1
|
Bukharinova MA, Khamzina EI, Stozhko NY, Tarasov AV. Highly sensitive voltammetric determination of Allura Red (E129) food colourant on a planar carbon fiber sensor modified with shungite. Anal Chim Acta 2023; 1272:341481. [PMID: 37355328 DOI: 10.1016/j.aca.2023.341481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023]
Abstract
This article presents an original planar carbon fiber electrode (PCFE), in which shungite (SHU) is used as a modifier for the first time. Shungite is a unique natural nanostructured composite consisting of carbon in the form of aggregated graphene stacks, oxides of silicon, titanium, aluminum, iron, magnesium, potassium, etc. Macro- and micro-elements, biologically active components that are present in shungite provide it with attractive antioxidant properties, make it a biocompatible and environmentally friendly material that meets the principles of green chemistry. A unique supramolecular structure of shungite carbon presents a multilayer globular-cluster formation with mesopores in the internal volume. It determines specific physical, chemical, catalytic, and adsorption properties of shungite. Carbon fiber with an irregular 3D structure was used as an effective electrode platform for strong immobilization of shungite. The PCFE was fabricated using a simple and scalable hot lamination technology that produces very low cost flexible planar electrodes. The sensor (SHU/PCFE) was characterized by scanning electron microscopy; electrochemical impedance analysis; cyclic, differential-pulse and stripping voltammetry. The SHU/PCFE showed a 2.5-fold increase in the electroactive surface area, a 1.8-fold decrease in the electron transfer resistance compared with the bare PCFE. Under optimal experimental conditions and preconcentration at +0.2 V (vs. Ag/AgCl) 180 s, the developed sensor allowed the quantification of Allura Red in the ranges of 0.001-0.1 and 0.1-2 μmol L-1 with an extremely low detection limit of 0.36 nmol L-1. Moreover, this convenient and cost-effective sensor also has good repeatability, stability and anti-interference ability. The interfering effect of sweeteners and preservatives in the determination of Allura Red does not exceed 3.6%. The practical application of the SHU/PCFE was demonstrated using drink samples, lollipops and pharmaceuticals.
Collapse
Affiliation(s)
- Maria A Bukharinova
- Scientific and Innovation Center of Sensor Technologies, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| | - Ekaterina I Khamzina
- Scientific and Innovation Center of Sensor Technologies, Ural State University of Economics, 620144, Yekaterinburg, Russia; Department of Physics and Chemistry, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| | - Natalia Yu Stozhko
- Department of Physics and Chemistry, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| | - Aleksey V Tarasov
- Scientific and Innovation Center of Sensor Technologies, Ural State University of Economics, 620144, Yekaterinburg, Russia.
| |
Collapse
|
2
|
Kumar PS, G P, Elavarasan N, Sreeja BS. GO/ZnO nanocomposite - as transducer platform for electrochemical sensing towards environmental applications. CHEMOSPHERE 2023; 313:137345. [PMID: 36423727 DOI: 10.1016/j.chemosphere.2022.137345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/30/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Graphene Oxide-Zinc Oxide (GO-ZnO) - a new nanomaterial that has queued the interest of researchers. Their intriguing promising physical and electrochemical features of electrode material have led to its widespread use in electrochemical sensor applications. GO-ZnO based nanomaterial were extensively exploited in the construction of electrochemical sensors due to their adaptability and distinct qualities. On understanding the structural role of these materials, their modification processes are critical for realizing their full potential. The advancement of technology on new concepts and strategies has revolutionized the field of sensor devices with high sensitivities and selectivity. These tools can test a range of contaminants quickly, accurately, and affordably while performing automated chemical analysis in complicated matrices. This paper highlights the electrochemical transducer surface for sensing various analytes and current research activity on GO-ZnO nanocomposite. Additionally, we talked about current developments in GO-ZnO nanostructured composites to identify relevant analytes (i.e., Nitrophenols, Antibiotic Drugs, Biomolecules). While being used in the laboratory, the majority of produced systems have proven to bring about excellent gains. Their monitoring application still has a long way to go before it is fixed due to problems like technological advancements and multifunctional strategies to get around the challenges for improving the sensing systems.
Collapse
Affiliation(s)
- P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Padmalaya G
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - N Elavarasan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - B S Sreeja
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| |
Collapse
|
3
|
uzun D, Tabanlıgil Calam T. Electrochemical Behavior and Ultrasensitive, Simple and Effective Voltammetric Determination of Acetaminophen Using Modified Glassy Carbon Electrode Based on 4‐Hydroxyquinoline‐3‐Carboxylic Acid. ELECTROANAL 2022. [DOI: 10.1002/elan.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Tang J, Hu T, Li N, Zhu Y, Li J, Zheng S, Guo J. Ag doped Co/Ni bimetallic organic framework for determination of luteolin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kaewjua K, Siangproh W. A novel tyramine sensing-based polymeric L-histidine film-coated screen-printed graphene electrode: Capability for practical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Mounesh, Reddy KRV, Yuvaraja D, Manriquez JM, Lokesh KS, Amshumali MK. Novel Schiff base iron( ii) phthalocyanine with composite MWCNTs on modified GCE: electrochemical sensor development for paracetamol. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00193d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paracetamol is one of the most commonly consumed medicines to deal with minor pain, body ache, headache, fever etc. It can also be used for getting temporary relief from arthritis pain.
Collapse
Affiliation(s)
- Mounesh
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari – 583105, Karnataka, India
| | - K. R. Venugopala Reddy
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari – 583105, Karnataka, India
| | - D. Yuvaraja
- Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Juan M. Manriquez
- Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - K. S. Lokesh
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari – 583105, Karnataka, India
| | - M. K. Amshumali
- Department of Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari – 583105, Karnataka, India
| |
Collapse
|
7
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
8
|
Nehru R, Hsu YF, Wang SF, Chen CW, Dong CD. Selective Electrochemical Sensing Platform Based on the Synergy between Carbon Black and Single-Crystalline Bismuth Sulfide for Rapid Analysis of Antipyretic Drugs. ACS APPLIED BIO MATERIALS 2021; 4:7497-7508. [PMID: 35006704 DOI: 10.1021/acsabm.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials are of significant interest in acetaminophen (APAP) detection in pharmaceutical samples. Herein, a carbon black/single-crystalline rodlike bismuth sulfide (CB/Bi2S3) composite prepared by an ultrasonic method is reported and utilized for the rapid analysis of APAP. The highly oriented edge reactive sites of the CB/Bi2S3 composite promoted synergy and good electrochemical sensing performance with a fast electron transfer rate and low overpotential (0.35 V). Therefore, a CB/Bi2S3 composite-modified glassy carbon electrode (GCE) was applied to the selective determination of APAP by the voltammetric technique. The CB/Bi2S3 composite-modified electrode showed the lowest limit of detection of APAP (1.9 nM) with excellent sensitivity. The proposed CB/Bi2S3/GCE platform exhibited high selectivity, excellent stability (87.15%), and reproducibility. Also, the CB/Bi2S3/GCE sensor was then successfully used to analyze an APAP pharmaceutical sample and exhibited satisfactory outcomes. Therefore, the CB/Bi2S3-modified GCE sensor platform would be a low-cost and robust GCE electrode material for APAP detection.
Collapse
Affiliation(s)
- Raja Nehru
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, R.O.C
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, R.O.C
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, R.O.C
| | - Chiu-Wen Chen
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Cheng-Di Dong
- Sustainable Environmental Research Center, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C.,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| |
Collapse
|
9
|
Calam TT. Selective and Sensitive Determination of Paracetamol and Levodopa with Using Electropolymerized 3,5‐Diamino‐1,2,4‐triazole Film on Glassy Carbon Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Anand SK, Mathew MR, Radecki J, Radecka H, Kumar KG. Individual and simultaneous voltammetric sensing of norepinephrine and tyramine based on poly(L-arginine)/reduced graphene oxide composite film modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Mobed A, Hasanzadeh M, Ahmadalipour A, Fakhari A. Recent advances in the biosensing of neurotransmitters: material and method overviews towards the biomedical analysis of psychiatric disorders. ANALYTICAL METHODS 2020; 12:557-575. [DOI: 10.1039/c9ay02390a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Neurotransmitters are the most important messengers of the nervous system, and any changes in their balances and activities can cause serious neurological, psychiatric and cognitive disorders such as schizophrenia, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ahmad Mobed
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| |
Collapse
|
12
|
Li ZY, Gao DY, Wu ZY, Zhao S. Simultaneous electrochemical detection of levodapa, paracetamol and l-tyrosine based on multi-walled carbon nanotubes. RSC Adv 2020; 10:14218-14224. [PMID: 35498482 PMCID: PMC9051917 DOI: 10.1039/d0ra00290a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023] Open
Abstract
A novel electrochemical sensor for the simultaneous detection of levodopa, paracetamol and l-tyrosine was developed based on multi-walled carbon nanotubes. The sensor has the merits of wide linear range, good selectivity and good reproducibility.
Collapse
Affiliation(s)
- Zai-Yu Li
- Chemistry Department
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Dan-Yang Gao
- Chemistry Department
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences
- Chemistry Department
- College of Sciences
- Northeastern University
- Shenyang
| | - Shuang Zhao
- Chemistry Department
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
13
|
POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
A novel 3D porous graphene foam prepared by chemical vapor deposition using nickel nanoparticles: Electrochemical determination of levodopa in the presence of uric acid. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Zhao P, Ni M, Chen C, Zhou Z, Li X, Li C, Xie Y, Fei J. Stimuli-enabled switch-like paracetamol electrochemical sensor based on thermosensitive polymer and MWCNTs-GQDs composite nanomaterial. NANOSCALE 2019; 11:7394-7403. [PMID: 30938724 DOI: 10.1039/c8nr09434a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A temperature-controlled switchable electrochemical sensor was constructed based on a composite film consisting of thermosensitive block polymer poly(styrene-b-(N-isopropylacrylamide)-b-styrene) (PS-PNIPAm-PS), carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and amino-functionalized graphene quantum dots (N-GQDs). The prepared sensor showed good temperature sensitivity and reversibility in sensing paracetamol. In the low temperature environment, the polymer stretched to bury the electroactive sites of the carbon nanocomposite, and the paracetamol could not pass through the polymer to achieve electronic exchange, representing the "closed" state. Conversely, in the high temperature environment, the polymer shrank to expose the electroactive sites and enlarge background currents, the paracetamol was able to undergo the redox reaction normally and generate the response current, representing the "on" state. In addition, the sensor had a wide detection range (0.1 to 7.0 μM and 7.0 to 103.0 μM) and a low LOD of 66 nM for paracetamol. This switch-like sensor provided a novel idea for the application of thermosensitive polymers.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yue HY, Song SS, Guo XR, Huang S, Gao X, Wang Z, Wang WQ, Zhang HJ, Wu PF. Three-dimensional ZnO nanosheet spheres/graphene foam for electrochemical determination of levodopa in the presence of uric acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zhang W, zong L, Liu S, pei S, Zhang Y, Ding X, Jiang B, Zhang Y. An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8–800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens Bioelectron 2019; 131:200-206. [DOI: 10.1016/j.bios.2019.01.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 01/27/2023]
|
18
|
Temerk Y, Ibrahim H, Schuhmann W. Simultaneous Anodic Adsorptive Stripping Voltammetric Determination of Luteolin and 3‐Hydroxyflavone in Biological Fluids Using Renewable Pencil Graphite Electrodes. ELECTROANAL 2019. [DOI: 10.1002/elan.201900066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yassien Temerk
- Chemistry DepartmentFaculty of ScienceAssiut University Assiut Egypt
| | - Hossieny Ibrahim
- Chemistry DepartmentFaculty of ScienceAssiut University Assiut Egypt
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University Bochum, D- 44780 Bochum Germany
| |
Collapse
|
19
|
Poly(aminohippuric acid)–sodium dodecyl sulfate/functionalized graphene oxide nanocomposite for amplified electrochemical sensing of gallic acid. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1390-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Palakollu VN, Thapliyal N, Chiwunze TE, Karpoormath R, Karunanidhi S, Cherukupalli S. Electrochemically reduced graphene oxide/Poly-Glycine composite modified electrode for sensitive determination of l-dopa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:394-404. [DOI: 10.1016/j.msec.2017.03.173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 11/15/2022]
|
21
|
Thenmozhi K, Narayanan SS. Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:223-230. [DOI: 10.1016/j.msec.2016.08.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
|
22
|
Recent trends in electrochemical sensors for multianalyte detection – A review. Talanta 2016; 161:894-916. [DOI: 10.1016/j.talanta.2016.08.084] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
|
23
|
Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Kochana J, Wapiennik K, Knihnicki P, Pollap A, Janus P, Oszajca M, Kuśtrowski P. Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Anal Bioanal Chem 2016; 408:5199-210. [PMID: 27209590 PMCID: PMC4925687 DOI: 10.1007/s00216-016-9612-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 11/21/2022]
Abstract
A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer-i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO2) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(-1) cm(-2), and limit of detection of 1.5 μM. The apparent Michaelis-Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. Graphical abstract Different food samples were analyzed to determine tyramine using biosensor based on tyrosinase.
Collapse
Affiliation(s)
- Jolanta Kochana
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland.
| | - Karolina Wapiennik
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paweł Knihnicki
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Aleksandra Pollap
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paula Janus
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| |
Collapse
|
25
|
Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:570-6. [DOI: 10.1016/j.msec.2016.02.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 01/04/2023]
|
26
|
Beitollahi H, Garkani Nejad F. Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode. ELECTROANAL 2016. [DOI: 10.1002/elan.201600143] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences; Graduate University of Advanced Technology; Kerman Iran
| | - Fariba Garkani Nejad
- Department of Chemistry; Graduate University of Advanced Technology; Kerman Iran
| |
Collapse
|
27
|
Reddaiah K, Madhusudana Reddy T, Venkata Ramana D, Subba Rao Y. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:506-17. [PMID: 26952453 DOI: 10.1016/j.msec.2015.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
28
|
A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:278-284. [PMID: 27207064 DOI: 10.1016/j.msec.2016.04.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/30/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y2O3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y2O3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔEp) for ACT were 552mV, 24mV and 10mV at ba4re GCE, CNTs/GCE and Y2O3NPs/CNTs/GCE, respectively. The observation of only 10mV of ΔEp for ACT at Y2O3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, l-ascorbic acid (l-AA) and l-tyrosine (l-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0×10(-10) to 1.8×10(-8)M with a detection limit of 3.0×10(-11)M (based on 3Sb/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health.
Collapse
|
29
|
Gholivand M, Torkashvand M. The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:594-603. [DOI: 10.1016/j.msec.2015.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/19/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
30
|
Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:168-176. [DOI: 10.1016/j.msec.2015.09.097] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 11/24/2022]
|
31
|
Malik P, Srivastava M, Verma R, Kumar M, Kumar D, Singh J. Nanostructured SnO 2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:432-41. [DOI: 10.1016/j.msec.2015.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/22/2015] [Indexed: 11/16/2022]
|
32
|
Baytak AK, Duzmen S, Teker T, Aslanoglu M. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:164-70. [DOI: 10.1016/j.msec.2015.07.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 11/15/2022]
|
33
|
Beitollahi H, Gholami A, Ganjali MR. Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:107-12. [DOI: 10.1016/j.msec.2015.07.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
|
34
|
Soleymanpour A, Rezvani SA. Development of a novel carbon paste sensor for determination of micromolar amounts of sulfaquinoxaline in pharmaceutical and biological samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:504-9. [PMID: 26478338 DOI: 10.1016/j.msec.2015.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/03/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
A potentiometric carbon paste sensor was fabricated for determination of sulfaquinoxaline (SQX) based on the use of ion-association complex of sulfaquinoxaline sodium with 2,3,5-triphenyltetrazolium chloride. The proposed sensor exhibited Nernstian slope of 58.4 ± 0.3 mV per decade for sulfaquinoxaline over a wide concentration range of 5.0 × 10(-6) to 1.0 × 10(-2)M, with a low detection limit of 3.0 × 10(-6)M. The sensor manifested advantages of fast response time, satisfactory reproducibility, long life time, high thermal stability and, most importantly, excellent selectivities for sulfaquinoxaline relative to a wide variety of common foreign inorganic cations, anions, sugars and amino acids. The sensor was successfully used for determination of sulfaquinoxaline in pharmaceutical solution, blood serum, urine and milk samples. The isothermal coefficient of the electrode was calculated by the investigation of temperature effects on the electrode potential response.
Collapse
Affiliation(s)
- Ahmad Soleymanpour
- School of Chemistry, Damghan University, Damghan 3671641167, Iran; Institute of Biological Science, Damghan University, Damghan 3671641167, Iran.
| | | |
Collapse
|
35
|
Gao F, Zheng D, Tanaka H, Zhan F, Yuan X, Gao F, Wang Q. An electrochemical sensor for gallic acid based on Fe₂O₃/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:279-87. [PMID: 26354265 DOI: 10.1016/j.msec.2015.07.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe2O3 (fFe2O3), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS-fFe2O3-ERGO modified glassy carbon electrode (CS-fFe2O3-ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS-fFe2O3-ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0×10(-6)M to 1.0×10(-4)M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5×10(-7)M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines.
Collapse
Affiliation(s)
- Feng Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China; Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Delun Zheng
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Hidekazu Tanaka
- Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Fengping Zhan
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaoning Yuan
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Fei Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
36
|
Cernat A, Tertiş M, Săndulescu R, Bedioui F, Cristea A, Cristea C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal Chim Acta 2015; 886:16-28. [PMID: 26320632 DOI: 10.1016/j.aca.2015.05.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
This study describes the advancements made over the last five years in the development of electrochemical sensors and biosensors for acetaminophen detection. This study reviews the different configurations based on unmodified and chemically modified carbon nanotubes and graphene. The influence of various modifiers on the two types of materials is presented along with their role on the enhancement of the selectivity and sensitivity of (bio)sensors. The review is focused on a comparative description of the applications of carbon-based nanomaterials towards acetaminophen detection and presents the results in a critical manner.
Collapse
Affiliation(s)
- Andreea Cernat
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Mihaela Tertiş
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Robert Săndulescu
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Fethi Bedioui
- PSL Research University, Chimie Paris Tech, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris UMR 8258, Paris, France; Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé 1022, Paris, France
| | - Alexandru Cristea
- Department of Building Services, Faculty of Building Services, Technical University of Cluj-Napoca, 21 December 1989 Avenue, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania.
| |
Collapse
|
37
|
A new sensitive sensor for simultaneous differential pulse voltammetric determination of codeine and acetaminophen using a hydroquinone derivative and multiwall carbon nanotubes carbon paste electrode. Int J Anal Chem 2015; 2015:783157. [PMID: 25945094 PMCID: PMC4402475 DOI: 10.1155/2015/783157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2-844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results.
Collapse
|
38
|
Kalate Bojdi M, Behbahani M, Mashhadizadeh MH, Bagheri A, Hosseiny Davarani SS, Farahani A. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:213-9. [DOI: 10.1016/j.msec.2014.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/22/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022]
|
39
|
A sensitive glucose biosensor based on Ag@C core-shell matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:579-587. [PMID: 25686986 DOI: 10.1016/j.msec.2015.01.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor.
Collapse
|
40
|
Li J, Feng H, Jiang J, Feng Y, Xu Z, Qian D. One-pot in situ synthesis of a CoFe2O4nanoparticle-reduced graphene oxide nanocomposite with high performance for levodopa sensing. RSC Adv 2015. [DOI: 10.1039/c5ra15379d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We demonstrate that a new nanocomposite of CoFe2O4-reduced graphene oxide can be used as an enhanced electrochemical sensing platform for levodopa.
Collapse
Affiliation(s)
- Junhua Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
- College of Chemistry and Materials Science
| | - Haibo Feng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Jianbo Jiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Yonglan Feng
- College of Chemistry and Materials Science
- Hengyang Normal University
- Hengyang 421008
- PR China
| | - Zhifeng Xu
- College of Chemistry and Materials Science
- Hengyang Normal University
- Hengyang 421008
- PR China
| | - Dong Qian
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
- State Key Laboratory of Powder Metallurgy
| |
Collapse
|
41
|
Lenik J. A new potentiometric electrode incorporating functionalized β-cyclodextrins for diclofenac determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:109-16. [DOI: 10.1016/j.msec.2014.08.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/31/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
|
42
|
Baghayeri M, Maleki B, Zarghani R. Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:175-82. [DOI: 10.1016/j.msec.2014.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/08/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
|
43
|
Hatefi-Mehrjardi A, Ghaemi N, Karimi MA, Ghasemi M, Islami-Ramchahi S. Poly-(Alizarin Red S)-Modified Glassy Carbon Electrode for Simultaneous Electrochemical Determination of Levodopa, Homovanillic Acid and Ascorbic Acid. ELECTROANAL 2014. [DOI: 10.1002/elan.201400302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Yu CL, Lo NC, Cheng H, Tsuda T, Sakamoto T, Chen YH, Kuwabata S, Chen PY. An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|