1
|
Çamurcu T, Sanko V, Ömeroğlu İ, Tümay SO, Şenocak A. Sulfonated-polypyrene aniline/polyaniline composite fortified with Cu-GQD@ZIF8 as an electrochemical enzymatic urea biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6696-6707. [PMID: 39254379 DOI: 10.1039/d4ay01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The determination of urea concentration is essential for human health owing to its crucial role in the ability to metabolize nitrogen-containing substances. This study developed new electrochemical enzymatic detection systems via the synergistic effect of the superior features of novel electropolymerizable pyranine-aniline (PA, 4), polyaniline (PANI) compounds, graphene quantum dots (GQDs) and zeolitic imidazolate framework-8 (ZIF8). The novel compound 4 was characterized via1H-NMR, 13C-NMR, FTIR, and MALDI-TOF mass spectroscopies. Furthermore, Cu-GQD@ZIF8 hybrid materials containing GQD and integrated electroactive Cu metal were prepared in this study. The surface morphology of the prepared Cu-GQD@ZIF8 hybrid material was investigated through microscopic methods such as SEM and TEM, and chemical characterizations were performed using FTIR, XPS, XRD, and TGA analyses. After the characterization of the novel materials, the urease (Urs) enzyme was bound to the new modified electrode surface. Next, the enzymatic biosensor properties of the Urs/Cu-GQD@ZIF8/PANI/PA/GCE sensor electrode for urea detection via reduction of PANI were investigated by DPV and CV techniques. The LOD and LOQ values of the presented sensor were calculated to be 0.77 μM and 2.31 μM, respectively, in the linear range of 1.0-80.0 μM, based on DPV measurements. The presented biosensor system determined the amount of urea in an artificial serum sample, and its accuracy was confirmed via the recovery test and GC-MS analysis.
Collapse
Affiliation(s)
- Taşkın Çamurcu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| | - Vildan Sanko
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
- METU MEMS Center, Ankara, 06530, Turkey
| | - İpek Ömeroğlu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| | | | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| |
Collapse
|
2
|
Chaudhary A, Kumar K, Singh VK, Rai S, Kumar V, Tungala K, Das A, Jana T. Poly(acrylamide)-co-poly(hydroxyethyl)methacrylate-co-poly(cyclohexyl methacrylate) hydrogel platform for stability, storage and biocatalytic applications of urease. Int J Biol Macromol 2024; 265:131039. [PMID: 38518938 DOI: 10.1016/j.ijbiomac.2024.131039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In our present work, an explicit crosslinked thermo-responsive hydrogel platform has been developed, by using polyacrylamide (PAAm), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(cyclohexyl methacrylate) (PCHMA), and then coupled with urease to yield bioconjugates (BCs). Synergic effect of these polymer units provides thermoresponsive nature, optimum crosslinking with desired swelling behaviour, and stability and improved catalytic to Urease in the resultant BCs. Synthesis of the terpolymer has been achieved by employing HEMA (monomer as well as crosslinker), instead of using the conventional crosslinkers, through free radical solution polymerization technique. Various grades of TRPUBs have been fabricated by varying HEMA and CHMA contents while keeping fixed amounts of AAm. Further, the structural analysis of BCs has been done by fourier transform infra-red spectroscopic study and their thermal stabilities have been studied by thermogravimetric analysis. Urea present in TRPUBs has beenanalysed for its hydrolysis atdifferent temperatures viz., 25 °C, 45 °C and 70 °C. Further, the effect of crosslinking, temperature and reaction time on catalytic activities of TRPUBs has been studied. TRPUBs grades have showna maximum swelling capacity up to 5200 %; excellent catalytic activity even at 70 °C; and 85 % activity retention after 18 days storage in buffer medium.
Collapse
Affiliation(s)
- Aradhana Chaudhary
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India; Department of Chemistry, School of Basic & Applied Science, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Vinai K Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Shailja Rai
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Vinod Kumar
- Department of Chemistry, Babu Shivnath Agrawal College, Mathura 281004, Uttar Pradesh, India
| | - Kranthikumar Tungala
- Department of Chemistry, Ewing Christian College, Allahabad University, Prayagraj 211003, Uttar Pradesh, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| |
Collapse
|
3
|
Lee CY, Lin YT, Hong SH, Wang CH, Jeng US, Tung SH, Liu CL. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56072-56083. [PMID: 37982689 DOI: 10.1021/acsami.3c09934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Mixed ionic-electronic conducting (MIEC) thermoelectric (TE) materials offer higher ionic conductivity and ionic Seebeck coefficient compared to those of purely ionic-conducting TE materials. These characteristics make them suitable for direct use in thermoelectric generators (TEGs) as the charge carriers can be effectively transported from one electrode to the other via the external circuit. In the present study, MIEC hydrogels are fabricated via the chemical cross-linking of polyacrylamide (PAAM) and polydopamine (PDA) to form a double network. In addition, electrically conducting carboxylated carbon nanotubes (CNT-COOH) are dispersed evenly within the hydrogel via sonication and interaction with the PDA. Moreover, the electrical properties of the hydrogel are further improved via the in situ polymerization of polyaniline (PANI). The presence of CNT-COOH facilitates the ionic conductivity and enhances the ionic Seebeck coefficient via ionic-electronic interactions between sodium ions and carboxyl groups on CNT-COOH, which can be observed in X-ray photoelectron spectroscopy results, thereby promoting the charge transport properties. As a result, the optimum device exhibits a remarkable ionic conductivity of 175.3 mS cm-1 and a high ionic Seebeck coefficient of 18.6 mV K-1, giving an ionic power factor (PFi) of 6.06 mW m-1 K-2 with a correspondingly impressive ionic figure of merit (ZTi) of 2.65. These values represent significant achievements within the field of gel-state organic TE materials. Finally, a wearable module is fabricated by embedding the PAAM/PDA/CNT-COOH/PANI hydrogel into a poly(dimethylsiloxane) mold. This configuration yields a high power density of 171.4 mW m-2, thus highlighting the considerable potential for manufacturing TEGs for wearable devices capable of harnessing waste heat.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ting Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Electro-stimulated drug release by methacrylated hyaluronic acid-based conductive hydrogel with enhanced mechanical properties. Int J Biol Macromol 2023; 231:123297. [PMID: 36646353 DOI: 10.1016/j.ijbiomac.2023.123297] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Recently, the design of stimuli-responsive hydrogels for controlled drug delivery systems has been extensively investigated to meet therapeutic needs and optimize the release pattern of the drug. Being a natural polyelectrolyte, hyaluronic acid (HA) is excellent potential to generate new opportunities for electro-responsive drug carrier applications. In the current study, HA-based electroconductive hydrogel was developed as a novel smart drug carrier for anti-inflammatory drug release by the combination of in-situ and post polymerization mechanisms. HA was modified through methacrylation reaction to introduce photocrosslinkable groups into its structure and then reduced graphene oxide (rGO) was encapsulated into methacrylated HA (HA/MA) hydrogel by using the photopolymerization technique. In the post polymerization process, polyaniline (PANI) was incorporated/loaded into HA/MA-rGO polymeric network produced in previous step. The produced HA/MA-rGO-PANI hydrogel exhibited sufficient electrical conductivity providing the desirable electro-responsive ability for Ibuprofen (IBU) release. Furthermore, it has superior mechanical performance compared to pure (HA/MA) and rGO containing (HA/MA-rGO) hydrogels. IBU release from the hydrogel was successfully triggered by electrical stimulation and the cumulative drug release also enhanced by increasing of the applied voltage. These results highlighted that the novel HA/MA-rGO-PANI hydrogel could be a promising candidate for electrical-stimulated anti-inflammatory release systems in neural implant applications.
Collapse
|
5
|
Yadav N, Kumar K, Singh VK, Rai S, Blahatia K, Das A, Jana T. Newly designed acrylamide derivative-based pH-responsive hydrogel-urease bioconjugates: synthesis and catalytic urea hydrolysis. SOFT MATTER 2022; 18:8647-8655. [PMID: 36349658 DOI: 10.1039/d2sm00958g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Jack bean urease, the first nickel metalloenzyme, and crystallized enzymes have historical significance due to their several applications in the biomedical and other fields. For the first time, cross-linker free pH-responsive hydrogel-urease bioconjugates have been reported. Without the use of divinyl benzene or divinyl acrylamide derivatives, urease was immobilized inside the hydrogel matrix and various grades of bioconjugates were synthesized. The hydrogel-urease bioconjugate exhibits excellent swelling-deswelling and pH-responsive characteristics without affecting the urease enzyme. The pH-responsive bioconjugates were characterized by FT-IR, powder XRD, SEM, TGA, and UV-vis spectroscopy. Urea hydrolysis and enzyme affinity have been investigated at pH 4, pH 7, and pH 11 using bioconjugates and free urease. At basic pH, BCs showed excellent enzyme activity. In summary, this technique is effective for stabilizing biomacromolecules at different pHs for a variety of real applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - V K Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - Shailja Rai
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur-273010, Uttar Pradesh, India.
| | - Kunal Blahatia
- Department of Chemical Engineering, India Institute of Technology Delhi, New Delhi-110016, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| |
Collapse
|
6
|
Sanko V, Şenocak A, Oğuz Tümay S, Demirbas E. A novel comparative study for electrochemical urea biosensor design: effect of different ferrite nanoparticles (MFe2O4, M: Cu, Co, Ni, Zn) in urease immobilized composite system. Bioelectrochemistry 2022; 149:108324. [DOI: 10.1016/j.bioelechem.2022.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
7
|
|
8
|
Shi H, Dai Z, Sheng X, Xia D, Shao P, Yang L, Luo X. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147430. [PMID: 33964778 DOI: 10.1016/j.scitotenv.2021.147430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Environmentally friendly polymeric materials and derivative technologies play increasingly important roles in the sustainable development of our modern society. Conducting polymer hydrogels (CPHs) synergizing the advantageous characteristics of conventional hydrogels and conducting polymers are promising to satisfy the requirements of environmental sustainability. Beyond their use in energy and biomedical applications that require exceptional mechanical and electrical properties, CPHs are emerging as promising contaminant adsorbents owing to their porous network structure and regulable functional groups. Here, we review the currently available strategies for synthesizing CPHs, focusing primarily on multifunctional applications in energy storage/conversion, biomedical engineering and environmental remediation, and discuss future perspectives and challenges for CPHs in terms of their synthesis and applications. It is envisioned to stimulate new thinking and innovation in the development of next-generation sustainable materials.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100083, PR China.
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
9
|
Uzunçar S, Meng L, Turner AP, Mak WC. Processable and nanofibrous polyaniline:polystyrene-sulphonate (nano-PANI:PSS) for the fabrication of catalyst-free ammonium sensors and enzyme-coupled urea biosensors. Biosens Bioelectron 2021; 171:112725. [DOI: 10.1016/j.bios.2020.112725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
|
10
|
Dhanjai, Sinha A, Kalambate PK, Mugo SM, Kamau P, Chen J, Jain R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech 2019; 20:256. [PMID: 31332631 DOI: 10.1208/s12249-019-1470-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Designing scaffolds with optimum properties is an essential factor for tissue engineering success. They can be seeded with isolated cells or loaded with drugs to stimulate the body ability to repair or regenerate the injured tissues by acting as centers for new tissue formation. Recently, scaffolds gained a significant interest as principal candidates for tissue engineering due to overcoming the autograft or allograft's associated problems. The advancement of the tissue engineering field relies mainly on the introduction of new biomaterials for scaffolds' fabrication. This review presents and criticizes different scaffolds' fabrication techniques with particular emphasis on the fibrous, injectable in situ forming, foam, 3D freeze-dried, 3D printed, and 4D scaffolds. This article highlights on scaffolds' composition which would be beneficial for developing scaffolds that could potentially help to meet the demand for both drug delivery and tissue regeneration.
Collapse
|
12
|
Stimuli-Responsive Hydrogels Based on Polyglycerol Crosslinked with Citric and Fatty Acids. INT J POLYM SCI 2018. [DOI: 10.1155/2018/3267361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyglycerol-based hydrogels from biodegradable raw materials were synthesized by crosslinking reactions of polyglycerol with citric and fatty acids. Three hydrogels were studied varying molar ratios of crosslinking agent. It was found that crosslink amount, type, and size play a crucial role in swelling, thermal, mechanical, and stimuli-responsive properties. The hydrogels absorption capacity changed in response to temperature and pH external stimuli. The hydrogel with the highest swelling capacity absorbed more than 7 times its own weight at room temperature and pH 5. This material increased 14 times its own weight at pH 10. Creep-recovery tests were performed to study the effect of crosslinking agent on mechanical properties. Deformation and percentage of recovery of synthesized hydrogels were obtained. Formation of hydrogels was confirmed using FTIR, and physicochemical properties were analyzed by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetric (DSC), and Dynamic Mechanical Analysis (DMA). This paper aims to give a contribution to biobased hydrogel knowledge from chemical, physicochemical, and mechanical point of view.
Collapse
|
13
|
Effect of the polymerization bath on structure and electrochemical properties of polyaniline-poly(styrene sulfonate) hydrogels. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
|
15
|
Pérez-Martínez C, Morales Chávez SD, del Castillo-Castro T, Lara Ceniceros TE, Castillo-Ortega M, Rodríguez-Félix D, Gálvez Ruiz JC. Electroconductive nanocomposite hydrogel for pulsatile drug release. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Gladisch J, Sarauli D, Schäfer D, Dietzel B, Schulz B, Lisdat F. Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture. Sci Rep 2016; 6:19858. [PMID: 26822141 PMCID: PMC4731776 DOI: 10.1038/srep19858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023] Open
Abstract
Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials; no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.
Collapse
Affiliation(s)
- Johannes Gladisch
- Biosystems Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
| | - David Sarauli
- Biosystems Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
- Department of Chemistry and Centre for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13 (E), D-81377, Munich, Germany
| | - Daniel Schäfer
- Biosystems Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
| | - Birgit Dietzel
- Institute for Thin Film and Microsensor Technologies, Kantstraße 55, D-14513 Teltow, Germany
| | - Burkhard Schulz
- Institute for Thin Film and Microsensor Technologies, Kantstraße 55, D-14513 Teltow, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, D-15745, Wildau, Germany
| |
Collapse
|
17
|
Polyaniline-poly(styrene sulfonate) conducting hydrogels reinforced by supramolecular nanofibers and used as drug carriers with electric-driven release. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Ozdemir Y, Mazi H. pH and Thermo Sensitive Superabsorbent Poly (N-Hydroxymethylacrylamide-co-Itaconic Acid) Hydrogels: Synthesis, Characterization and Kinetic Studies. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.967092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Styrene Sulphonic Acid Doped Polyaniline Based Immunosensor for Highly Sensitive Impedimetric Sensing of Atrazine. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.09.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|