1
|
Abdelmoneim A, Elfayoumi MAK, Abdel-Wahab MS, Al-Enizi AM, Lee JK, Tawfik WZ. Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes. RSC Adv 2024; 14:16846-16858. [PMID: 38784418 PMCID: PMC11114097 DOI: 10.1039/d4ra01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Harnessing solar energy for large-scale hydrogen fuel (H2) production shows promise in addressing the energy crisis and ecological degradation. This study focuses on the development of GaN-based photoelectrodes for efficient photoelectrochemical (PEC) water splitting, enabling environmentally friendly H2 production. Herein, a novel nanoflower Au/CuO/GaN hybrid structure was successfully synthesized using a combination of methods including successive ionic layer adsorption and reaction (SILAR), RF/DC sputtering, and metal-organic chemical vapour deposition (MOCVD) techniques. Structural, morphological, and optical characteristics and elemental composition of the prepared samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy, respectively. PEC and electrochemical impedance measurements were performed for all samples. The nanoflower Au/CuO/GaN hybrid structure exhibited the highest photocurrent density of ∼4 mA cm-2 at 1.5 V vs. RHE in a Na2SO4 electrolyte with recorded moles of H2 of about 3246 μmol h-1 cm-2. By combining these three materials in a unique structure, we achieved improved performance in the conversion of solar energy into chemical energy. The nanoflower structure provides a large surface area and promotes light absorption while the Au, CuO, and GaN components contribute to efficient charge separation and transfer. This study presents a promising strategy for advancing sustainable H2 production via efficient solar-driven water splitting.
Collapse
Affiliation(s)
- Alhoda Abdelmoneim
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - M A K Elfayoumi
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Mohamed Sh Abdel-Wahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - June Key Lee
- Department of Materials Science and Engineering, Chonnam National University Gwangju 61186 Republic of Korea
| | - Wael Z Tawfik
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
2
|
Meng Z, Zhang Y, Yang L, Zhao S, Zhou Q, Chen J, Sui J, Wang J, Guo L, Chang L, He J, Wang G, Zang G. A Novel Poly(3-hexylthiophene) Engineered Interface for Electrochemical Monitoring of Ascorbic Acid During the Occurrence of Glutamate-Induced Brain Cytotoxic Edemas. RESEARCH (WASHINGTON, D.C.) 2023; 6:0149. [PMID: 37234604 PMCID: PMC10205589 DOI: 10.34133/research.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Although neuroelectrochemical sensing technology offers unique benefits for neuroscience research, its application is limited by substantial interference in complex brain environments while ensuring biosafety requirements. In this study, we introduced poly(3-hexylthiophene) (P3HT) and nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) to construct a composite membrane-modified carbon fiber microelectrode (CFME/P3HT-N-MWCNTs) for ascorbic acid (AA) detection. The microelectrode presented good linearity, selectivity, stability, antifouling, and biocompatibility and exhibited great performance for application in neuroelectrochemical sensing. Subsequently, we applied CFME/P3HT-N-MWCNTs to monitor AA release from in vitro nerve cells, ex vivo brain slices, and in vivo living rat brains and determined that glutamate can induce cell edema and AA release. We also found that glutamate activated the N-methyl-d-aspartic acid receptor, which enhanced Na+ and Cl- inflow to induce osmotic stress, resulting in cytotoxic edema and ultimately AA release. This study is the first to observe the process of glutamate-induced brain cytotoxic edema with AA release and to reveal the mechanism. Our work can benefit the application of P3HT in in vivo implant microelectrode construction to monitor neurochemicals, understand the molecular basis of nervous system diseases, and discover certain biomarkers of brain diseases.
Collapse
Affiliation(s)
- Zexuan Meng
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Lu Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Qiang Zhou
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
- Department of Pathophysiology,
Chongqing Medical University, Chongqing, China
| | - Jiajia Chen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jiuxi Sui
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jian Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Lizhong Guo
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Luyue Chang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jialing He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching and Management Center,
Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
- Department of Pathophysiology,
Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Zhang G, Chen Q, Zhang Z, Fang J, Zhao C, Wei Y, Li W. Co-La-Based Hole-Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency. Angew Chem Int Ed Engl 2023; 62:e202216304. [PMID: 36448962 DOI: 10.1002/anie.202216304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.
Collapse
Affiliation(s)
- Guangcong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Rasa Hosseinzade M, Naji L, Hasannezhad F. Electrochemical deposition of NiO bunsenite nanostructures with different morphologies as the hole transport layer in polymer solar cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Liu Z, Tang H, Feng H, Tan CH, Liang Y, Hu Z, Zhang K, Huang F, Cao Y. Anion-Doped Thickness-Insensitive Electron Transport Layer for Efficient Organic Solar Cell. Macromol Rapid Commun 2022; 43:e2200190. [PMID: 35510577 DOI: 10.1002/marc.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/15/2022] [Indexed: 11/10/2022]
Abstract
In organic solar cells, interfacial materials play essential roles in charge extraction, transportation, and collection. Currently, highly efficient and thickness-insensitive interfacial materials are urgently needed in printable large area module devices. Herein, water/alcohol-soluble conjugated polyelectrolyte PFNBT-Br, with medium bandgap based on benzothiadiazole, are doped by two alkali metal sodium salts, NaH2 PO2 , Na2 C2 O4 with different counter anions, to pursue high efficiency and thickness-insensitive electron-transport layers. Results show that the doping of electron-transport material can effectively promote the performance of the devices. Moreover, electron-transport layers doped by these salts with different counter anions show different behaviors in performances. Among which, the salt with oxalate anion C2 O4 2- (also named Ox2- ) shows much better device performance than the salt with hypophosphite anion (H2 PO2 - ), especially under the thick film condition (e.g., 50 nm). The greatly enhanced performances of interfacial material doped by Ox2- are due to reduced Rs between the active layer material and the electrode, reduced dark-current, improved charge transport and extraction efficiency, and decreased charge recombination for the devices at thick-film condition. These results demonstrated that n-doping could be a great potential strategy for making thickness-insensitive interfacial layers, besides, the performances can be further improved by carefully selecting salts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zixian Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hexiang Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ching-Hong Tan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Youcai Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
6
|
Pataniya PM, Patel V, Sumesh CK. MoS 2/WSe 2nanohybrids for flexible paper-based photodetectors. NANOTECHNOLOGY 2021; 32:315709. [PMID: 33848985 DOI: 10.1088/1361-6528/abf77a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Flexible photodetectors functionalized by transition metal dichalcogenides have attracted great attention due to their excellent photo-harvesting efficiency. However, the field of optoelectronics still requires advancement in the production of large-area, broad band and flexible photodetectors. Here we report a flexible, stable, broad band and fast photodetector based on a MoS2/WSe2heterostructure on ordinary photocopy paper with pencil-drawn graphite electrodes. Ultrathin MoS2/WSe2nanohybrids have been synthesized by an ultrahigh yield liquid-phase exfoliation technique. The thin sheets of WSe2, and MoS2contain two to four layers with a highly c-oriented crystalline structure. Subsequently, the photodetector was exploited under ultra-broad spectral range from 400 to 780 nm. The photodetector exhibits excellent figure of merit such as on/off ratio of the order of 103, photoresponsivity of 124 mA W-1and external quantum efficiency of 23.1%. Encouragingly, rise/decay time of about 0.1/0.3 s was realized, which is better than in previous reports on paper-based devices.
Collapse
Affiliation(s)
- Pratik M Pataniya
- Department of Physical Science, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHRUSAT, Changa-388421, Gujarat, India
| | - Vikas Patel
- Sophisticated Instrumentation Centre for Applied Research and Testing (SICART), Vallabh Vidyanagar, Anand, Gujarat-388 120, India
| | - C K Sumesh
- Department of Physical Science, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHRUSAT, Changa-388421, Gujarat, India
| |
Collapse
|
7
|
Ramoroka ME, Mdluli SB, John-Denk VS, Modibane KD, Arendse CJ, Iwuoha EI. Synthesis and Photovoltaics of Novel 2,3,4,5-Tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) Donor Polymer for Organic Solar Cell. Polymers (Basel) 2020; 13:E2. [PMID: 33374983 PMCID: PMC7792595 DOI: 10.3390/polym13010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be 2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71BM have insufficient electron/hole separation and charge transfer when compared to P3HT:PC71BM. All devices were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for P3HT:PC71BM device and 0.14% was obtained for TTT-co-P3HT:PC71BM device. Further studies were done on fabricated OSCs during this work using electrochemical methods. The studies revealed that the presence of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on the surface of indium tin oxide (ITO) causes a reduction in cyclic voltammogram oxidation/reduction peak current and increases the charge transfer resistance in comparison with a bare ITO. We also examined the ITO/PEDOT:PSS electrode coated with TTT-co-P3HT:PC71BM, TTT-co-P3HT:PC71BM/ZnO, P3HT:PC71BM and P3HT:PC71BM/ZnO. The study revealed that PEDOT:PSS does not completely block electrons from active layer to reach the ITO electrode.
Collapse
Affiliation(s)
- Morongwa E. Ramoroka
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.B.M.)
| | - Siyabonga B. Mdluli
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.B.M.)
| | - Vivian S. John-Denk
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.B.M.)
| | - Kwena D. Modibane
- Department of Chemistry, School of Physical and Mineral Science, University of Limpopo, Sovenga, Polokwane 0727, South Africa;
| | - Christopher J. Arendse
- Department of Physics and Astronomy, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
| | - Emmanuel I. Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.B.M.)
| |
Collapse
|
8
|
Kumar A, Jarwal DK, Mishra AK, Ratan S, Kumar C, Upadhyay DC, Mukherjee B, Jit S. Synergistic effect of CdSe quantum dots (QDs) and PC 61BM on ambient-air processed ZnO QDs/PCDTBT: PC 61BM:CdSe QDs/MoO 3 based ternary organic solar cells. NANOTECHNOLOGY 2020; 31:465404. [PMID: 32877378 DOI: 10.1088/1361-6528/abaa71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper reports the synergistic effect of colloidal CdSe quantum dots (QDs) and PC61BM on the performance of ITO/ZnO QDs/PCDTBT:PC61BM:CdSe QDs/MoO3/Ag based ternary organic solar cells (OSCs). The MoO3 and ZnO QDs (∼2.87 nm) layers work as the transparent hole transport layer (HTL) and electron transport layer (ETL), respectively. The CdSe QDs (∼4.58 nm) are blended with PC61BM:PCDTBT binary solution to improve the optical properties and charge transportation. Significant photoluminescence (PL) quenching is observed when part of the PC61BM is replaced by CdSe QDs with equivalent weight in the PCDTBT. The proposed ternary OSC gives an open-circuit voltage of 854 mV, a short circuit current density of 14 mA cm-2, fill factor of 42% and power conversion efficiency (PCE) of 5.02%. The PCE of the ternary OSC is increased by more than 38% compared to the binary OSC. This significant improvement in the performance parameters is attributed to the enhanced absorption and higher transportation of photo-generated charge carriers, as well as the increased charge dissociation due to the synergistic effect of CdSe QDs and PC61BM. The external quantum efficiency is also enhanced significantly in the ternary OSC due to the better conversion of solar energy into electrical energy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rawat SS, Rana A, Swami SK, Srivastava R, Suman CK. Investigation of negative magneto-conductance properties of cobalt phthalocyanine thin films. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Tran VH, Kim SK, Lee SH. Zwitterion Nondetergent Sulfobetaine-Modified SnO 2 as an Efficient Electron Transport Layer for Inverted Organic Solar Cells. ACS OMEGA 2019; 4:19225-19237. [PMID: 31763546 PMCID: PMC6868909 DOI: 10.1021/acsomega.9b02551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Tin oxide (SnO2) has been widely accepted as an effective electron transport layer (ETL) for optoelectronic devices because of its outstanding electro-optical properties such as its suitable band energy levels, high electron mobility, and high transparency. Here, we report a simple but effective interfacial engineering strategy to achieve highly efficient and stable inverted organic solar cells (iOSCs) via a low-temperature solution process and an SnO2 ETL modified by zwitterion nondetergent sulfobetaine 3-(4-tert-butyl-1-pyridinio)-1-propanesulfonate (NDSB-256-4T). We found that NDSB-256-4T helps reduce the work function of SnO2, resulting in more efficient electron extraction and transport to the cathode of iOSCs. NDSB-256-4T also passivates the defects in SnO2, which serves as recombination centers that greatly reduce the device performance of iOSCs. In addition, NDSB-256-4T provides the better interfacial contact between SnO2 and the active layer. Thus, a higher power conversion efficiency (PCE) and longer device stability of iOSCs are expected for a combination of SnO2 and NDSB-256-4T than for devices based on SnO2 only. With these enhanced interfacial properties, P3HT:PC60BM-based iOSCs using SnO2/NDSB-256-4T (0.2 mg/mL) as an ETL showed both a higher average PCE of 3.72%, which is 33% higher than devices using SnO2 only (2.79%) and excellent device stability (over 90% of the initial PCE remained after storing 5 weeks in ambient air without encapsulation). In an extended application of the PTB7-Th:PC70BM systems, we achieved an impressive average PCE of 8.22% with SnO2/NDSB-256-4T (0.2 mg/mL) as the ETL, while devices based on SnO2 exhibited an average PCE of only 4.45%. Thus, the use of zwitterion to modify SnO2 ETL is a promising way to obtain both highly efficient and stable iOSCs.
Collapse
Affiliation(s)
| | | | - Soo-Hyoung Lee
- E-mail: . Phone: +82 63-270-2435. Fax: +82 63-270-2306 (S.-H.L.)
| |
Collapse
|
11
|
Peng R, Wan Z, Song W, Yan T, Qiao Q, Yang S, Ge Z, Wang M. Improving Performance of Nonfullerene Organic Solar Cells over 13% by Employing Silver Nanowires-Doped PEDOT:PSS Composite Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42447-42454. [PMID: 31625386 DOI: 10.1021/acsami.9b16404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ag nanowires (NWs)/PEDOT:PSS composite was prepared by a facile solution-processing method and employed as anode interface in nonfullerene organic solar cells (OSCs). In the presence of a Ag NWs (5%, v/v%)/PEDOT:PSS interfacial layer, a high-power conversion efficiency up to 13.53% was achieved based on a PBDB-T-2Cl:IT-4F photoactive layer system, much higher than the efficiency of the controlled counterpart device with pristine PEDOT:PSS as anode modifier. Simultaneous enhancements in short-circuit current and fill factor were observed, in comparison to the case of the pristine PEDOT:PSS interface, due to the improved electrical conductivity of Ag NWs/PEDOT:PSS composites accompanied by the increased work function for a better matching with the indium tin oxide counter electrode, which facilitated increased charge transfer and reduced charge recombination at the anode/photoactive interface for improved device performance. The results clearly revealed that the Ag NWs/PEDOT:PSS composite interface is beneficial to improve the charge extraction and favor the realization of highly efficient nonfullerene OSCs.
Collapse
Affiliation(s)
- Ruixiang Peng
- Institute of Applied Technology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Zhiyang Wan
- Institute of Applied Technology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Tingting Yan
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Qiquan Qiao
- Center for Advanced Photovoltaics and Sustainable Energy, Department of Electrical Engineering and Computer Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Shangfeng Yang
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Mingtai Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| |
Collapse
|
12
|
Huang S, Yu A, Wang Y, Tang Y, Shen S, Kang B, Silva SRP, Lu G. Nickel oxide and polytetrafluoroethylene stacked structure as an interfacial layer for efficient polymer solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Li J, Lv J, Peng Y, Cao X, Tong J, Xia Y. An eco-friendly water-soluble fluorene-based polyelectrolyte as interfacial layer for efficient inverted polymer solar cells. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianfeng Li
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry; Lanzhou Jiaotong University; Lanzhou Gansu 730070 China
| | - Jie Lv
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry; Lanzhou Jiaotong University; Lanzhou Gansu 730070 China
| | - Yichun Peng
- School of Civil Engineering; Lanzhou Institute of Technology; Lanzhou Gansu 730050 China
| | - Xiaodong Cao
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry; Lanzhou Jiaotong University; Lanzhou Gansu 730070 China
| | - Junfeng Tong
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry; Lanzhou Jiaotong University; Lanzhou Gansu 730070 China
| | - Yangjun Xia
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Education Ministry; Lanzhou Jiaotong University; Lanzhou Gansu 730070 China
| |
Collapse
|
14
|
Arabpour Roghabadi F, Kokabi M, Ahmadi V, Abaeiani G. Quantum dots crosslinking as a new method for improving charge transport of polymer/quantum dots hybrid solar cells and fabricating solvent-resistant film. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Gupta SK, Jindal R, Garg A. Microscopic Investigations into the Effect of Surface Treatment of Cathode and Electron Transport Layer on the Performance of Inverted Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16418-16427. [PMID: 26158508 DOI: 10.1021/acsami.5b03583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface treatments of various layers in organic solar cells play a vital role in determining device characteristics. In this manuscript, we report on the influence of surface treatment of indium tin oxide (ITO) electrode and electron transport layer (ETL), ZnO, on the photovoltaic performance of inverted organic solar cells (IOSC) and their correlation with the surface chemistry and surface potential as studied using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM), using the device structure glass/ITO/ZnO/P3HT: PCBM/MoO3/(Au or Ag) (P3HT, poly(3-hexylthiophene-2,5-diyl), and PCBM, phenyl-C61-butyric acid methyl ester). Our results show that although ozonization of ITO leads to an improvement in the device power conversion efficiency, the ozonization of a subsequent ZnO layer results in a decreased performance mainly because of a decrease in the fill factor (FF). However, subsequent methanol (CH3OH) treatment of ZnO layer on an ozonized ITO electrode shows substantial improvement with device efficiencies exceeding ∼4% along with superior reproducibility of the devices. Furthermore, a detailed analysis of the surface wettability, chemistry, and surface potential using contact angle measurements, XPS, and KPFM attribute the improvements to the elimination of surface defects and the changes in the surface potential. Finally, impedance analysis suggests that methanol treatment of the ZnO layers leads to the development of a favorable nanophase structure with higher conductivity, which is otherwise indiscernible using microscopic methods.
Collapse
Affiliation(s)
- Shailendra Kumar Gupta
- †Department of Materials Science and Engineering and ‡Samtel Center for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rajeev Jindal
- †Department of Materials Science and Engineering and ‡Samtel Center for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashish Garg
- †Department of Materials Science and Engineering and ‡Samtel Center for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
16
|
Wu TY, Liao JW, Chen CY. Electrochemical synthesis, characterization and electrochromic properties of indan and 1,3-benzodioxole-based poly(2,5-dithienylpyrrole) derivatives. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.10.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
|
18
|
Zhang Y, Yuan S, Li Y, Zhang W. Enhanced electron collection in inverted organic solar cells using titanium oxide/reduced graphene oxide composite films as electron collecting layers. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|