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The anchoring biofilm layer is expected to exhibit a different response to environmental stresses than for portions in the bulk, due to the protection from other strata and the proximity to the attachment surface. The effect of hydrodynamic stress on surface-adhered biofilm layers was tested using a specially designed microfluidic bio flow cell with an embedded three-electrode detection system. In situ electrochemical impedance spectroscopy (EIS) measurements of biocapacitance and bioresistance of Pseudomonas sp. biofilms were conducted during the growth phase and under different shear flow conditions with verification by other surface sensitive techniques. Distinct, but reversible changes to the amount of biofilm and its structure at the attachment surface were observed during the application of elevated shear stress. In contrast, regular microscopy revealed permanent distortion to the biofilm bulk, in the form of streamers and ripples. Following the application of extreme shear stresses, complete removal of significant portions of biofilm outer layers occurred, but this did not change the measured quantity of biofilm at the electrode attachment surface. The structure of the remaining biofilm, however, appeared to be modified and susceptible to further changes following application of shear stress directly to the unprotected biofilm layers at the attachment surface.
Collapse
Affiliation(s)
| | | | - Steve J Charette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec , Québec City, Québec G1V 4G5, Canada
| | | |
Collapse
|
17
|
Membrane Separated Flow Cell for Parallelized Electrochemical Impedance Spectroscopy and Confocal Laser Scanning Microscopy to Characterize Electro-Active Microorganisms. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Electrochemically active biofilm and photoelectrocatalytic regeneration of the titanium dioxide composite electrode for advanced oxidation in water treatment. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Jia K, Ionescu RE. Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 154:19-45. [PMID: 25981856 DOI: 10.1007/10_2015_324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
: Bioluminescence is light production by living organisms, which can be observed in numerous marine creatures and some terrestrial invertebrates. More specifically, bacterial bioluminescence is the "cold light" produced and emitted by bacterial cells, including both wild-type luminescent and genetically engineered bacteria. Because of the lively interplay of synthetic biology, microbiology, toxicology, and biophysics, different configurations of whole-cell biosensors based on bacterial bioluminescence have been designed and are widely used in different fields, such as ecotoxicology, food toxicity, and environmental pollution. This chapter first discusses the background of the bioluminescence phenomenon in terms of optical spectrum. Platforms for bacterial bioluminescence detection using various techniques are then introduced, such as a photomultiplier tube, charge-coupled device (CCD) camera, micro-electro-mechanical systems (MEMS), and complementary metal-oxide-semiconductor (CMOS) based integrated circuit. Furthermore, some typical biochemical methods to optimize the analytical performances of bacterial bioluminescent biosensors/assays are reviewed, followed by a presentation of author's recent work concerning the improved sensitivity of a bioluminescent assay for pesticides. Finally, bacterial bioluminescence as implemented in eukaryotic cells, bioluminescent imaging, and cancer cell therapies is discussed.
Collapse
Affiliation(s)
- Kun Jia
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281, 12 rue Marie Curie CS 42060, TROYES, 10004 Cedex, France
| | - Rodica Elena Ionescu
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281, 12 rue Marie Curie CS 42060, TROYES, 10004 Cedex, France.
| |
Collapse
|
20
|
Ben-Yoav H, Dykstra PH, Bentley WE, Ghodssi R. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis. Biosens Bioelectron 2014; 64:579-85. [PMID: 25310492 DOI: 10.1016/j.bios.2014.09.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) devices for electrochemical analysis of DNA hybridization events offer a technology for real-time and label-free assessment of biomarkers at the point-of-care. Here, we present a microfluidic LOC, with 3 × 3 arrayed electrochemical sensors for the analysis of DNA hybridization events. A new dual layer microfluidic valved manipulation system is integrated providing controlled and automated capabilities for high throughput analysis. This feature improves the repeatability, accuracy, and overall sensing performance (Fig. 1). The electrochemical activity of the fabricated microfluidic device is validated and demonstrated repeatable and reversible Nernstian characteristics. System design required detailed analysis of energy storage and dissipation as our sensing modeling involves diffusion-related electrochemical impedance spectroscopy. The effect of DNA hybridization on the calculated charge transfer resistance and the diffusional resistance components is evaluated. We demonstrate a specific device with an average cross-reactivity value of 27.5%. The device yields semilogarithmic dose response and enables a theoretical detection limit of 1 nM of complementary ssDNA target. This limit is lower than our previously reported non-valved device by 74% due to on-chip valve integration providing controlled and accurate assay capabilities.
Collapse
Affiliation(s)
- Hadar Ben-Yoav
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Peter H Dykstra
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Reza Ghodssi
- MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
El Ichi S, Leon F, Vossier L, Marchandin H, Errachid A, Coste J, Jaffrezic-Renault N, Fournier-Wirth C. Microconductometric immunosensor for label-free and sensitive detection of Gram-negative bacteria. Biosens Bioelectron 2014; 54:378-84. [DOI: 10.1016/j.bios.2013.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
|
22
|
Ward AC, Connolly P, Tucker NP. Pseudomonas aeruginosa can be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor. PLoS One 2014; 9:e91732. [PMID: 24614411 PMCID: PMC3948879 DOI: 10.1371/journal.pone.0091732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Electrochemical Impedance Spectroscopy (EIS) is a powerful technique that can be used to elicit information about an electrode interface. In this article, we highlight six principal processes by which the presence of microorganisms can affect impedance and show how one of these--the production of electroactive metabolites--changes the impedance signature of culture media containing Pseudomonas aeruginosa. EIS, was used in conjunction with a low cost screen printed carbon sensor to detect the presence of P. aeruginosa when grown in isolation or as part of a polymicrobial infection with Staphylococcus aureus. By comparing the electrode to a starting measurement, we were able to identify an impedance signature characteristic of P. aeruginosa. Furthermore, we are able to show that one of the changes in the impedance signature is due to pyocyanin and associated phenazine compounds. The findings of this study indicate that it might be possible to develop a low cost sensor for the detection of P. aeruginosa in important point of care diagnostic applications. In particular, we suggest that a development of the device described here could be used in a polymicrobial clinical sample such as sputum from a CF patient to detect P. aeruginosa.
Collapse
Affiliation(s)
- Andrew C. Ward
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Patricia Connolly
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
23
|
Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosens Bioelectron 2012; 38:226-32. [DOI: 10.1016/j.bios.2012.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
|
24
|
A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis. Biosens Bioelectron 2012; 38:114-20. [DOI: 10.1016/j.bios.2012.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/20/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022]
|