1
|
Chen Y, Zhang X, Lu C. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. Chem Sci 2024:d4sc05166a. [PMID: 39355228 PMCID: PMC11440360 DOI: 10.1039/d4sc05166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024] Open
Abstract
With the rapid development of artificial intelligence, the applications of flexible piezoelectric sensors in health monitoring and human-machine interaction have attracted increasing attention. Recent advances in flexible materials and fabrication technologies have promoted practical applications of wearable devices, enabling their assembly in various forms such as ultra-thin films, electronic skins and electronic tattoos. These piezoelectric sensors meet the requirements of high integration, miniaturization and low power consumption, while simultaneously maintaining their unique sensing performance advantages. This review provides a comprehensive overview of cutting-edge research studies on enhanced wearable piezoelectric sensors. Promising piezoelectric polymer materials are highlighted, including polyvinylidene fluoride and conductive hydrogels. Material engineering strategies for improving sensitivity, cycle life, biocompatibility, and processability are summarized and discussed focusing on filler doping, fabrication techniques optimization, and microstructure engineering. Additionally, this review presents representative application cases of smart piezoelectric sensors in health monitoring and human-machine interaction. Finally, critical challenges and promising principles concerning advanced manufacture, biological safety and function integration are discussed to shed light on future directions in the field of piezoelectrics.
Collapse
Affiliation(s)
- Yanyu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials, Soochow University Suzhou Jiangsu 215123 China
| | - Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
2
|
Imali DY, Perera ECJ, Kaumal MN, Dissanayake DP. Conducting polymer functionalization in search of advanced materials in ionometry: ion-selective electrodes and optodes. RSC Adv 2024; 14:25516-25548. [PMID: 39139237 PMCID: PMC11321474 DOI: 10.1039/d4ra02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Functionalized conducting polymers (FCPs) have recently garnered attention as ion-selective sensor materials, surpassing their intrinsic counterparts due to synergistic effects that lead to enhanced electrochemical and analytical parameters. Following a brief introduction of the fundamental concepts, this article provides a comprehensive review of the recent developments in the application of FCPs in ion-selective electrodes (ISEs) and ion-selective optodes (ISOs), particularly as ion-to-electron transducers, optical transducers, and ion-selective membranes. Utilizing FCPs in these devices offers a promising avenue for detecting and measuring ions in various applications, regardless of the sample nature and composition. Research has focused on functionalizing different conducting polymers, such as polyaniline and polypyrrole, through strategies such as doping and derivatization to alter their hydrophobicity, conductance, redox capacitance, surface area, pH sensitivity, gas and light sensitivity, etc. These modifications aim to enhance performance outcomes, including potential stability/emission signal stability, reproducibility and low detection limits. The advancements have led to the transition of ISEs from conventional zero-current potentiometric ion sensing to innovative current-triggered sensing approaches, enabling calibration-free applications and emerging concepts such as opto-electro dual sensing systems. The intrinsic pH cross-response and instability of the optical signal of ISOs have been overcome through the novel optical signal transduction mechanisms facilitated by FCPs. In this review, the characteristics of materials, functionalization approaches, particular implementation strategies, specific performance outcomes and challenges faced are discussed. Consolidating dispersed information in the field, the in-depth analysis presented here is poised to drive further innovations by broadening the scope of ion-selective sensors in real-world scenarios.
Collapse
Affiliation(s)
- D Yureka Imali
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | | - M N Kaumal
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | |
Collapse
|
3
|
Xin Y, Zhou X, Bark H, Lee PS. The Role of 3D Printing Technologies in Soft Grippers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307963. [PMID: 37971199 DOI: 10.1002/adma.202307963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Soft grippers are essential for precise and gentle handling of delicate, fragile, and easy-to-break objects, such as glassware, electronic components, food items, and biological samples, without causing any damage or deformation. This is especially important in industries such as healthcare, manufacturing, agriculture, food handling, and biomedical, where accuracy, safety, and preservation of the objects being handled are critical. This article reviews the use of 3D printing technologies in soft grippers, including those made of functional materials, nonfunctional materials, and those with sensors. 3D printing processes that can be used to fabricate each class of soft grippers are discussed. Available 3D printing technologies that are often used in soft grippers are primarily extrusion-based printing (fused deposition modeling and direct ink writing), jet-based printing (polymer jet), and immersion printing (stereolithography and digital light processing). The materials selected for fabricating soft grippers include thermoplastic polymers, UV-curable polymers, polymer gels, soft conductive composites, and hydrogels. It is conclude that 3D printing technologies revolutionize the way soft grippers are being fabricated, expanding their application domains and reducing the difficulties in customization, fabrication, and production.
Collapse
Affiliation(s)
- Yangyang Xin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Hyunwoo Bark
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
4
|
Morawska K, Wardak C. Application of ionic liquids in ion-selective electrodes and reference electrodes: A review. Chemphyschem 2024; 25:e202300818. [PMID: 38252078 DOI: 10.1002/cphc.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Ionic liquids (ILs) are organic chemical compounds that are composed only of ions, a large organic cation and a smaller inorganic or organic anion. These are salts whose melting point is lower than the boiling point of water. ILs have many interesting properties, thanks to which they find great practical applications in analytics, electrochemistry, separation techniques, catalysis and others. One of the many areas of application of ionic liquids is sensors especially electrochemical sensors including ion-selective electrodes. In this case, the properties of ILs that are particularly useful include very good electrical conductivity, high electrochemical stability, good extraction properties, hydrophobic character and compatibility with other materials, e. g. polyvinyl chloride plasticizers or carbon nanomaterials. ILs were used as components of ion-selective membranes, both polymeric ones based on PVC and membranes in carbon paste electrodes. ILs performed various functions in these membranes, including lipophilic ionic additive, ionophore/ion exchanger, plasticizer, transducer media and matrix. They were also used as a component of the intermediate layer in solid contact ISEs. The last chapter presents examples of the use of ILs in reference electrodes. This review discusses the use of ionic liquids in ion-selective electrodes (ISEs) and reference electrodes over the last ten years.
Collapse
Affiliation(s)
- Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
5
|
Mai Z, Xiao S, Zhang W, Wang K. A multi-ion interference decoupling model based on ion-selective electrode arrays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5038-5049. [PMID: 37740373 DOI: 10.1039/d3ay00888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Compared to traditional liquid-junction ion-selective electrodes, solid-contact ion-selective electrodes (SC-ISEs) have attracted much attention and undergone rapid development due to their compactness and ease of integration. However, the application and widespread use of SC-ISEs are limited by their non-ideal selectivity and susceptibility to signal drift. Although the principles of artificial neural network (ANN) methods have shown significant progress in partially resolving the selectivity issue, they generally require extensive calibration steps and computational resources to implement. As a result, numerical computation models are more practical and economical, but existing approaches often overlook experimental phenomena and have relatively complex modeling principles. In this study, we propose a proportional factor model based on the trend of SC-ISEs affected by the multiple ions, along with a scalable dynamic correction procedure to improve its robustness. This model utilizes an estimated response surface method to solve nonlinear equations, requiring fewer calibration experiments. It accurately extracts the concentrations of multiple target ions in the presence of multi-ion interference and dynamically adjusts the model parameters for different types of ISEs. Additionally, we design a multi-channel SC-ISE array as a carrier for theoretical validation. In a case study, we demonstrate the feasibility of decoupling multiple ions using the SC-ISE array, obtaining concentrations of calcium, magnesium, sodium, and potassium ions, and verify the accuracy of the multi-ion detection system for real-world water samples.
Collapse
Affiliation(s)
- Zhancheng Mai
- School of Electronics and Information Technology, Sun Yat sen University, Panyu District, Guangzhou City, Guangdong Province, China.
| | - Shaoqiu Xiao
- School of Electronics and Information Technology, Sun Yat sen University, Panyu District, Guangzhou City, Guangdong Province, China.
| | - Wei Zhang
- Guangke Chipwey Sensing Technologies Co., Ltd, Foshan, China
| | - Kai Wang
- School of Electronics and Information Technology, Sun Yat sen University, Panyu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
6
|
Kamel AH, Ashmawy NH, Youssef TA, Elnakib M, Abd El‐Naby H, Abd‐Rabboh HSM. Screen‐printed electrochemical sensors for label‐free potentiometric and impedimetric detection of human serum albumin. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/25/2023] [Indexed: 09/01/2023]
Abstract
AbstractHerein, two electrochemical methods based on potentiometric and impedimetric transductions were presented for albumin targeting, employing screen‐printed platforms (SPEs) to make easy and cost‐effective sensors with good detection merits. The SPEs incorporated ion‐to‐electron multi‐walled carbon nanotubes (MWCNTs) transducer. Sensors were constructed using either tridodecyl methyl‐ammonium chloride (TDMACl) (sensor I) or aliquate 336S (sensor II) in plasticized polymeric matrices of carboxylated poly (vinyl chloride) (PVC‐COOH). Analytical performances of the sensors were evaluated using the above‐mentioned electrochemical techniques. For potentiometric assay, constructed sensors responded to albumin with −81.7 ± 1.7 (r2 = 0.9986) and −146.2 ± 2.3 mV/decade (r2 = 0.9991) slopes over the linearity range 1.5 μM–1.5 mM with 0.8 and 1.0 μM detection limits for respective TDMAC‐ and aliquate‐based sensors. Interference study showed apparent selectivity for both sensors. Impedimetric assays were performed at pH = 7.5 in 10 mM PBS buffer solution with a 0.02 M [Fe(CN)6]−3/−4 redox‐active electrolyte. Sensors achieved detection limits of 4.3 × 10−8 and 1.8 × 10−7 M over the linear ranges of 5.2×10−8–1.0×10−4 M and 1.4×10−6–1.4×10−3 M, with 0.09 ± 0.004 and 0.168 ± 0.009 log Ω/decade slopes for sensors based on TDMAC and aliquate, respectively. These sensors are characterized with simple construction, high sensitivity and selectivity, fast response time, single‐use, and cost‐effectiveness. The methods were successfully applied to albumin assessment in different biological fluids.
Collapse
Affiliation(s)
- Ayman H. Kamel
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
- Chemistry Department College of Science Sakhir 32038, Kingdom of Bahrain
| | - Nashwa H. Ashmawy
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | - Teraze A. Youssef
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | - Mostafa Elnakib
- Military Medical Academy, Elkhalifa El-Maamoun St. Heliopolis Cairo Egypt
| | - Heba Abd El‐Naby
- Department of Chemistry Faculty of Science Ain Shams University Cairo 11566 Egypt
| | | |
Collapse
|
7
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
8
|
Elangovan S, Puri SR, Madawala H, Pantano J, Pellock B, Kiesewetter MK, Kim J. Nanoscale Carbonate Ion-Selective Amperometric/Voltammetric Probes Based on Ion-Ionophore Recognition at the Organic/Water Interface: Hidden Pieces of the Puzzle in the Nanoscale Phase. Anal Chem 2023; 95:4271-4281. [PMID: 36808982 DOI: 10.1021/acs.analchem.2c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Here, we report on the successful demonstration and application of carbonate (CO32-) ion-selective amperometric/voltammetric nanoprobes based on facilitated ion transfer (IT) at the nanoscale interface between two immiscible electrolyte solutions. This electrochemical study reveals critical factors to govern CO32--selective nanoprobes using broadly available Simon-type ionophores forming a covalent bond with CO32-, i.e., slow dissolution of lipophilic ionophores in the organic phase, activation of hydrated ionophores, peculiar solubility of a hydrated ion-ionophore complex near the interface, and cleanness at the nanoscale interface. These factors are experimentally confirmed by nanopipet voltammetry, where a facilitated CO32- IT is studied with a nanopipet filled with an organic phase containing the trifluoroacetophenone derivative CO32-ionophore (CO32-ionophore VII) by voltammetrically and amperometrically sensing CO32- in water. Theoretical assessments of reproducible voltammetric data confirm that the dynamics of CO32- ionophore VII-facilitated ITs (FITs) follows the one-step electrochemical (E) mechanism controlled by both water-finger formation/dissociation and ion-ionophore complexation/dissociation during interfacial ITs. The yielded rate constant, k0 = 0.048 cm/s, is very similar to the reported values of other FIT reactions using ionophores forming non-covalent bonds with ions, implying that a weak binding between CO32- ion-ionophore enables us to observe FITs by fast nanopipet voltammetry regardless of the nature of bondings between the ion and ionophore. The analytical utility of CO32--selective amperometric nanoprobes is further demonstrated by measuring the CO32- concentration produced by metal-reducing bacteria Shewanella oneidensis MR-1 as a result of organic fuel oxidation in bacterial growth media in the presence of various interferents such as H2PO4-, Cl-, and SO42-.
Collapse
Affiliation(s)
- Subhashini Elangovan
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Surendra Raj Puri
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Hiranya Madawala
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Justin Pantano
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Brett Pellock
- Department of Biology, Providence College, Providence, Rhode Island 02981, United States
| | - Matthew K Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
9
|
Hussein OG, Ahmed DA, Abdelkawy M, Rezk MR, Mahmoud AM, Rostom Y. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Adv 2023; 13:7645-7655. [PMID: 36908536 PMCID: PMC9993128 DOI: 10.1039/d3ra00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.
Collapse
Affiliation(s)
- Ola G Hussein
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Dina A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Mohamed Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Yasmin Rostom
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| |
Collapse
|
10
|
Fenech-Salerno B, Holicky M, Yao C, Cass AEG, Torrisi F. A sprayed graphene transistor platform for rapid and low-cost chemical sensing. NANOSCALE 2023; 15:3243-3254. [PMID: 36723120 DOI: 10.1039/d2nr05838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate a novel and versatile sensing platform, based on electrolyte-gated graphene field-effect transistors, for easy, low-cost and scalable production of chemical sensor test strips. The Lab-on-PCB platform is enabled by low-boiling, low-surface-tension sprayable graphene ink deposited on a substrate manufactured using a commercial printed circuit board process. We demonstrate the versatility of the platform by sensing pH and Na+ concentrations in an aqueous solution, achieving a sensitivity of 143 ± 4 μA per pH and 131 ± 5 μA per log10Na+, respectively, in line with state-of-the-art graphene chemical sensing performance.
Collapse
Affiliation(s)
- Benji Fenech-Salerno
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Martin Holicky
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Chengning Yao
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Anthony E G Cass
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
| | - Felice Torrisi
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.
- Dipartimento di Fisica e Astronomia, Universita' di Catania & CNR-IMM (Catania Università), Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
11
|
Le QB, Zondaka Z, Nguyen NT, Kiefer R. Ion‐selectivity of polypyrrole carbide‐derived carbon films in aqueous electrolytes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Quoc Bao Le
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Zane Zondaka
- Intelligent Materials and Systems Lab, Institute of Technology University of Tartu Tartu Estonia
| | - Ngoc Tuan Nguyen
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
12
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
13
|
Du X, Li N, Chen Q, Wu Z, Zhai J, Xie X. Perspective on fluorescence cell imaging with ionophore-based ion-selective nano-optodes. BIOMICROFLUIDICS 2022; 16:031301. [PMID: 35698631 PMCID: PMC9188459 DOI: 10.1063/5.0090599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Inorganic ions are ubiquitous in all kinds of cells with highly dynamic spatial and temporal distribution. Taking advantage of different types of fluorescent probes, fluorescence microscopic imaging and quantitative analysis of ion concentrations in cells have rapidly advanced. A family of fluorescent nanoprobes based on ionophores has emerged in recent years with the potential to establish a unique platform for the analysis of common biological ions including Na+, K+, Ca2+, Cl-, and so on. This article aims at providing a retrospect and outlook of ionophore-based ion-selective nanoprobes and the applications in cell imaging.
Collapse
Affiliation(s)
- Xinfeng Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Niping Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qinghan Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeying Wu
- School of Chemical Engineering and Material Science, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jingying Zhai
- Authors to whom correspondence should be addressed:; ; and
| | - Xiaojiang Xie
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
14
|
Fan Y, Qian X, Wang X, Funk T, Herman B, McCutcheon JR, Li B. Enhancing long-term accuracy and durability of wastewater monitoring using electrosprayed ultra-thin solid-state ion selective membrane sensors. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Qi L, Liang R, Jiang T, Qin W. Anti-fouling polymeric membrane ion-selective electrodes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Falina S, Syamsul M, Rhaffor NA, Sal Hamid S, Mohamed Zain KA, Abd Manaf A, Kawarada H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. BIOSENSORS 2021; 11:478. [PMID: 34940235 PMCID: PMC8699440 DOI: 10.3390/bios11120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 05/16/2023]
Abstract
Heavy metal pollution remains a major concern for the public today, in line with the growing population and global industrialization. Heavy metal ion (HMI) is a threat to human and environmental safety, even at low concentrations, thus rapid and continuous HMI monitoring is essential. Among the sensors available for HMI detection, the field-effect transistor (FET) sensor demonstrates promising potential for fast and real-time detection. The aim of this review is to provide a condensed overview of the contribution of certain semiconductor substrates in the development of chemical and biosensor FETs for HMI detection in the past decade. A brief introduction of the FET sensor along with its construction and configuration is presented in the first part of this review. Subsequently, the FET sensor deployment issue and FET intrinsic limitation screening effect are also discussed, and the solutions to overcome these shortcomings are summarized. Later, we summarize the strategies for HMIs' electrical detection, mechanisms, and sensing performance on nanomaterial semiconductor FET transducers, including silicon, carbon nanotubes, graphene, AlGaN/GaN, transition metal dichalcogenides (TMD), black phosphorus, organic and inorganic semiconductor. Finally, concerns and suggestions regarding detection in the real samples using FET sensors are highlighted in the conclusion.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Nuha Abd Rhaffor
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Sofiyah Sal Hamid
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Khairu Anuar Mohamed Zain
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| |
Collapse
|
17
|
Cheong YH, Lisak G. Physically Tailoring Ion Fluxes by Introducing Foamlike Structures into Polymeric Membranes of Solid Contact Ion-Selective Electrodes. ACS Sens 2021; 6:3667-3676. [PMID: 34585917 DOI: 10.1021/acssensors.1c01413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transmembrane ion fluxes have earlier been identified as a source of potential instability in solid contact ion-selective electrodes (SC-ISEs). In this work, foamlike structures were intentionally introduced into a potassium-sensitive plasticized poly(vinyl chloride) ion-selective membrane (ISM) near the membrane|solid contact interface by controlling the temperature during membrane deposition. Foamlike structures in the ISM were shown to be effective at physically tailoring the transport of ions in the ion-selective membrane, greatly reducing the flux of interfering ions from the sample to the membrane|solid contact interface. The drifts during a conventional water layer test were hence able to be greatly mitigated, even with SC-ISEs incorporating a relatively hydrophilic poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) solid contact. In solutions with a high background concentration of interfering ions, equilibrated ion-selective electrodes with foamlike membranes were able to reproduce their initial potentials within 0.6 mV uncertainty (n = 3) from 0 to 18 h. This was achieved despite sensor exposure to solutions exceeding the selectivity limit of the ISEs in 3 h intervals, allowing improvement of the potential reproducibility of the sensors. Since the introduction of foamlike structures into ISM is linked to temperature-controlled membrane deposition, it is envisaged that the method is generally applicable to all solid contact ion-selective electrodes that are based on polymeric membranes and require membrane deposition from the cocktail solution.
Collapse
Affiliation(s)
- Yi Heng Cheong
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
- Robert Bosch (South East Asia) Pte Ltd., 11 Bishan Street 21, Singapore 573943, Singapore
| | - Grzegorz Lisak
- College of Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment and Water Research Institute, Residues and Resource Reclamation Center, 1 Cleantech Loop, Cleantech, Singapore 637141, Singapore
| |
Collapse
|
18
|
Kucherenko IS, Chen B, Johnson Z, Wilkins A, Sanborn D, Figueroa-Felix N, Mendivelso-Perez D, Smith EA, Gomes C, Claussen JC. Laser-induced graphene electrodes for electrochemical ion sensing, pesticide monitoring, and water splitting. Anal Bioanal Chem 2021; 413:6201-6212. [PMID: 34468795 DOI: 10.1007/s00216-021-03519-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10-15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and - 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/μM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Ivan S Kucherenko
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.,Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo str., Kyiv, 03143, Ukraine
| | - Bolin Chen
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Zachary Johnson
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | | | - Delaney Sanborn
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Emily A Smith
- Chemistry Department, Iowa State University, Ames, IA, 50011, USA
| | - Carmen Gomes
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Qi L, Jiang T, Liang R, Qin W. Enhancing the Oil-Fouling Resistance of Polymeric Membrane Ion-Selective Electrodes by Surface Modification of a Zwitterionic Polymer-Based Oleophobic Self-Cleaning Coating. Anal Chem 2021; 93:6932-6937. [PMID: 33914516 DOI: 10.1021/acs.analchem.1c01116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the frequent oil spill accidents and pollution of industrial oily wastewater, oil fouling has become a great challenge to polymeric membrane ion-selective electrodes (ISEs) for applications in oil-contaminated areas. Herein, a simple approach is proposed to enhance the oil-fouling resistance of polymeric membrane ISEs by surface modification of a zwitterionic polymer-based underwater oleophobic coating. As a proof-of-concept, a classical poly(vinyl chloride) membrane-based calcium ion-selective electrode (Ca2+-ISE) is chosen as a model sensor. The zwitterionic polymer-based coating can be readily modified on the sensor's surface by immersion of the electrode into a mixture solution of dopamine and a zwitterionic acrylate monomer (i.e., sulfobetaine methacrylate, SBMA). The formed poly(SBMA) (PSBMA) coating alters the oleophilic membrane surface to an oleophobic one, which endows the surface with excellent self-cleaning properties without loss of the sensor's analytical performance. Compared to the pristine Ca2+-ISE, the PSBMA-modified Ca2+-ISE exhibits an improved analytical stability when exposed to oil-containing wastewater. The proposed approach can be explored to enhance the oil-fouling resistance of other polymeric membrane-based electrochemical sensors for use in the oil-polluted environment.
Collapse
Affiliation(s)
- Longbin Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tianjia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, P. R. China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai, Shandong 264003, P. R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
20
|
Kelani KM, Badran OM, Rezk MR, Elghobashy MR, Eid SM. Widening the applications of the Just-Dip-It approach: a solid contact screen-printed ion-selective electrode for the real-time assessment of pharmaceutical dissolution testing in comparison to off-line HPLC analysis. RSC Adv 2021; 11:13366-13375. [PMID: 35423846 PMCID: PMC8697630 DOI: 10.1039/d1ra00040c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Over past years, the field of pharmaceutical dissolution testing has significantly expanded to cover not only the quality control of dosage forms, but also to play an important role in the bioavailability testing paradigm and screening of most formulations. These tests usually need a very long time sampling and monitoring, so that the automation of sampling is laborsaving. Problems often occur with these automatic devices due to sampling lines that may disconnect, crimp, carry over, become mixed up, or are inadequately cleaned. Potentiometric sensors, such as liquid contact (LC-ISE) or solid contact ion-selective electrodes (SC-SP-ISE), can provide timely data to be used for the real-time tracking of the amount of active pharmaceutical ingredients (APIs) released in the dissolution medium without these problems. In this work, we adopted the Just-Dip-It approach as a process analytical technology solution with the ultimate goal of advancing the ion selective sensors to their most effective use in pharmaceutical analysis. Two sensors were fabricated, the traditional LC-ISE and SC-SP-ISE. The sensing poly-vinyl chloride membranes of two electrodes were prepared using 2-nitrophenyl octyl ether as a plasticizer to soften the membrane, and the reduction in resistance to pioglitazone ions (PIO) permeability was achieved through the incorporation of sodium tetraphenylborate and calix[8]arene as a cationic exchanger salt and inclusion complexing ligand, respectively. Finally, prepared membranes were turned into the flexible perm-selective slices of hydrophobic plastic, which work as a barrier to other compounds, except for the PIO cation in the concentration range of 1 × 10-6 to 1 × 10-2 M and 1 × 10-5 to 1 × 10-2 M for SC-SP-ISE and LC-ISE, respectively. The challenges and opportunities of both sensors in comparison to a developed HPLC method were discussed for the dissolution testing of the combination dosage forms of pioglitazone. Potentiometric methods were validated according to IUPAC guidelines, while HPLC was validated according to ICH guidelines to ensure accuracy and precision.
Collapse
Affiliation(s)
- Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Osama M Badran
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City, Giza Egypt
| | - Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City, Giza Egypt
| |
Collapse
|
21
|
Influence of solid electrolyte upon the repeatability and reproducibility of all-solid-state ion-selective electrodes with inorganic insertion material paste. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zhang L, Wei Z, Liu P, Wei H, Ma D. Performance Comparison of Solid Lead Ion Electrodes with Different Carbon-Based Nanomaterials as Electron-Ion Exchangers. SENSORS (BASEL, SWITZERLAND) 2021; 21:1663. [PMID: 33670938 PMCID: PMC7957766 DOI: 10.3390/s21051663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
Carbon-based nanomaterials with carboxylation or chemical modification are widely used as electron-ion exchangers of solid electrodes. For reducing the complexity and dangerousness of the intermediate layer preparation, different original carbon-based nanomaterials are dispersed in deionized water. They are applied in the fabrication of Pb2+-selective electrodes. Because the contact angle of graphene reached 132.5°, the Pb2+-selective electrode of graphene used as an electron-ion exchanger showed excellent performance with a low detection limit of 3.4 × 10-8 M and a fast average response time of 42.6 s. The Nernstian response slope could reach 26.8 mV/decade, and the lifetime lasted for a month. Therefore, graphene suspension without any treatment can be used as the intermediate layer of solid-state electrodes, providing a reference for the preparation of other ion-selective electrodes.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Lab for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Z.W.); (P.L.); (H.W.); (D.M.)
| | | | | | | | | |
Collapse
|
23
|
Cheong YH, Ge L, Lisak G. Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry - A review. Anal Chim Acta 2021; 1162:338304. [PMID: 33926699 DOI: 10.1016/j.aca.2021.338304] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The solid contact ion-selective electrodes (SC-ISEs) have been extensively studied in the field of ion sensing as they offer the possibility of miniaturization, are relatively inexpensive in comparison to other analytical techniques and allow straightforward and routine analyses of ions in a number of clinical, environmental and industrial process samples. In recent years, significant interest has grown in the development of SC-ISEs with well-defined interfacialpotentials at the membrane, solid contact, and substrate electrode interfaces. This has resulted in interesting SC-ISEs exhibiting high electrode-to-electrode potential reproducibility, for those made in a single batch of electrodes, some approaching or exceeding those observed in liquid-contact ISEs. The advancement in the potential reproducibility of SC-ISEs has been partially achieved by scrutinizing insufficiently reproducible fabrication methods of SC-ISEs, or by introducing novel control measures or modifiers to components of the ISEs. This paper provides an overview of the methods as well as the challenges in establishing and maintaining reproducible potentials during the fabrication and use of novel SC-ISEs. The rules outlined in the works reviewed may form the basis of further development of cost-effective, user-friendly, limited calibration or calibration-free potentiometric SC-ISEs to achieve reliable ion analyses here and now.
Collapse
Affiliation(s)
- Yi Heng Cheong
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Robert Bosch (South East Asia) Pte Ltd, 11 Bishan Street 21, Singapore, 573943, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
24
|
Han T, Mattinen U, Mousavi Z, Bobacka J. Coulometric response of solid-contact anion-sensitive electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Unintended Changes of Ion-Selective Membranes Composition-Origin and Effect on Analytical Performance. MEMBRANES 2020; 10:membranes10100266. [PMID: 32998393 PMCID: PMC7601616 DOI: 10.3390/membranes10100266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/28/2023]
Abstract
Ion-selective membranes, as used in potentiometric sensors, are mixtures of a few important constituents in a carefully balanced proportion. The changes of composition of the ion-selective membrane, both qualitative and quantitative, affect the analytical performance of sensors. Different constructions and materials applied to improve sensors result in specific conditions of membrane formation, in consequence, potentially can result in uncontrolled modification of the membrane composition. Clearly, these effects need to be considered, especially if preparation of miniaturized, potentially disposable internal-solution free sensors is considered. Furthermore, membrane composition changes can occur during the normal operation of sensors—accumulation of species as well as release need to be taken into account, regardless of the construction of sensors used. Issues related to spontaneous changes of membrane composition that can occur during sensor construction, pre-treatment and their operation, seem to be underestimated in the subject literature. The aim of this work is to summarize available data related to potentiometric sensors and highlight the effects that can potentially be important also for other sensors using ion-selective membranes, e.g., optodes or voltammetric sensors.
Collapse
|
26
|
Screen-Printed Sensor Based on Potentiometric Transduction for Free Bilirubin Detection as a Biomarker for Hyperbilirubinemia Diagnosis. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Novel reliable and cost-effective potentiometric screen-printed sensors for free bilirubin (BR) detection were presented. The sensors were fabricated using ordered mesoporous carbon (OMC) as an ion-to-electron transducer. The ion-association complex [Ni(bphen)3]2+[BR]2− was utilized as a sensory recognition material in the plasticized Polyvinyl Chloride (PVC) membrane. The membrane was drop-casted on the OMC layer, which is attached on a carbon conductor (2-mm diameter). In a 50 mM phosphate solution of pH 8.5, the electrodes offered a Nernstian slope of −26.8 ± 1.1 (r2 = 0.9997) mV/decade with a range of linearity 1.0 × 10−6–1 × 10−2 M towards free bilirubin with a detection limit 8.8 × 10−7 M (0.52 µg/mL). The presented sensors offered good features in terms of reliability, ease of design, high potential stability, high specificity and good accuracy and precision. Chronopotentiometric and electrochemical impedance spectrometric measurements were used for short-term potential stability and interfacial capacitance calculations. The sensors were used for the determination of free bilirubin in biological fluids. The data obtained are fairly well consistent with those obtained by the reference spectophotometric method. Based on the interaction of free BR with albumin (1:1), the sensors were also utilized for the assessment of albumin in human serum.
Collapse
|
27
|
Ahmed AAEH, Korany MA, Khalil MM. Electrochemical determination of verapamil hydrochloride using carbon nanotubes/TiO2 nanocomposite based potentiometric sensors in surface water and urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Han T, Mousavi Z, Mattinen U, Bobacka J. Coulometric response characteristics of solid contact ion-selective electrodes for divalent cations. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04718-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe chronoamperometric and coulometric response of solid contact ion-selective electrodes (SCISEs) for the detection of divalent cations was investigated in order to provide a more complete description of the mechanism of the recently introduced coulometric transduction method for SCISEs. The coulometric transduction method has earlier been employed only for SCISEs that were selective to monovalent ions. The SCISEs utilized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS−) as the solid contact (ion-to-electron transducer). PEDOT(PSS) was electrodeposited on glassy carbon and covered with plasticized PVC-based ion-selective membranes (ISMs) that were selective towards divalent cations (Ca2+, Pb2+). In contrast to earlier studies, the results obtained in this work show that the coulometric response for the Pb2+-SCISE was limited mainly by ion transport in the PEDOT(PSS) layer, which was not the case for the Ca2+-SCISE, nor was it observed earlier for the monovalent ions. The exceptional behavior of the Pb2+-SCISE was explored further by electrochemical impedance spectroscopy, and it was shown that the effective redox capacitance of PEDOT(PSS) was significantly higher for the Pb2+-SCISE than for the Ca2+-SCISE although the polymerization charge of PEDOT(PSS) was the same. The slow transport of Pb2+ in PEDOT(PSS) was tentatively related to complexation between Pb2+ and PEDOT(PSS).
Collapse
|
29
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
30
|
Liu Y, Liu Y, Meng Z, Qin Y, Jiang D, Xi K, Wang P. Thiol-functionalized reduced graphene oxide as self-assembled ion-to-electron transducer for durable solid-contact ion-selective electrodes. Talanta 2019; 208:120374. [PMID: 31816715 DOI: 10.1016/j.talanta.2019.120374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023]
Abstract
Thiol-functionalized reduced graphene oxide (TRGO) as a novel ion-to-electron transducing layer is firstly employed to develop durable solid-contact ion-selective electrodes (SC-ISEs) in this work. The performance of the sensors is evaluated by determining K+ and NO3- as an example of cation and anion. The covalent linkage of TRGO at golden electrode surface generates a stable transducing layer. No water films are observed in the proposed TRGO-based potassium (K+-TRGO-ISEs) and nitrate (NO3--TRGO-ISEs) selective SC-ISEs. The resultant electrodes exhibit Nernstian responses (60.0 ± 0.4 mV/decade for K+-TRGO-ISEs and -60.0 ± 0.5 mV/decade for NO3--TRGO-ISEs), low detection limits (2.5 × 10-6 M for K+-TRGO-ISEs and 4.0 × 10-6 M for NO3--TRGO-ISEs) and good selectivity behavior. More importantly, the TRGO-based SC-ISEs display a much longer lifetime of 2 weeks than that of reduced graphene oxide-based SC-ISEs in continuous flowing solutions using a longer peristaltic pump. These improvements push TRGO a general and reliable transducer for the development of durable SC-ISEs.
Collapse
Affiliation(s)
- Yueling Liu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Yunzhong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Zhen Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yu Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
31
|
E Amr AEG, Al-Omar MA, H Kamel A, A Elsayed E. Single-Piece Solid Contact Cu 2+-Selective Electrodes Based on a Synthesized Macrocyclic Calix[4]arene Derivative as a Neutral Carrier Ionophore. Molecules 2019; 24:molecules24050920. [PMID: 30845715 PMCID: PMC6429070 DOI: 10.3390/molecules24050920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, a facile route leading to good single-walled carbon nanotubes (SWCNT) dispersion or poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) based single-piece nanocomposite membrane is proposed for trace determination of Cu2+ ions. The single-piece solid contact Cu2+-selective electrodes were prepared after drop casting the membrane mixture on the glassy-carbon substrates. The prepared potentiometric sensors revealed a Nernstian response slope of 27.8 ± 0.3 and 28.1 ± 0.4 mV/decade over the linearity range 1.0 × 10-3 to 2.0 × 10-9 and 1.0 × 10-3 to 1.0 × 10-9 M with detection limits of 5.4 × 10-10 and 5.0 × 10-10 M for sensors based on SWCNTs and PEDOT/PSS, respectively. Excellent long-term potential stability and high hydrophobicity of the nanocomposite membrane are recorded for the prepared sensors due to the inherent high capacitance of SWCNT used as a solid contact material. The sensors exhibited high selectivity for Cu2+ ions at pH 4.5 over other common ions. The sensors were applied for Cu2+ assessment in tap water and different tea samples. The proposed sensors were robust, reliable and considered as appealing sensors for copper (II) detection in different complex matrices.
Collapse
Affiliation(s)
- Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ayman H Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
32
|
Jin W, Maduraiveeran G. Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies. J Anal Sci Technol 2018. [DOI: 10.1186/s40543-018-0150-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Hoekstra R, Blondeau P, Andrade FJ. Distributed electrochemical sensors: recent advances and barriers to market adoption. Anal Bioanal Chem 2018; 410:4077-4089. [PMID: 29806065 DOI: 10.1007/s00216-018-1104-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Francisco J Andrade
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
34
|
Pol R, Moya A, Gabriel G, Gabriel D, Céspedes F, Baeza M. Inkjet-Printed Sulfide-Selective Electrode. Anal Chem 2017; 89:12231-12236. [DOI: 10.1021/acs.analchem.7b03041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Pol
- Departament
of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Edifici C-Nord, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ana Moya
- Instituto
de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola
del Vallès), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Gemma Gabriel
- Instituto
de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola
del Vallès), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - David Gabriel
- GENOCOV Research
Group, Department of Chemical, Biological and Environmental Engineering,
School of Engineering, Universitat Autònoma de Barcelona, Carrer
de les Sitges, 08193 Bellaterra
(Cerdanyola del Vallès), Barcelona, Spain
| | - Francisco Céspedes
- Departament
of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Edifici C-Nord, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Mireia Baeza
- Departament
of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Edifici C-Nord, Carrer dels Til·lers, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
35
|
Sempionatto JR, Mishra RK, Martín A, Tang G, Nakagawa T, Lu X, Campbell AS, Lyu KM, Wang J. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats. ACS Sens 2017; 2:1531-1538. [PMID: 29019246 DOI: 10.1021/acssensors.7b00603] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This work describes a wireless wearable ring-based multiplexed chemical sensor platform for rapid electrochemical monitoring of explosive and nerve-agent threats in vapor and liquid phases. The ring-based sensor system consists of two parts: a set of printed electrochemical sensors and a miniaturized electronic interface, based on a battery-powered stamp-size potentiostat, for signal processing and wireless transmission of data. A wide range of electrochemical capabilities have thus been fully integrated into a 3D printed compact ring structure, toward performing fast square-wave voltammetry and chronoamperometric analyses, along with interchangeable screen-printed sensing electrodes for the rapid detection of different chemical threats. High analytical performance is demonstrated despite the remarkable miniaturization and integration of the ring system. The attractive capabilities of the wearable sensor ring system have been demonstrated for sensitive and rapid voltammetric and amperometric monitoring of nitroaromatic and peroxide explosives, respectively, along with amperometric biosensing of organophosphate (OP) nerve agents. Such ability of the miniaturized wearable sensor ring platform to simultaneously detect multiple chemical threats in both liquid and vapor phases and alert the wearer of such hazards offers considerable promise for meeting the demands of diverse defense and security scenarios.
Collapse
Affiliation(s)
- Juliane R. Sempionatto
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rupesh K. Mishra
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Aida Martín
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Guangda Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Tatsuo Nakagawa
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Xiaolong Lu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Alan S. Campbell
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Kay Mengjia Lyu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Crespo GA. Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.159] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Almeida MIGS, Cattrall RW, Kolev SD. Polymer inclusion membranes (PIMs) in chemical analysis - A review. Anal Chim Acta 2017; 987:1-14. [PMID: 28916032 DOI: 10.1016/j.aca.2017.07.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 11/27/2022]
Abstract
This review highlights the increasing interest in polymer inclusion membranes (PIMs) in analytical chemistry as they are adapted to new and novel applications. PIMs are polymer-based liquid membranes and were first introduced 50 years ago as the sensing membranes in ion-selective electrodes and optodes. More recently however, PIMs have been used for other applications in analytical chemistry such as for sample separation, sample pre-concentration, electro-driven extraction, and passive sampling, and have also been incorporated into on-line and automated analysis systems. The present review provides a general overview of the analytical chemistry applications of PIMs reported in the literature to date and illustrates their versatility for solving challenging chemical analysis problems.
Collapse
Affiliation(s)
- M Inês G S Almeida
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Robert W Cattrall
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
38
|
Schierenbeck TM, Smith MC. Path to Impact for Autonomous Field Deployable Chemical Sensors: A Case Study of in Situ Nitrite Sensors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4755-4771. [PMID: 28332819 DOI: 10.1021/acs.est.6b06171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Natural freshwater systems have been severely affected by excess loading of macronutrients (e.g., nitrogen and phosphorus) from fertilizers, fossil fuels, and human and livestock waste. In the USA, impacts to drinking water quality, biogeochemical cycles, and aquatic ecosystems are estimated to cost US$210 billion annually. Field-deployable nutrient sensors (FDS) offer potential to support research and resource management efforts by acquiring higher resolution data than are currently supported by expensive conventional sampling methods. Following nearly 40 years of research and development, FDS instruments are now starting to penetrate commercial markets. However, instrument uncertainty factors (high cost, reliability, accuracy, and precision) are key drivers impeding the uptake of FDS by the majority of users. Using nitrite sensors as a case study, we review the trends, opportunities, and challenges in producing and implementing FDS from a perspective of innovation and impact. We characterize the user community and consumer needs, identify trends in research approaches, tabulate state-of-the-art examples and specifications, and discuss data life cycle considerations. With further development of FDS through prototyping and testing in real-world applications, these tools can deliver information for protecting and restoring natural waters, enhancing process control for industrial operations and water treatment, and providing novel research insights.
Collapse
Affiliation(s)
- Tim M Schierenbeck
- School of Freshwater Sciences, University of Wisconsin-Milwaukee , 600 E. Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Matthew C Smith
- School of Freshwater Sciences, University of Wisconsin-Milwaukee , 600 E. Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
39
|
Mishra RK, Hubble LJ, Martín A, Kumar R, Barfidokht A, Kim J, Musameh MM, Kyratzis IL, Wang J. Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sens 2017; 2:553-561. [PMID: 28723187 DOI: 10.1021/acssensors.7b00051] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A flexible glove-based electrochemical biosensor with highly stretchable printed electrode system has been developed as a wearable point-of-use screening tool for defense and food security applications. This disposable-mechanically robust "lab-on-a-glove" integrates a stretchable printable enzyme-based biosensing system and active surface for swipe sampling on different fingers, and is coupled with a compact electronic interface for electrochemical detection and real-time wireless data transmission to a smartphone device. Stress-enduring inks are used to print the electrode system and the long serpentine connections to the wireless electronic interface. Dynamic mechanical deformation, bending, and stretching studies illustrate the resilience and compliance of the printed traces against extreme mechanical deformations expected for such on-glove sampling/sensing operation. An organophosphorus hydrolase (OPH)-based biosensor system on the index finger enables rapid on-site detection of organophosphate (OP) nerve-agent compounds on suspicious surfaces and agricultural products following their swipe collection on the thumb finger. The new wireless glove-based biosensor system offers considerable promise for field screening of OP nerve-agents and pesticides in defense and food-safety applications, with significant speed and cost advantages. Such "lab-on-a-glove" demonstration opens the area of flexible wearable sensors to future on-the-hand multiplexed chemical detection in diverse fields.
Collapse
Affiliation(s)
- Rupesh K. Mishra
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Lee J. Hubble
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- CSIRO Manufacturing, Lindfield, New South Wales 2070, Australia
| | - Aida Martín
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rajan Kumar
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Abbas Barfidokht
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jayoung Kim
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | | | - Joseph Wang
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Integrated multi-ISE arrays with improved sensitivity, accuracy and precision. Sci Rep 2017; 7:44771. [PMID: 28303939 PMCID: PMC5356001 DOI: 10.1038/srep44771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023] Open
Abstract
Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl− electrodes, 10 F− electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.
Collapse
|
41
|
Tolaymat T, El Badawy A, Genaidy A, Abdelraheem W, Swqueria R. Analysis of metallic and metal oxide nanomaterial environmental emissions. JOURNAL OF CLEANER PRODUCTION 2017; 143:401-412. [PMID: 32489231 PMCID: PMC7266090 DOI: 10.1016/j.jclepro.2016.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The current study presents evidence on metallic and metal oxide engineered nanomaterial (ENM) emissions into the environment and an analytic perspective of the outcomes of evaluated studies with respect to different individual end points along the lifecycle trajectory. The key findings suggest that 1) the published literature on emissions of metallic ENMs is limited in both the number and information available on the characteristics of emitted ENMs; 2) the studies are classified as experimental and computational studies focused on predicting ENM emissions; 3) the majority of studies investigated ENM emissions during nanomaterial use and waste management, followed by raw material manufacturing, and finally, nano-enabled product manufacturing; 4) the studies primarily reported the concentration/quantity of emitted ENMs, whereas the physical-chemical characteristics of emitted ENMs were rarely measured or reported; and 5) the published literature primarily focused on emissions of silver and titanium dioxide ENMs and lacked similar information on other surging metallic and metal oxide ENMs such as nano-zero valent iron (nZVI), aluminum (Al), and aluminum oxide (Al2O3) ENMs. The evidence suggests that emitted nanoparticles into the air cover a wide range of concentrations below and above the allowable occupational exposure limits. The concentrations of nanoparticles in water systems are considered in the toxic to very toxic range for a variety of biological species. Given the critical gaps in knowledge, one cannot read across different sources of emissions for metallic and metal oxide ENMs hampering efforts with respect to understanding realistic scenarios for transformations in the natural environment and biological media.
Collapse
Affiliation(s)
- Thabet Tolaymat
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Amro El Badawy
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ash Genaidy
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Wael Abdelraheem
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Reynold Swqueria
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
42
|
Nötzel R. InN/InGaN quantum dot electrochemical devices: new solutions for energy and health. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nww101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractA review is given of the exceptional electrochemical performance of epitaxial InN/InGaN quantum dots (QDs) as photoelectrodes for solar hydrogen generation by water splitting, as biosensor transducers and as anion-selective electrodes, and they are also evaluated as supercapacitor electrodes. The performance is benchmarked against the best performances of other reported materials and nanostructures. A model based on the unique interplay of surface and quantum properties is put forward to understand the boost of catalytic activity and anion selectivity interlinking quantum nanostructure physics with electrochemistry and catalysis. Of equal impact is the direct growth on cheap Si substrates without any buffer layers, allowing novel device designs and integration with Si technology. This makes the InN/InGaN QDs viable, opening up new application fields for III-nitride semiconductors.
Collapse
Affiliation(s)
- Richard Nötzel
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- L-NESS and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
| |
Collapse
|
43
|
Sun L, Sun C, Sun X. Screening highly selective ionophores for heavy metal ion-selective electrodes and potentiometric sensors. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Carey JL, Hirao A, Sugiyama K, Bühlmann P. Semifluorinated Polymers as Ion-selective Electrode Membrane Matrixes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jesse L. Carey
- Department of Chemistry; University of Minnesota; 207 Pleasant Street SE Minneapolis MN
| | - Akira Hirao
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ohokayama, Meguro-ku Tokyo 152-8552 Japan
| | - Kenji Sugiyama
- Department of Chemical Science and Technology; Hosei University; 3-7-2 Kajino-chou, Koganei Tokyo 184-8584 Japan
| | - Philippe Bühlmann
- Department of Chemistry; University of Minnesota; 207 Pleasant Street SE Minneapolis MN
| |
Collapse
|
45
|
Bieg C, Fuchsberger K, Stelzle M. Introduction to polymer-based solid-contact ion-selective electrodes—basic concepts, practical considerations, and current research topics. Anal Bioanal Chem 2016; 409:45-61. [DOI: 10.1007/s00216-016-9945-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
|
46
|
Issa YM, Mohamed SH, Baset MAE. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM. Talanta 2016; 155:158-67. [DOI: 10.1016/j.talanta.2016.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022]
|
47
|
Steinberg MD, Kassal P, Steinberg IM. System Architectures in Wearable Electrochemical Sensors. ELECTROANAL 2016. [DOI: 10.1002/elan.201600094] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Yang Y, Ibrahim AA, Hashemi P, Stockdill JL. Real-Time, Selective Detection of Copper(II) Using Ionophore-Grafted Carbon-Fiber Microelectrodes. Anal Chem 2016; 88:6962-6. [DOI: 10.1021/acs.analchem.6b00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanyuan Yang
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ahmad A. Ibrahim
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Parastoo Hashemi
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jennifer L. Stockdill
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
49
|
Attia KA, El-Abasawi NM, Abdel-Azim AH. Experimental design of membrane sensor for selective determination of phenazopyridine hydrochloride based on computational calculations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:773-81. [DOI: 10.1016/j.msec.2016.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/03/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
50
|
He N, Gyurcsányi RE, Lindfors T. Electropolymerized hydrophobic polyazulene as solid-contacts in potassium-selective electrodes. Analyst 2016; 141:2990-7. [DOI: 10.1039/c5an02664d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electropolymerized hydrophobic polyazulene based solid-contact potassium-selective electrodes have been characterized in terms of their suitability for potassium measurements in serum.
Collapse
Affiliation(s)
- Ning He
- Åbo Akademi University
- Faculty of Science and Engineering
- Johan Gadolin Process Chemistry Centre
- Laboratory of Analytical Chemistry
- FIN-20500 Turku/Åbo
| | - Róbert E. Gyurcsányi
- MTA-BME “Lendület” Chemical Nanosensors Research Group
- Department of Inorganic and Analytical Chemistry
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Tom Lindfors
- Åbo Akademi University
- Faculty of Science and Engineering
- Johan Gadolin Process Chemistry Centre
- Laboratory of Analytical Chemistry
- FIN-20500 Turku/Åbo
| |
Collapse
|