1
|
Wang Q, Wang Y, Xiao G, Zhu X. Electrophoretic Deposition of Co 3O 4 Particles/Reduced Graphene Oxide Composites for Efficient Non-Enzymatic H 2O 2 Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1261. [PMID: 36770267 PMCID: PMC9918914 DOI: 10.3390/ma16031261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In this work, the facile fabrication of Co3O4 particles/reduced graphene oxide (Co3O4/rGO) composites on Indium tin oxide (ITO) slide was achieved by an electrophoretic deposition and annealing process. The deposition time and ratio of the precursors were optimized. Structural characterization and chemical composition investigation indicated successful loading of Co3O4 particles on graphene sheets. When applied as a non-enzymatic H2O2 sensor, Co3O4/rGO showed significant electrocatalytic activity, with a wide linear range (0.1-19.5 mM) and high sensitivity (0.2247 mA mM-1 cm-2). The good anti-interference ability, reproducibility, and long-term stability of the constructed sensor were also presented. The application of Co3O4/rGO in real sample analysis was evaluated in human urine sample with satisfactory results, indicating the feasibility of the sensor in physiological and medical applications.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
- Shandong Engineering & Technology Research Center for Superhard Material, Jinan 250061, China
| | - Yuzhe Wang
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Guiyong Xiao
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xinde Zhu
- Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
2
|
Sea-urchin-like cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Liaqat I, Iqbal N, Aslam M, Nasir M, Hayat A, Han DX, Niu L, Nawaz MH. Co3O4 nanocubes decorated single-walled carbon nanotubes for efficient electrochemical non-enzymatic glucose sensing. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03531-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
4
|
Jiang T, Sun X, Wei L, Li M. Determination of hydrogen peroxide released from cancer cells by a Fe-Organic framework/horseradish peroxidase-modified electrode. Anal Chim Acta 2020; 1135:132-141. [PMID: 33070850 DOI: 10.1016/j.aca.2020.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) were used as conductive carrier on the glassy carbon electrode (GCE), and the hybrid of metal organic framework [NH2-MIL-53(Fe)] and horseradish peroxidase (HRP) was prepared by simple physical mechanical mixture. The GCE modified by the above material with immobilization, namely NH2-MIL-53(Fe)/HRP/MWCNTs/GCE, was used to construct an electrochemical biosensor toward H2O2. The results indicated that the addition of NH2-MIL-53(Fe) had a good synergistic effect on the electron transfer of HRP and the detection of H2O2. Under the optimized condition, the biosensor exhibited excellent electrochemical performances such as low detection limit, high sensitivity, good stability and so on. The H2O2 biosensor showed two linear ranges of 0.1-1 μM and 1-600 μM with a calculated detection limit of 0.028 μM (signal-to-noise ratio, S/N = 3). In addition, the stability of the hybrid of NH2-MIL-53(Fe) and HRP were discussed by SEM, XRD and UV-vis methods. Furthermore, the reported biosensors were practically used in direct detection of H2O2 released from HeLa and HepG2 cells successfully. Thus, this work provides a new strategy to fabricate electrochemical biosensors using MOFs and biomolecules.
Collapse
Affiliation(s)
- Tian Jiang
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiuxiu Sun
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Lingli Wei
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Maoguo Li
- Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
5
|
Wu W, Jia M, Wang Z, Zhang W, Zhang Q, Liu G, Zhang Z, Li P. Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe 3O 4) nanoparticles and fluorinated multiwalled carbon nanotubes. Mikrochim Acta 2019; 186:97. [PMID: 30631955 DOI: 10.1007/s00604-018-3216-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
A method is described for the simultaneous voltammetric determination of the heavy metal ions cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode (GCE) modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes (Fe3O4/F-MWCNTs). The Fe3O4/F-MWCNT composite was synthesized by a hydrothermal method and characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, elemental mapping, electrochemical impedance spectroscopy, and square wave stripping voltammetry. Under the optimum conditions, the electrode displays excellent response to the ions. Figures of merit for Cd(II), Pb(II), Hg(II), Zn(II), and Cu(II), respectively, include (a) high electrochemical sensitivity (29.88, 43.50, 120.86, 47.34 and 90.31 (μA μM-1 cm-2), (b) well separated peaks (at -0.70, -0.53, +0.37, -1.11 and + 0.01 V vs. Ag/AgCl); (c) low limits of detection (0.014, 0.0084, 0.0039, 0.012, and 0.0053 μM); and (d) wide linear ranges (0.048-30.0, 0.028-30.0, 0.013-32.5, 0.039-32.5, and 0.017-31.5 μM). The modified GCE displays satisfying selectivity in the presence of potentially interfering other metal ions, stability for 30 days, and reproducibility of electrodes (with a relative standard deviation between 1.2 and 4.8% for n = 6). The modified GCE was applied to the determination of several heavy metal ions in (spiked) water and rice samples, and the results agreed well with data obtained by atomic fluorescence spectrometry or inductively coupled plasma-mass spectrometry. The dramatic performance probably result from the semi-ionic C-F bond on F-MWCNTs surface with a strong negative charge, the good electrical conductivity of the F-MWCNTs and Fe3O4, the synergistic interaction between Fe3O4 and F-MWCNTs, and the nafion conductive membrane improving the stability of the modified layer and enhanced cation adsorption. Graphical abstract An environmentally-friendly, low-cost, high-throughput Fe3O4/fluorinated multi-walled carbon nanotube composite (Fe3O4/F-MWCNTs) modified glassy carbon electrode is described. It was applied to simultaneous electrochemical determination of Cd(II), Pb(II), Hg(II), Zn(II), and Cu(II) by square wave stripping voltammetry.
Collapse
Affiliation(s)
- Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- National Reference Laboratory for Biotoxin Test, Wuhan, 430062, People's Republic of China
| | - Mingming Jia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhongzheng Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wen Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Peiwu Li
- National Reference Laboratory for Biotoxin Test, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
6
|
George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim Acta 2018; 185:358. [DOI: 10.1007/s00604-018-2894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
7
|
Wang Y, Cao W, Zhuang Q, Ni Y. Electrochemical Determination of Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with Three-Dimensional Copper Hydroxide Nanosupercages and Electrochemically Reduced Graphene Oxide. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1428986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yong Wang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Cao
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Yongnian Ni
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Jiang D, Chu Z, Peng J, Luo J, Mao Y, Yang P, Jin W. One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: Difference between the calcination atmosphere of nitrogen and air. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Rajeshkhanna G, Umeshbabu E, Ranga Rao G. Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. J Colloid Interface Sci 2017; 487:20-30. [DOI: 10.1016/j.jcis.2016.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
11
|
Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:844-851. [DOI: 10.1016/j.msec.2016.10.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/16/2016] [Accepted: 10/30/2016] [Indexed: 11/23/2022]
|
12
|
Benjamin M, Manoj D, Thenmozhi K, Bhagat PR, Saravanakumar D, Senthilkumar S. A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. Biosens Bioelectron 2016; 91:380-387. [PMID: 28061420 DOI: 10.1016/j.bios.2016.12.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/04/2023]
Abstract
The development of efficient and cost effective nonenzymatic biosensors with remarkable sensitivity, selectivity and stability for the detection of biomolecules, especially glucose is one of the major challenges in materials- and electrochemistry. Herein, we report the design and preparation of nonenzymatic biosensor based on an ionic liquid tagged cobalt-salophen metal complex (Co-salophen-IL) immobilized on electrochemically reduced graphene oxide (ERGO) for the detection of glucose via an electrochemical oxidation. The bioinspired Co-salophen-IL complex has been synthesized and immobilized on ERGO, which was previously deposited on a screen printed carbon electrode (SPE) to form the Co-salophen-IL/ERGO/SPE nonenzymatic biosensor. The electrochemical behaviour of this modified electrode was studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Notably, the Co-salophen-IL/ERGO/SPE biosensor exhibited excellent electrocatalytic activity towards glucose oxidation in 0.1M NaOH, based on which an amperometric sensor has been developed. The modified electrode has shown prominent performance towards glucose detection over a wide linear range from 0.2µM to 1.8mM with a detection limit and sensitivity of 0.79µM and 62µAmM-1 respectively. The detection was carried out at 0.40V and such a less working potential excludes the interference from the coexisting oxidizable analytes. The role of Co-salophen, IL and ERGO in the electrocatalytic activity has been systematically investigated. Furthermore, the biosensor demonstrated high stability with good reproducibility.
Collapse
Affiliation(s)
- Michael Benjamin
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Devaraj Manoj
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Pundlik Rambhau Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India
| | - Duraisamy Saravanakumar
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, India.
| |
Collapse
|
13
|
Al-Hakemy AZ, Nassr ABAA, Naggar AH, Elnouby MS, Soliman HMAEF, Taher MA. Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-1027-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Fan S, Zhao M, Ding L, Liang J, Chen J, Li Y, Chen S. Synthesis of 3D hierarchical porous Co3O4 film by eggshell membrane for non-enzymatic glucose detection. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1862-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Zhou C, Tang X, Xia Y, Li Z. Electrochemical Fabrication of Cobalt Oxides/Nanoporous Gold Composite Electrode and its Nonenzymatic Glucose Sensing Performance. ELECTROANAL 2016. [DOI: 10.1002/elan.201501177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaohui Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules; Hunan Normal University; Changsha, Hunan 410081 P. R. China
| | - Xueyong Tang
- Hunan Province Hospital of Traditional Chinese Medicine, Changsha; Hunan 410005 P. R. China
| | - Yue Xia
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules; Hunan Normal University; Changsha, Hunan 410081 P. R. China
| | - Zelin Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules; Hunan Normal University; Changsha, Hunan 410081 P. R. China
| |
Collapse
|
17
|
Comparative electrodeposition of Ni–Co nanoparticles on carbon materials and their efficiency in electrochemical oxidation of glucose. J APPL ELECTROCHEM 2015. [DOI: 10.1007/s10800-015-0912-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Janáky C, Kecsenovity E, Rajeshwar K. Electrodeposition of Inorganic Oxide/Nanocarbon Composites: Opportunities and Challenges. ChemElectroChem 2015. [DOI: 10.1002/celc.201500460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Csaba Janáky
- Department of Physical Chemistry and Materials Science; University of Szeged; Szeged Rerrich Sq. 1 H6720 Hungary
- MTA-SZTE “Lendület” Photoelectrochemistry Research Group; University of Szeged; Szeged Rerrich Sq. 1 H6720 Hungary
| | - Egon Kecsenovity
- MTA-SZTE “Lendület” Photoelectrochemistry Research Group; University of Szeged; Szeged Rerrich Sq. 1 H6720 Hungary
| | - Krishnan Rajeshwar
- Department of Chemistry & Biochemistry; University of Texas at Arlington; Arlington TX 76019 USA
- Center for Renewable Energy Science & Technology; University of Texas at Arlington; Arlington TX 76019 USA
| |
Collapse
|
19
|
Kanagasabapathy M, Bapu GR, Umasankar Y, Gnanamuthu R. Methyl salicylate detection via electrochemical transients using nano spinel Co3O4 films. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Wang Q, Ma Y, Jiang X, Yang N, Coffinier Y, Belkhalfa H, Dokhane N, Li M, Boukherroub R, Szunerits S. Electrophoretic Deposition of Carbon Nanofibers/Co(OH)2Nanocomposites: Application for Non-Enzymatic Glucose Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500417] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Qiu K, Chen X, Ci S, Li W, Bo Z, Cen K, Wen Z. Facile Preparation of Nickel Nanoparticle-Modified Carbon Nanotubes with Application as a Nonenzymatic Electrochemical Glucose Sensor. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1076829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Dhara K, Ramachandran T, Nair BG, Satheesh Babu T. Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Yang P, Tong X, Wang G, Gao Z, Guo X, Qin Y. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4772-4777. [PMID: 25664816 DOI: 10.1021/am508508m] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
NiO nanoparticles are deposited onto SiC particles by atomic layer deposition (ALD). The structure of the NiO/SiC hybrid material is investigated by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The size of the NiO nanoparticles is flexible and can be adjusted by altering the cycle number of the NiO ALD. Electrochemical measurements illustrate that NiO/SiC prepared with 600 cycles for NiO ALD exhibits the highest glucose sensing ability in alkaline electrolytes with a low detection limit of 0.32 μM (S/N = 3), high sensitivity of 2.037 mA mM(-1) cm(-2), a linear detection range from approximately 4 μM to 7.5 mM, and good stability. Its sensitivity is about 6 times of that for commercial NiO nanoparticles and NiO/SiC nanocomposites prepared by a traditional incipient wetness impregnation method. It is revealed that the superior electrochemical ability of ALD NiO/SiC is ascribed to the strong interaction between NiO and the SiC substrate and the high dispersity of NiO nanoparticles on the SiC surface. These results suggest that ALD is an effective way to deposit NiO on SiC for nonenzymatic glucose sensing.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science , Taiyuan 030001, China
| | | | | | | | | | | |
Collapse
|
24
|
Premlatha S, Sivasakthi P, Ramesh Bapu GNK. Electrodeposition of a 3D hierarchical porous flower-like cobalt–MWCNT nanocomposite electrode for non-enzymatic glucose sensing. RSC Adv 2015. [DOI: 10.1039/c5ra12316j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A versatile and cost-effective electrodeposition technique was adopted to synthesize cobalt and cobalt–MWCNT nanocomposite electrodes and the fabricated cobalt–MWCNT material was successfully demonstrated as a non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- S. Premlatha
- CSIR-Central Electrochemical Research Institute
- Electroplating and Metal Finishing Technology Division
- Karaikudi-630006
- India
| | - P. Sivasakthi
- CSIR-Central Electrochemical Research Institute
- Electroplating and Metal Finishing Technology Division
- Karaikudi-630006
- India
| | - G. N. K. Ramesh Bapu
- CSIR-Central Electrochemical Research Institute
- Electroplating and Metal Finishing Technology Division
- Karaikudi-630006
- India
| |
Collapse
|
25
|
Mei H, Wu H, Wu W, Wang S, Xia Q. Ultrasensitive electrochemical assay of hydrogen peroxide and glucose based on PtNi alloy decorated MWCNTs. RSC Adv 2015. [DOI: 10.1039/c5ra17410d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A electrochemical sensor based on PtNi/MWCNTs can detect hydrogen peroxide and glucose with wide linear range and high sensitivity.
Collapse
Affiliation(s)
- He Mei
- Hubei Collaborative Innovation Center for Organic Chemical Materials
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Hubei University
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Organic Chemical Materials
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Hubei University
| | - Wenqin Wu
- Hubei Collaborative Innovation Center for Organic Chemical Materials
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Hubei University
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Organic Chemical Materials
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Hubei University
| | - Qinghua Xia
- Hubei Collaborative Innovation Center for Organic Chemical Materials
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Hubei University
| |
Collapse
|
26
|
Ci S, Mao S, Huang T, Wen Z, Steeber DA, Chen J. Enzymeless Glucose Detection Based on CoO/Graphene Microsphere Hybrids. ELECTROANAL 2014. [DOI: 10.1002/elan.201300645] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Chen T, Li X, Qiu C, Zhu W, Ma H, Chen S, Meng O. Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays. Biosens Bioelectron 2013; 53:200-6. [PMID: 24140837 DOI: 10.1016/j.bios.2013.09.059] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
A novel electrochemical sensor for the detection of glucose was constructed based on the use of Co3O4/PbO2 core-shell nanorod arrays as electrocatalysts. In this paper the Co3O4/PbO2 core-shell nanorod arrays grow directly on a flexible carbon cloth substrate by the combination of hydrothermal synthesis and electrochemical deposition methods. The as-prepared hierarchical nanocomposites show the structural characteristics of nanowire core and nanoparticle shell. The carbon cloth-supported Co3O4/PbO2 nanorod array electrode exhibits higher sensitivity (460.3 μA mM(-1)cm(-2) in the range from 5 μM to 1.2mM) and lower detection limit (0.31 μM (S/N=3)) than the carbon cloth-supported Co3O4 nanowire array electrode. Both the three-dimensional network of carbon cloth substrate and the hierarchical nanostructure of binary Co3O4/PbO2 composites make such an electrode have high electrocatalytic activity towards the glucose oxidation. Due to the excellent sensitivity, repeatability and anti-interference ability, the carbon cloth-supported Co3O4/PbO2 nanorod arrays will be the promising materials for fabricating practical non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Yu H, Jin J, Jian X, Wang Y, Qi GC. Preparation of Cobalt Oxide Nanoclusters/Overoxidized Polypyrrole Composite Film Modified Electrode and Its Application in Nonenzymatic Glucose Sensing. ELECTROANAL 2013. [DOI: 10.1002/elan.201300035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Chen Y, Prasad KP, Wang X, Pang H, Yan R, Than A, Chan-Park MB, Chen P. Enzymeless multi-sugar fuel cells with high power output based on 3D graphene–Co3O4 hybrid electrodes. Phys Chem Chem Phys 2013; 15:9170-6. [DOI: 10.1039/c3cp51410b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Zhang G, Dang L, Li L, Wang R, Fu H, Shi K. Design and construction of Co3O4/PEI–CNTs composite exhibiting fast responding CO sensor at room temperature. CrystEngComm 2013. [DOI: 10.1039/c3ce40206a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Guo C, Zhang X, Huo H, Xu C, Han X. Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor. Analyst 2013; 138:6727-31. [DOI: 10.1039/c3an01403g] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Yang J, Strickler JR, Gunasekaran S. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. NANOSCALE 2012; 4:4594-4602. [PMID: 22706569 DOI: 10.1039/c2nr30618b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sensitive, rapid, and accurate detection of dopamine (DA) at low cost is needed for clinical diagnostic and therapeutic purposes as well as to prevent illegal use of DA in animal feed. We employed a simple approach to synthesize reduced graphene oxide sheets (rGOS) and gold nanoparticles (AuNPs) at room temperature on indium tin oxide-coated glass (ITO) slides as disposable working electrodes for sensing DA. Graphene oxide (GO) was directly reduced on ITO to remove oxygenated species via a rapid and green process without using chemical reducing reagents. AuNPs were electrochemically deposited in situ on rGOS-ITO with fairly uniform density and size. The sensitivity of the AuNPs-rGOS-ITO sensor for DA detection is 62.7 μA mM(-1) cm(-2) with good selectivity against common electrochemically interfering species such as ascorbic acid (AA) and uric acid (UA), and the detection limit measured by differential pulse voltammetry (DPV), at a signal-noise ratio of 3, was 6.0 × 10(-8) M. The electrochemical catalysis of DA was proven to be a surface process with an electron transfer coefficient (α) of 0.478 and a rate constant (k(s)) of 1.456 s(-1). It correlates well with the conventional UV-vis spectrophotometric approach (R = 0.9973) but with more than thrice the dynamic range (up to 4.5 mM). The sensor also exhibited good stability and capability to detect DA in beef samples, and thus is a promising candidate for simple and inexpensive sub-nanomolar detection of DA, especially in the presence of UV-absorbing compounds.
Collapse
Affiliation(s)
- Jiang Yang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| | | | | |
Collapse
|
33
|
Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film. Anal Chim Acta 2012; 736:55-61. [PMID: 22769005 DOI: 10.1016/j.aca.2012.05.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 11/23/2022]
Abstract
Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co(2+) concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO(3))(2), possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L(-1). The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.
Collapse
|
34
|
Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS NANO 2012; 6:3206-13. [PMID: 22435881 DOI: 10.1021/nn300097q] [Citation(s) in RCA: 715] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Using a simple hydrothermal procedure, cobalt oxide (Co(3)O(4)) nanowires were in situ synthesized on three-dimensional (3D) graphene foam grown by chemical vapor deposition. The structure and morphology of the resulting 3D graphene/Co(3)O(4) composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The 3D graphene/Co(3)O(4) composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose. We demonstrate that it is capable of delivering high specific capacitance of ∼1100 F g(-1) at a current density of 10 A g(-1) with excellent cycling stability, and it can detect glucose with a ultrahigh sensitivity of 3.39 mA mM(-1) cm(-2) and a remarkable lower detection limit of <25 nM (S/N = 8.5).
Collapse
Affiliation(s)
- Xiao-Chen Dong
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210046, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Danielle W. Kimmel
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - Gabriel LeBlanc
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - Mika E. Meschievitz
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| | - David E. Cliffel
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, VU Station B 351822, Nashville, TN 37235-1822
| |
Collapse
|