1
|
Flynn CD, Riordan KT, Young TL, Chang D, Wu Z, Isaacson SE, Yousefi H, Das J, Kelley SO. Self-Assembled Monolayer Transporters Enable Reagentless Analysis of Small Molecule Analytes. ACS Sens 2024; 9:3864-3869. [PMID: 39074375 DOI: 10.1021/acssensors.4c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The detection of small molecules beyond glucose remains an ongoing challenge in the field of biomolecular sensing owing to their small size, diverse structures, and lack of alternative non-enzymatic sensing methods. Here, we present a new reagentless electrochemical approach for small molecule detection that involves directed movement of electroactive analytes through a self-assembled monolayer to an electrode surface. Using this method, we demonstrate detection of several physiologically relevant small molecules as well as the capacity for the system to operate in several biological fluids. We anticipate that this mechanism will further improve our capacity for small molecule measurement and provide a new generalizable monolayer-based technique for electrochemical assessment of various electroactive analytes.
Collapse
Affiliation(s)
- Connor D Flynn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S3M2
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208 United States
| | - Kimberly T Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208 United States
| | - Tiana L Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S3M2
| | - Dingran Chang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S3M2
| | - Zhenwei Wu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208 United States
| | - Scott E Isaacson
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208 United States
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208 United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642 United States
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208 United States
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S3M2
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208 United States
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S3M2
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208 United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208 United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611 United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642 United States
| |
Collapse
|
2
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
3
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
4
|
Suprun EV, Radko SP, Kozin SA, Mitkevich VA, Makarov AA. Electrochemical Analysis in Studying β-Amyloid Aggregation. BIOCHEMISTRY (MOSCOW) 2023; 88:S88-S104. [PMID: 37069116 DOI: 10.1134/s0006297923140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
β-amyloid (Aβ) is comprised of a group of peptides formed as a result of cleavage of the amyloid precursor protein by secretases. Aβ aggregation is considered as a central event in pathogenesis of Alzheimer's disease, the most common human neurodegenerative disorder. Molecular mechanisms of Aβ aggregation have intensively being investigated using synthetic Aβ peptides by methods based on monitoring of aggregates, including determination of their size and structure. In this review, an orthogonal approach to the study of Aβ aggregation is considered, which relies on electrochemical registration of the loss of peptide monomers. Electrochemical analysis of Aβ (by voltammetry and amperometric flow injection analysis) is based on registration of the oxidation signal of electroactive amino acid residues of the peptide on an electrode surface. The Aβ oxidation signal disappears, when the peptide is included in the aggregate. The advantages and disadvantages of electrochemical analysis for the study of spontaneous and metal-induced aggregation of Aβ, comparative analysis of various peptide isoforms, and study of the process of complexation of metal ions with the metal-binding domain of Aβ are discussed. It is concluded that the combined use of the electrochemical method and the methods based on detection of Aβ aggregates makes it possible to obtain more complete information about the mechanisms of peptide aggregation.
Collapse
Affiliation(s)
- Elena V Suprun
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey P Radko
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
5
|
Suprun EV, Budnikov HC. Bioelectrochemistry as a Field of Analysis: Historical Aspects and Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Zamzami MA, Rabbani G, Ahmad A, Basalah AA, Al-Sabban WH, Nate Ahn S, Choudhry H. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry 2021; 143:107982. [PMID: 34715586 PMCID: PMC8518145 DOI: 10.1016/j.bioelechem.2021.107982] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The large-scale diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for traceability and treatment during pandemic outbreaks. We developed a fast (2–3 min), easy-to-use, low-cost, and quantitative electrochemical biosensor based on carbon nanotube field-effect transistor (CNT-FET) that allows digital detection of the SARS-CoV-2 S1 in fortifited saliva samples for quick and accurate detection of SARS-CoV-2 S1 antigens. The biosensor was developed on a Si/SiO2 surface by CNT printing with the immobilization of a anti-SARS-CoV-2 S1. SARS-CoV-2 S1 antibody was immobilized on the CNT surface between the S-D channel area using a linker 1-pyrenebutanoic acid succinimidyl ester (PBASE) through non-covalent interaction. A commercial SARS-CoV-2 S1 antigen was used to characterize the electrical output of the CNT-FET biosensor. The SARS-CoV-2 S1 antigen in the 10 mM AA buffer pH 6.0 was effectively detected by the CNT-FET biosensor at concentrations from 0.1 fg/mL to 5.0 pg/mL. The limit of detection (LOD) of the developed CNT-FET biosensor was 4.12 fg/mL. The selectivity test was performed by using target SARS-CoV-2 S1 and non-target SARS-CoV-1 S1 and MERS-CoV S1 antigens in the 10 mM AA buffer pH 6.0. The biosensor showed high selectivity (no response to SARS-CoV-1 S1 or MERS-CoV S1 antigen) with SARS-CoV-2 S1 antigen detection in the 10 mM AA buffer pH 6.0. The biosensor is highly sensitive, saves time, and could be a helpful platform for rapid detection of SARS-CoV-2 S1 antigen from the patients saliva.
Collapse
Affiliation(s)
- Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad A Basalah
- Department of Mechanical Engineering, College of Engineering & Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam H Al-Sabban
- Department of Information Systems, College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea; Fuzbien Technology Institute, 13 Taft Court, suite 222, Rockville, MD 20850, USA.
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Lupaescu AV, Mocanu CS, Drochioiu G, Ciobanu CI. Zinc Binding to NAP-Type Neuroprotective Peptides: Nuclear Magnetic Resonance Studies and Molecular Modeling. Pharmaceuticals (Basel) 2021; 14:ph14101011. [PMID: 34681235 PMCID: PMC8541368 DOI: 10.3390/ph14101011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Aggregation of amyloid-β peptides (Aβ) is a hallmark of Alzheimer’s disease (AD), which is affecting an increasing number of people. Hence, there is an urgent need to develop new pharmaceutical treatments which could be used to prevent the AD symptomatology. Activity-dependent neuroprotective protein (ADNP) was found to be deficient in AD, whereas NAP, an 8-amino-acid peptide (1NAPVSIPQ8) derived from ADNP, was shown to enhance cognitive function. The higher tendency of zinc ion to induce Aβ aggregation and formation of amorphous aggregates is also well-known in the scientific literature. Although zinc binding to Aβ peptides was extensively investigated, there is a shortage of knowledge regarding the relationship between NAP peptide and zinc ions. Therefore, here, we investigated the binding of zinc ions to the native NAP peptide and its analog obtained by replacing the serine residue in the NAP sequence with tyrosine (1NAPVYIPQ8) at various molar ratios and pH values by mass spectrometry (MS) and nuclear magnetic resonancespectroscopy (NMR). Matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry confirmed the binding of zinc ions to NAP peptides, while the chemical shift of Asp1, observed in 1H-NMR spectra, provided direct evidence for the coordinating role of zinc in the N-terminal region. In addition, molecular modeling has also contributed largely to our understanding of Zn binding to NAP peptides.
Collapse
Affiliation(s)
- Ancuta-Veronica Lupaescu
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Cosmin Stefan Mocanu
- Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania; (C.S.M.); (G.D.)
| | - Gabi Drochioiu
- Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania; (C.S.M.); (G.D.)
| | - Catalina-Ionica Ciobanu
- CERNESIM Centre, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Correspondence:
| |
Collapse
|
8
|
Lin Y, Malins LR. An Electrochemical Approach to Designer Peptide α-Amides Inspired by α-Amidating Monooxygenase Enzymes. J Am Chem Soc 2021; 143:11811-11819. [PMID: 34288681 DOI: 10.1021/jacs.1c05718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Designer C-terminal peptide amides are accessed in an efficient and epimerization-free approach by pairing an electrochemical oxidative decarboxylation with a tandem hydrolysis/reduction pathway. Resembling Nature's dual enzymatic approach to bioactive primary α-amides, this method delivers secondary and tertiary amides bearing high-value functional motifs, including isotope labels and handles for bioconjugation. The protocol leverages the inherent reactivity of C-terminal carboxylates, is compatible with the vast majority of proteinogenic functional groups, and proceeds in the absence of epimerization, thus addressing major limitations associated with conventional coupling-based approaches. The utility of the method is exemplified through the synthesis of natural product acidiphilamide A via a key diastereoselective reduction, as well as bioactive peptides and associated analogues, including an anti-HIV lead peptide and blockbuster cancer therapeutic leuprolide.
Collapse
Affiliation(s)
- Yutong Lin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Suprun EV. Direct electrochemistry of proteins and nucleic acids: The focus on 3D structure. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Behera K, Wani FA, Bhat AR, Juneja S, Banjare MK, Pandey S, Patel R. Behavior of lysozyme within ionic liquid-in-water microemulsions. J Mol Liq 2021; 326:115350. [DOI: https:/doi.org/10.1016/j.molliq.2021.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
11
|
Behera K, Wani FA, Bhat AR, Juneja S, Banjare MK, Pandey S, Patel R. Behavior of lysozyme within ionic liquid-in-water microemulsions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Suprun EV, Khmeleva SA, Kutdusova GR, Duskaev IF, Kuznetsova VE, Lapa SA, Chudinov AV, Radko SP. Deoxyuridine triphosphates modified with tyrosine or tryptophan aromatic groups for direct electrochemical detection of double-stranded DNA. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Metallodendrimer‐sensitised Cytochrome P450 3A4 Electrochemical Biosensor for TB Drugs. ELECTROANAL 2020. [DOI: 10.1002/elan.202060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Vadlamani BS, Uppal T, Verma SC, Misra M. Functionalized TiO 2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20205871. [PMID: 33080785 DOI: 10.1101/2020.09.07.20190173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 05/24/2023]
Abstract
The COronaVIrus Disease (COVID-19) is a newly emerging viral disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid increase in the number of COVID-19 cases worldwide led the WHO to declare a pandemic within a few months after the first case of infection. Due to the lack of a prophylactic measure to control the virus infection and spread, early diagnosis and quarantining of infected as well as the asymptomatic individuals are necessary for the containment of this pandemic. However, the current methods for SARS-CoV-2 diagnosis are expensive and time consuming, although some promising and inexpensive technologies are becoming available for emergency use. In this work, we report the synthesis of a cheap, yet highly sensitive, cobalt-functionalized TiO2 nanotubes (Co-TNTs)-based electrochemical sensor for rapid detection of SARS-CoV-2 through sensing the spike (receptor binding domain (RBD)) present on the surface of the virus. A simple, low-cost, and one-step electrochemical anodization route was used for synthesizing TNTs, followed by an incipient wetting method for cobalt functionalization of the TNTs platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein of SARS-CoV-2 even at very low concentration (range of 14 to 1400 nM (nano molar)). Additionally, our sensor showed a linear response in the detection of viral protein over the concentration range. Thus, our Co-TNT sensor is highly effective in detecting SARS-CoV-2 S-RBD protein in approximately 30 s, which can be explored for developing a point of care diagnostics for rapid detection of SARS-CoV-2 in nasal secretions and saliva samples.
Collapse
Affiliation(s)
- Bhaskar S Vadlamani
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Mano Misra
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
15
|
Functionalized TiO 2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. SENSORS 2020; 20:s20205871. [PMID: 33080785 PMCID: PMC7589637 DOI: 10.3390/s20205871] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
The COronaVIrus Disease (COVID-19) is a newly emerging viral disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid increase in the number of COVID-19 cases worldwide led the WHO to declare a pandemic within a few months after the first case of infection. Due to the lack of a prophylactic measure to control the virus infection and spread, early diagnosis and quarantining of infected as well as the asymptomatic individuals are necessary for the containment of this pandemic. However, the current methods for SARS-CoV-2 diagnosis are expensive and time consuming, although some promising and inexpensive technologies are becoming available for emergency use. In this work, we report the synthesis of a cheap, yet highly sensitive, cobalt-functionalized TiO2 nanotubes (Co-TNTs)-based electrochemical sensor for rapid detection of SARS-CoV-2 through sensing the spike (receptor binding domain (RBD)) present on the surface of the virus. A simple, low-cost, and one-step electrochemical anodization route was used for synthesizing TNTs, followed by an incipient wetting method for cobalt functionalization of the TNTs platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein of SARS-CoV-2 even at very low concentration (range of 14 to 1400 nM (nano molar)). Additionally, our sensor showed a linear response in the detection of viral protein over the concentration range. Thus, our Co-TNT sensor is highly effective in detecting SARS-CoV-2 S-RBD protein in approximately 30 s, which can be explored for developing a point of care diagnostics for rapid detection of SARS-CoV-2 in nasal secretions and saliva samples.
Collapse
|
16
|
Suprun EV, Karpova EV, Radko SP, Karyakin AA. Advanced electrochemical detection of amino acids and proteins through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Tonello S, Stradolini F, Abate G, Uberti D, Serpelloni M, Carrara S, Sardini E. Electrochemical detection of different p53 conformations by using nanostructured surfaces. Sci Rep 2019; 9:17347. [PMID: 31758050 PMCID: PMC6874615 DOI: 10.1038/s41598-019-53994-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Protein electrochemistry represents a powerful technique for investigating the function and structure of proteins. Currently available biochemical assays provide limited information related to the conformational state of proteins and high costs. This work provides novel insights into the electrochemical investigation of the metalloprotein p53 and its redox products using label-free direct electrochemistry and label-based antibody-specific approaches. First, the redox activities of different p53 redox products were qualitatively investigated on carbon-based electrodes. Then, focusing on the open p53 isoform (denatured p53), a quantitative analysis was performed, comparing the performances of different bulk and nanostructured materials (carbon and platinum). Overall, four different p53 products could be successfully discriminated, from wild type to denatured. Label-free analysis suggested a single electron exchange with electron transfer rate constants on the order of 1 s-1. Label-based analysis showed decreasing affinity of pAb240 towards denatured, oxidized and nitrated p53. Furthermore, platinum nanostructured electrodes showed the highest enhancement of the limit of detection in the quantitative analysis (100 ng/ml). Overall, the obtained results represent a first step towards the implementation of highly requested complex integrated devices for clinical practices, with the aim to go beyond simple protein quantification.
Collapse
Affiliation(s)
- Sarah Tonello
- Department of Information Engineering, University of Brescia, Brescia, Italy.
| | | | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Sandro Carrara
- Integrated Systems Laboratory (LSI), EPFL, Lausanne, Switzerland
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Sierra T, Crevillen AG, Escarpa A. Determination of Glycoproteins by Microchip Electrophoresis Using Os(VI)-Based Selective Electrochemical Tag. Anal Chem 2019; 91:10245-10250. [DOI: 10.1021/acs.analchem.9b02375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcala de Henares, Madrid E-28871, Spain
| | - Agustín G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid E-28040, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcala de Henares, Madrid E-28871, Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR), University of Alcalá, Alcalá de Henares, Madrid E-28805, Spain
| |
Collapse
|
19
|
Manzanares-Palenzuela CL, Hermanova S, Sofer Z, Pumera M. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. NANOSCALE 2019; 11:12124-12131. [PMID: 31211311 DOI: 10.1039/c9nr02754h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
3D printing technologies are currently appealing for the research community due to their demonstrated versatility for different scientific applications. One of the most commonly used materials for 3D printing is polylactic acid (PLA), a biodegradable polymer that can be fully or partially digested by enzymes such as proteinase K. This work seeks to exploit PLA's biodegradability to selectively and reproducibly sculpt 3D-printed graphene/PLA surfaces to turn them into sensitive electroactive platforms. Proteinase K-catalyzed digestion of 3D-printed graphene/PLA electrodes is proposed as an environmentally friendly, highly controllable, and reproducible activation procedure of 3D-printed electrodes. Proteinase K digests PLA in a controllable fashion, exposing electroactive graphene sheets embedded within the 3D-printed structures to the solution and therefore achieving a tailorable electrode performance. A proof-of-concept biosensing application is proposed, based on the immobilization of enzyme alkaline phosphatase at the sculptured electrodes with the subsequent electrochemical detection of 1-naphthol in aqueous media. This work attempts to continue demonstrating the potential of 3D printing in electroanalytical applications, as well as to explore the exciting possibilities arising from merging biotechnological processes with these manufacturing procedures.
Collapse
Affiliation(s)
- Carmen Lorena Manzanares-Palenzuela
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Czech Republic.
| | - Sona Hermanova
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Czech Republic. and Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628, Czech Republic
| | - Zdenek Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Czech Republic. and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
| |
Collapse
|
20
|
Suprun EV. Protein post-translational modifications – A challenge for bioelectrochemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Zhang W, Wang L, Yang Y, Gaskin P, Teng KS. Recent Advances on Electrochemical Sensors for the Detection of Organic Disinfection Byproducts in Water. ACS Sens 2019; 4:1138-1150. [PMID: 31012308 DOI: 10.1021/acssensors.9b00272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Irreversible organ damage or even death frequently occurs when humans or animals unknowingly drink contaminated water. Therefore, in many countries drinking water is disinfected to ensure removal of harmful pathogens from drinking water. If upstream water treatment prior to disinfection is not adequate, disinfection byproducts (DBPs) can be formed. DBPs can exist as wide variety of compounds, but up until now, only several typical compounds have drinking water standards attributed to them. However, it is apparent that the range of DBPs present in water can comprise hundreds of compounds, some of which are at high enough concentrations to be toxic or potentially carcinogenic. Hence, it becomes increasingly significant and urgent to develop an accessible, affordable, and durable sensing platform for a broader range and more sensitive detection of DBPs. Compared with well-established laboratory detection techniques, electrochemical sensing has been identified as a promising alternative that will provide rapid, affordable, and sensitive DBP monitoring in remote water sources. Therefore, this Review covers current state-of-the-art development (within the past decade) in electrochemical sensing to detect organic DBPs in water, which covered three major aspects: (1) recognition mechanism, (2) electrodes with signal amplification, and (3) signal read-out techniques. Moreover, comprehensive quality assessments on electrochemical biosensors, including linear detection range, limit of detection (LoD) and recovery, have also been summarized.
Collapse
Affiliation(s)
- Wei Zhang
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
- Research Centre for Water Environment Technology, Department of Urban Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Lue Wang
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Yuesuo Yang
- College of Environment and Recourses, Jilin University, Changchun 130012, China
| | - Paul Gaskin
- Dŵr Cymru Welsh Water, Newport, NP10 8FZ, United Kingdom
| | - Kar Seng Teng
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
22
|
Sierra T, Dortez S, González MC, Javier Palomares F, Crevillen AG, Escarpa A. Disposable carbon nanotube scaffold films for fast and reliable assessment of total α1-acid glycoprotein in human serum using adsorptive transfer stripping square wave voltammetry. Anal Bioanal Chem 2018; 411:1887-1894. [DOI: 10.1007/s00216-018-1419-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
|
23
|
Black phosphorene and PEDOT:PSS-modified electrode for electrochemistry of hemoglobin. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Shumyantseva VV, Bulko TV, Sigolaeva LV, Kuzikov AV, Pogodin PV, Archakov AI. Molecular imprinting coupled with electrochemical analysis for plasma samples classification in acute myocardial infarction diagnostic. Biosens Bioelectron 2018; 99:216-222. [DOI: 10.1016/j.bios.2017.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
25
|
Suprun EV, Radko SP, Farafonova TE, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Electrochemical detection of protein post-translational modifications: Phosphorylation and nitration of amyloid-beta (1–16). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Suprun EV, Radko SP, Farafonova TE, Mitkevich VA, Makarov AA, Archakov AI, Shumyantseva VV. Application of an Electrochemical Method to Evaluation of Amyloid-β Aggregation Inhibitors: Testing the RGKLVFFGR-NH2Peptide Antiaggregant. ELECTROANAL 2017. [DOI: 10.1002/elan.201700499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elena V. Suprun
- Institute of Biomedical Chemistry; Pogodinskaya Street 10/8 Moscow 119121 Russia
| | - Sergey P. Radko
- Institute of Biomedical Chemistry; Pogodinskaya Street 10/8 Moscow 119121 Russia
| | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov Street 32 Moscow 119991 Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov Street 32 Moscow 119991 Russia
| | | | | |
Collapse
|
27
|
Sensitivity enhancement of electrochemical biosensor via cobalt nanoflowers on graphene and protein conformational intermediate. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Chen W, Niu X, Li X, Li X, Li G, He B, Li Q, Sun W. Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:135-140. [PMID: 28866148 DOI: 10.1016/j.msec.2017.05.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 11/25/2022]
Abstract
Palladium-graphene (Pd-GR) nanocomposite was acted as modifier for construction of the modified electrode with direct electrochemistry of hemoglobin (Hb) realized. By using Nafion as the immobilization film, Hb was fixed tightly on Pd-GR nanocomposite modified carbon ionic liquid electrode. Electrochemical behaviors of Hb modified electrode were checked by cyclic voltammetry and a pair of redox peaks originated from direct electron transfer of Hb was appeared. The Hb modified electrode had excellent electrocatalytic activity to the reduction of trichloroacetic acid and sodium nitrite in the concentration range from 0.6 to 13.0mmol·L-1 and from 0.04 to 0.5 mmol·L-1. Therefore Pd-GR nanocomposite was proven to be a good candidate for the fabrication of third-generation electrochemical biosensor.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xueliang Niu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoyan Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaobao Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Guangjiu Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bolin He
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiutong Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Key Laboratory of Soft Chemistry and Functional Materials of Ministry Education, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
29
|
Ahmadi S, Ebralidze II, She Z, Kraatz HB. Electrochemical studies of tau protein-iron interactions—Potential implications for Alzheimer’s Disease. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Suprun EV, Radko SP, Andreev EA, Khmeleva SA, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Electrochemical detection of Zn(II)- and Cu(II)-induced amyloid-β aggregation: Quantitative aspects and application to amyloid-β isoforms. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Suprun EV, Zharkova MS, Veselovsky AV, Archakov AI, Shumyantseva VV. Electrochemical oxidation of thrombin on carbon screen printed electrodes. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Suprun EV, Radko SP, Khmeleva SA, Mitkevich VA, Archakov AI, Makarov AA, Shumyantseva VV. Electrochemical oxidation of amyloid-beta peptide isoforms on carbon screen printed electrodes. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Belsare KD, Horn T, Ruff AJ, Martinez R, Magnusson A, Holtmann D, Schrader J, Schwaneberg U. Directed evolution of P450cin for mediated electron transfer. Protein Eng Des Sel 2016; 30:119-127. [PMID: 28007937 DOI: 10.1093/protein/gzw072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 11/13/2022] Open
Abstract
Directed evolution is a powerful method to optimize enzyme properties for application demands. Interesting targets are P450 monooxygenases which catalyze the stereo- and regiospecific hydroxylation of chemically inert C-H bonds. Synthesis employing P450s under cell-free reaction conditions is limited by low total turnover numbers, enzyme instability, low product yields and the requirement of the expensive co-factor NADPH. Bioelectrocatalysis is an alternative to replace NADPH in cell-free P450-catalyzed reactions. However, natural enzymes are often not suitable for using non-natural electron delivery systems. Here we report the directed evolution of a previously engineered P450 CinA-10aa-CinC fusion protein (named P450cin-ADD-CinC) to use zinc/cobalt(III)sepulchrate as electron delivery system for an increased hydroxylation activity of 1,8-cineole. Two rounds of Sequence Saturation Mutagenesis (SeSaM) each followed by one round of multiple site-saturation mutagenesis of the P450 CinA-10aa-CinC fusion protein generated a variant (Gln385His, Val386Ser, Thr77Asn, Leu88Arg; named KB8) with a 3.8-fold increase in catalytic efficiency (28 µM-1 min-1) compared to P450cin-ADD-CinC (7 µM-1 min-1). Furthermore, variant KB8 exhibited a 1.5-fold higher product formation (500 µM µM-1 P450) compared to the equimolar mixture of CinA, CinC and Fpr using NADPH as co-factor (315 µM µM-1 P450). In addition, electrochemical experiments with the electron delivery system platinum/cobalt(III)sepulchrate showed that the KB8 variant had a 4-fold higher product formation rate (0.16 nmol (nmol) P450-1 min-1 cm-2) than the P450cin-ADD-CinC (0.04 nmol (nmol) P450-1 min-1 cm-2). In summary, the current work shows prospects of using directed evolution to generate P450 enzymes suitable for use with alternative electron delivery systems.
Collapse
Affiliation(s)
- Ketaki D Belsare
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Thomas Horn
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ronny Martinez
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Anders Magnusson
- Biochemical Engineering Group, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Dirk Holtmann
- Biochemical Engineering Group, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Jens Schrader
- Biochemical Engineering Group, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany .,DWI-Leibniz-Institut für Interaktive Materialien e. V., Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
34
|
Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci Rep 2016; 6:32429. [PMID: 27599852 PMCID: PMC5013270 DOI: 10.1038/srep32429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R(2) = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin.
Collapse
|
35
|
Karfa P, Madhuri R, Sharma PK. A battle between spherical and cube-shaped Ag/AgCl nanoparticle modified imprinted polymer to achieve femtogram detection of alpha-feto protein. J Mater Chem B 2016; 4:5534-5547. [PMID: 32263351 DOI: 10.1039/c6tb01306f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, a sensitive and selective molecularly imprinted polymer modified electrochemical sensor was developed for the detection of the hepatocellular carcinoma (HCC) biomarker, alpha feto protein (AFP) on the surface of specifically designed Ag/AgCl nanoparticles. Herein, for the first time, the effect of the shape of nanoparticles on the behavior of an imprinted polymer was studied using cube- and spherical-shaped Ag/AgCl nanoparticles. It was found that cube-shaped nanoparticles have high surface to volume ratios and higher electrocatalytic activity, and are, therefore, a suitable platform for the synthesis of imprinted polymers. Herein, we have demonstrated how a change in the morphology of the nanomaterials can affect the electrochemical and adsorption properties of an imprinted polymer towards the target analyte (here, AFP). A cube-shaped nanoparticle@imprinted polymer was used for the fabrication of the electrochemical sensor, the analytical performance of which was shown, by a square wave stripping voltammetric technique, to be good for the detection of AFP. The current response of the electrochemical sensor was linear for AFP concentrations in the range from 0.10 to 700.0 pg mL-1, with an ultra trace detection limit of 24.6 fg mL-1. This sensor offers high selectivity, sensitivity, simplicity and clinical applicability for AFP determination in human blood serum, plasma, and urine, without using antibodies or any biological components, this has not been reported for previously reported systems. The proposed sensor has the potential to be used as an alternative to the commercially available, costly, sophisticated enzyme-linked immunosorbent assay kits for AFP determination.
Collapse
Affiliation(s)
- Paramita Karfa
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826 004, India.
| | | | | |
Collapse
|
36
|
Liu Y, Wang Q, She P, Gong J, Wu W, Xu S, Li J, Zhao K, Deng A. Chitosan-coated hemoglobin microcapsules for use in an electrochemical sensor and as a carrier for oxygen. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1908-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Direct electrochemical oxidation of amyloid-β peptides via tyrosine, histidine, and methionine residues. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
38
|
Vacek J, Zatloukalova M, Geleticova J, Kubala M, Modriansky M, Fekete L, Masek J, Hubatka F, Turanek J. Electrochemical Platform for the Detection of Transmembrane Proteins Reconstituted into Liposomes. Anal Chem 2016; 88:4548-56. [DOI: 10.1021/acs.analchem.6b00618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jan Vacek
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Martina Zatloukalova
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jaroslava Geleticova
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Martin Kubala
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Martin Modriansky
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Ladislav Fekete
- Institute
of Physics, Academy of Sciences of the Czech Republic, Na Slovance
2, 18221 Prague, Czech Republic
| | - Josef Masek
- Department
of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i.,
Hudcova 70, 621 00 Brno, Czech Republic
| | - Frantisek Hubatka
- Department
of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i.,
Hudcova 70, 621 00 Brno, Czech Republic
| | - Jaroslav Turanek
- Department
of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i.,
Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
39
|
Suprun EV, Khmeleva SA, Radko SP, Archakov AI, Shumyantseva VV. Electrochemical Analysis of Amyloid-β Domain 1-16 Isoforms and Their Complexes with Zn(II) Ions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Radko SP, Khmeleva SA, Suprun EV, Kozin SA, Bodoev NV, Makarov AA, Archakov AI, Shumyantseva VV. [Physico-chemical methods for studing β-amyloid aggregation]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:203-18. [PMID: 25978387 DOI: 10.18097/pbmc20156102203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative pathology. According to the amyloid cascade hypothesis, a key event of the Alzheimer's disease pathogenesis is a transition of the β-amyloid peptide (Аβ) from the monomeric form to the aggregated state. The mechanism of Аβ aggregation is intensively studied in vitro, by means of synthetic peptides and various physico-chemical methods allowing evaluation of size, molecular structure, and morphology of the formed aggregates. The paper reviews both the well-known and recently introduced physico-chemical methods for analysis of Аβ aggregation, including microscopу, optical and fluorescent methods, method of electron paramagnetic resonance, electrochemical and electrophoretic methods, gel-filtration, and mass spectrometric methods. Merits and drawbacks of the methods are discussed. The unique possibility to simultaneously observe Аβ monomers as well oligomers and large aggregates by means of atomic force microscopy or fluorescence correlation spectroscopy is emphasized. The high detection sensitivity of the latter method, monitoring the aggregation process in Аβ solutions at low peptide concentrations is underlined. Among mass spectrometric methods, the ion mobility mass spectrometry is marked out as a method enabling to obtain information about both the spectrum of Аβ oligomers and their structure. It is pointed out that the use of several methods giving the complementary data about Аβ aggregates is the best experimental approach to studying the process of b-amyloid peptide aggregation in vitro.
Collapse
Affiliation(s)
- S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia; Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - S A Khmeleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Suprun
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S A Kozin
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - N V Bodoev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Makarov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
41
|
Tao W, Xie Q, Wang H, Ke S, Lin P, Zeng X. Integration of a miniature quartz crystal microbalance with a microfluidic chip for amyloid beta-Aβ42 quantitation. SENSORS 2015; 15:25746-60. [PMID: 26473864 PMCID: PMC4634447 DOI: 10.3390/s151025746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
A miniature quartz crystal microbalance (mQCM) was integrated with a polydimethylsiloxane (PDMS) microfluidic device for on-chip determination of amyloid polypeptide–Aβ42. The integration techniques included photolithography and plasma coupling. Aβ42 antibody was immobilized on the mQCM surface using a cross-linker method, and the resonance frequency of mQCM shifted negatively due to antibody-antigen binding. A linear range from 0.1 µM to 3.2 µM was achieved. By using matrix elimination buffer, i.e., matrix phosphate buffer containing 500 µg/mL dextran and 0.5% Tween 20, Aβ42 could be successfully detected in the presence of 75% human serum. Additionally, high temperature treatments at 150 °C provided a valid method to recover mQCM, and PDMS-mQCM microfluidic device could be reused to some extent. Since the detectable Aβ42 concentration could be as low as 0.1 µM, which is close to cut-off value for Alzheimer patients, the PDMS-mQCM device could be applied in early Alzheimer’s disease diagnosis.
Collapse
Affiliation(s)
- Wenyan Tao
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China.
| | - Qingji Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Hairui Wang
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shanming Ke
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
42
|
Suprun EV, Zaryanov NV, Radko SP, Kulikova AA, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Tyrosine Based Electrochemical Analysis of Amyloid-β Fragment (1-16) Binding to Metal(II) Ions. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Radko SP, Khmeleva SA, Suprun EV, Kozin SA, Bodoev NV, Makarov AA, Archakov AI, Shumyantseva VV. Physico-chemical methods for studying amyloid-β aggregation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815030075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Shumyantseva VV, Bulko TV, Suprun EV, Kuzikov AV, Agafonova LE, Archakov AI. [Electrochemical methods for biomedical investigations]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:188-202. [PMID: 25978386 DOI: 10.18097/pbmc20156102188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the review, authors discussed recently published experimental data concerning highly sensitive electrochemical methods and technologies for biomedical investigations in the postgenomic era. Developments in electrochemical biosensors systems for the analysis of various bio objects are also considered: cytochrome P450s, cardiac markers, bacterial cells, the analysis of proteins based on electro oxidized amino acids as a tool for analysis of conformational events. The electroanalysis of catalytic activity of cytochromes P450 allowed developing system for screening of potential substrates, inhibitors or modulators of catalytic functions of this class of hemoproteins. The highly sensitive quartz crystal microbalance (QCM) immunosensor has been developed for analysis of bio affinity interactions of antibodies with troponin I in plasma. The QCM technique allowed real-time monitoring of the kinetic differences in specific interactions and nonspecific sorption, with out multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, calculated using experimental data. Based on the electroactivity of bacterial cells, the electrochemical system for determination of sensitivity of the microbial cells to antibiotics cefepime, ampicillin, amikacin, and erythromycin was proposed. It was shown that the minimally detectable cell number corresponds to 106 CFU per electrode. The electrochemical method allows estimating the degree of E.coli JM109 cells resistance to antibiotics within 2-5 h. Electrosynthesis of polymeric analogs of antibodies for myoglobin (molecularly imprinted polymer, MIP) on the surface of graphite screen-printed electrodes as sensor elements with o- phenylenediamine as the functional monomer was developed. Molecularly imprinted polymers demonstrate selective complementary binding of a template protein molecule (myoglobin) by the "key-lock" principle.
Collapse
Affiliation(s)
- V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; IBMC-EcoBioPharm Company, Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Suprun
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|