1
|
Theoretical Study of Vinyl-Sulfonate Monomers and Their Effect as the Dopants of Polyaniline Dimers. Molecules 2022; 27:molecules27196353. [PMID: 36234890 PMCID: PMC9572678 DOI: 10.3390/molecules27196353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Establishing the structure–property relationships of monomers and polymers via theoretical chemistry is vital for designing new polymer structures with a specific application. Developing bifunctional monomers with selective polymerizable sites is one of the strategies employed to obtain complex polymeric systems. In this work, a theoretical study on anilinium 2-acrylamide-2-methyl-1-propanesulfonate (ani-AMPS) and anilinium 4-styrenesulfonate (ani-SS) monomers and their respective doped polyaniline dimer (PAni-d AMPS or PAni-d SS) was performed. The study focused on understanding the susceptibility of the vinyl group to a radical attack and the conformation changes resulting from the coordinated covalent bond between sulfonate and aniliniun. Applying Density Functional Theory with the B3LYP functional and a basis set of 6 − 31 + G(d,p), the structures of the ani-AMPS, ani-SS, PAni-d AMPS, and PAni-d SS were optimized, and the different chemical descriptors were determined. The simulation showed that the reactivity of the vinyl group in the ani-AMPS is slightly higher. The sulfonate group undergoes a conformational change when bonding with PAni-d AMPS or PAni-d SS compared to its respective bifunctional monomer. Additionally, the electronegativity of PAni-d depends on the dopant’s structure. Thus, the bonded spacer between the vinyl and sulfonate groups (dopant) plays a notable role in the final characteristics of ani-AMPS, ani-SS, PAni-d AMPS, and PAni-d SS.
Collapse
|
2
|
Ionela Raluca CS, van Staden J(KF, Stefan-van Staden RI. Minireview - Recent Developments in Electrochemical Detection of Atrazine. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Comnea-Stancu Ionela Raluca
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
3
|
Xenobiotics-Division and Methods of Detection: A Review. J Xenobiot 2021; 11:130-141. [PMID: 34842778 PMCID: PMC8628977 DOI: 10.3390/jox11040009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Xenobiotics are compounds of synthetic origin, usually used for domestic, agricultural, and industrial purposes; in the environment, they are present in micropollutant concentrations and high concentrations (using ng/L to µg/L units). Xenobiotics can be categorized according to different criteria, including their nature, uses, physical state, and pathophysiological effects. Their impacts on humans and the environment are non-negligible. Prolonged exposure to even low concentrations may have toxic, mutagenic, or teratogenic effects. Wastewater treatment plants that are ineffective at minimizing the release of xenobiotic compounds are one of the main sources of xenobiotics in the environment (e.g., xenobiotic compounds reach the environment, affecting both humans and animals). In order to minimize the negative impacts, various laws and regulations have been adopted in the EU and across the globe, with an emphasis on xenobiotics removal from the environment, in a way that is economically, environmentally, and socially acceptable, and will not result in their accumulation, or creation of compounds that are more harmful. Detection methods allow detecting even small concentrations of xenobiotics in samples, but the problem is the diversity and mix of compounds present in the environment, in which it is not known what their effects are). In this review, the division of xenobiotics and their detection methods will be presented.
Collapse
|
4
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
5
|
Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosens Bioelectron 2020; 165:112382. [PMID: 32729507 DOI: 10.1016/j.bios.2020.112382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
The increasing level of pesticides and herbicides in food and water sources is a growing threat to human health and the environment. The development of portable, sensitive, specific, simple, and cost-effective sensors is hence in high demand to avoid exposure or consumption of these chemicals through efficient monitoring of their levels in food as well as water samples. The use of nanomaterials (NMs) for the construction of an immunosensing system was demonstrated to be an efficient and effective option to realize selective sensing against pesticides/herbicides. The potential of such applications has hence been demonstrated for a variety of NMs including graphene, carbon nanotubes (CNTs), metal nanoparticles, and nano-polymers either in pristine or composite forms based on diverse sensing principles (e.g., electrochemical, optical, and quartz crystal microbalance (QCM)). This article evaluates the development, applicability, and performances of NM-based immunosensors for the measurement of pesticides and herbicides in water, food, and soil samples. The performance of all the surveyed sensors has been evaluated on the basis of key parameters, e.g., detection limit (DL), sensing range, and response time.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Saraf M, Rajak R, Mobin SM. MOF Derived High Surface Area Enabled Porous Co
3
O
4
Nanoparticles for Supercapacitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901652] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohit Saraf
- Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology Indore, Simrol Khandwa Road Indore-453552 India
| | - Richa Rajak
- Discipline of ChemistryIndian Institute of Technology Indore, Simrol Indore-453552, Khandwa Road India
| | - Shaikh M. Mobin
- Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology Indore, Simrol Khandwa Road Indore-453552 India
- Discipline of ChemistryIndian Institute of Technology Indore, Simrol Indore-453552, Khandwa Road India
- Discipline of Bioscience and Biomedical EngineeringIndian Institute of Technology Indore, Simrol, Khandwa Road Indore-453552 India
| |
Collapse
|
7
|
Shoaie N, Daneshpour M, Azimzadeh M, Mahshid S, Khoshfetrat SM, Jahanpeyma F, Gholaminejad A, Omidfar K, Foruzandeh M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Mikrochim Acta 2019; 186:465. [PMID: 31236681 DOI: 10.1007/s00604-019-3588-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Polyaniline and its composites with nanoparticles have been widely used in electrochemical sensor and biosensors due to their attractive properties and the option of tuning them by proper choice of materials. The review (with 191 references) describes the progress made in the recent years in polyaniline-based biosensors and their applications in clinical sensing, food quality control, and environmental monitoring. A first section summarizes the features of using polyaniline in biosensing systems. A subsequent section covers sensors for clinical applications (with subsections on the detection of cancer cells and bacteria, and sensing of glucose, uric acid, and cholesterol). Further sections discuss sensors for use in the food industry (such as for sulfite, phenolic compounds, acrylamide), and in environmental monitoring (mainly pesticides and heavy metal ions). A concluding section summarizes the current state, highlights some of the challenges currently compromising performance in biosensors and nanobiosensors, and discusses potential future directions. Graphical abstract Schematic presentation of electrochemical sensor and biosensors applications based on polyaniline/nanoparticles in various fields of human life including medicine, food industry, and environmental monitoring. The simultaneous use of suitable properties polyaniline and nanoparticles can provide the fabrication of sensing systems with high sensitivity, short response time, high signal/noise ratio, low detection limit, and wide linear range by improving conductivity and the large surface area for biomolecules immobilization.
Collapse
Affiliation(s)
- Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, P.O. Box: 1985717443, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran.,Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, P.O. Box: 89195-999, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, P.O. Box: H3A 0E9, Canada
| | - Seyyed Mehdi Khoshfetrat
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, P.O. Box:1411713137, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Science, Tehran, P.O. Box:1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Foruzandeh
- Department of Biotechnology, Tarbiat Modares University of Medical Science, P.O. Box 14115-111, Tehran, Iran.
| |
Collapse
|
8
|
Design of a facile and label-free electrochemical aptasensor for detection of atrazine. Talanta 2019; 201:156-164. [PMID: 31122406 DOI: 10.1016/j.talanta.2019.03.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/30/2019] [Indexed: 01/28/2023]
Abstract
A facile and label-free electrochemical aptasensor for detection of atrazine (ATZ) was designed based on nickel hexacyanoferrate nanoparticles (NiHCF NPs) and electrochemically reduced graphene oxide (ERGO). Because of ERGO perfect electrochemical conductivity and large surface area, it was first modified on glassy carbon electrode (GCE) surface by electrochemical reduction. NiHCF NPs were immobilized on ERGO/GCE as a signal probe with well-defined peaks and good stability. Subsequently, gold nanoparticles (Au NPs) were electrodeposited on NiHCF NPs/ERGO to anchored aptamer and increase the conductivity and stability of the electrode. When ATZ was added, ATZ-aptamer complexes generated with poor conductivity on the sensor surface increased the hindrance of electron transfer, leading to electrochemical signal decrease. The signal change was used to detect ATZ quantitatively. The designed aptasensor exhibited good analytical performance for determining ATZ. A linear curve was obtained in the range of 0.25-250 pM with a low detection limit of 0.1 pM, and it showed perfect selectivity for ATZ in the presence of diverse interferents. Meanwhile, the electrochemical aptasensor was employed to evaluate ATZ content in the samples.
Collapse
|
9
|
Saraf M, Natarajan K, Mobin SM. Emerging Robust Heterostructure of MoS 2-rGO for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16588-16595. [PMID: 29697955 DOI: 10.1021/acsami.8b04540] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The intermittent nature of renewable energy resources has led to a continuous mismatch between energy demand and supply. A possible solution to overcome this persistent problem is to design appropriate energy-storage materials. Supercapacitors based on different nanoelectrode materials have emerged as one of the promising storage devices. In this work, we investigate the supercapacitor properties of a molybdenum disulfide-reduced graphene oxide (rGO) heterostructure-based binder-free electrode, which delivered a high specific capacitance (387.6 F g-1 at 1.2 A g-1) and impressive cycling stability (virtually no loss up to 1000 cycles). In addition, the possible role of rGO in the composite toward synergistically enhanced supercapacitance has been highlighted. Moreover, an attempt has been made to correlate the electrochemical impedance spectroscopy studies with the voltammetric analyses. The performance exceeds that of the reported state-of-the-art structures.
Collapse
|
10
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Saini AK, Saraf M, Kumari P, Mobin SM. A highly selective and sensitive chemosensor forl-tryptophan by employing a Schiff based Cu(ii) complex. NEW J CHEM 2018. [DOI: 10.1039/c7nj04595f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Construction of a new Cu(ii) complex (1) based modified glassy carbon electrode (1-GCE) for highly selective and sensitive detection ofl-tryptophan (l-Trp).
Collapse
Affiliation(s)
- Anoop Kumar Saini
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Mohit Saraf
- Discipline of Metallurgy Engineering and Materials Science
- Indore 453552
- India
| | - Pratibha Kumari
- Discipline of Biosciences and Bio-Medical Engineering
- Indore 453552
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|
12
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Saraf M, Natarajan K, Mobin SM. Multifunctional porous NiCo2O4 nanorods: sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. NEW J CHEM 2017. [DOI: 10.1039/c7nj01519d] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multifunctional NiCo2O4 nanorods fabricated by a simple two-step method exhibit excellent performance in glucose sensors as well as supercapacitors.
Collapse
Affiliation(s)
- Mohit Saraf
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Kaushik Natarajan
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Shaikh M. Mobin
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
- Discipline of Chemistry
| |
Collapse
|
14
|
Saraf M, Natarajan K, Mobin S. Microwave assisted fabrication of a nanostructured reduced graphene oxide (rGO)/Fe2O3 composite as a promising next generation energy storage material. RSC Adv 2017. [DOI: 10.1039/c6ra24766k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A supercapacitor electrode material, rGO–Fe2O3 composite, prepared by a facile microwave assisted in situ technique, delivers a high specific capacitance of 577.5 F g−1 at a current density of 2 A g−1 with a long cycle life and high rate performance.
Collapse
Affiliation(s)
- Mohit Saraf
- Discipline of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Indore
- India
| | - Kaushik Natarajan
- Discipline of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Indore
- India
| | - Shaikh M. Mobin
- Discipline of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Indore
- India
- Discipline of Chemistry
- School of Basic Sciences
| |
Collapse
|
15
|
Saraf M, Dar RA, Natarajan K, Srivastava AK, Mobin SM. A Binder-Free Hybrid of CuO-Microspheres and rGO Nanosheets as an Alternative Material for Next Generation Energy Storage Application. ChemistrySelect 2016. [DOI: 10.1002/slct.201600481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohit Saraf
- Centre for Material Science and Engineering; Indian Institute of Technology Indore; Simrol Indore- 452020 India
| | - Riyaz A. Dar
- Department of Chemistry, Maharashtra College of Arts; Science and Commerce; Nagpada Mumbai- 400008 India
| | - Kaushik Natarajan
- Centre for Material Science and Engineering; Indian Institute of Technology Indore; Simrol Indore- 452020 India
| | | | - Shaikh M. Mobin
- Centre for Material Science and Engineering; Indian Institute of Technology Indore; Simrol Indore- 452020 India
- Discipline of Chemistry, School of Basic Sciences; Indian Institute of Technology Indore; Simrol Indore- 452020 India
- Centre for Bioscience and Biomedical Engineering; Indian Institute of Technology Indore; Simrol Indore- 452020 India
| |
Collapse
|
16
|
Díaz-González M, Gutiérrez-Capitán M, Niu P, Baldi A, Jiménez-Jorquera C, Fernández-Sánchez C. Electrochemical devices for the detection of priority pollutants listed in the EU water framework directive. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Saraf M, Natarajan K, Mobin SM. Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO). Dalton Trans 2016; 45:5833-40. [DOI: 10.1039/c6dt00670a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An enzymeless glucose sensor (MCSPE) based on copper oxide microspheres (CMS) prepared by hydrothermal reaction of copper nitrate and sucrose, can sense glucose in a wide linear detection range with good sensitivity and low detection limit.
Collapse
Affiliation(s)
- Mohit Saraf
- Discipline of Material Science and Engineering
- Indian Institute of Technology Indore
- Simrol
- India
| | - Kaushik Natarajan
- Discipline of Material Science and Engineering
- Indian Institute of Technology Indore
- Simrol
- India
| | - Shaikh M. Mobin
- Discipline of Material Science and Engineering
- Indian Institute of Technology Indore
- Simrol
- India
- Discipline of Chemistry
| |
Collapse
|
18
|
Bhardwaj SK, Bhardwaj N, Mohanta GC, Kumar P, Sharma AL, Kim KH, Deep A. Immunosensing of Atrazine with Antibody-Functionalized Cu-MOF Conducting Thin Films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26124-26130. [PMID: 26558291 DOI: 10.1021/acsami.5b07692] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work reports the assembly of thin films of a silica (SiO2)-modified copper-metal organic framework, Cu3(BTC)2 [Cu3(BTC)2@SiO2, BTC = benzene-1,3,5-tricarboxylic acid] on a conducting substrate of NH2-BDC [NH2-BDC = 2-aminobenzene-1,4-dicarboxylic acid] doped polyaniline (PANI). Assembled Cu3(BTC)2@SiO2/BDC-PANI thin films displayed electrical conductivity in the range of 35 μA. These thin films were conjugated with antiatrazine antibodies to create a novel immunosensing platform. Various structural and spectral characteristics of the synthesized material and its bioconjugate were investigated. The developed immunosensor was used for the conductometric sensing of atrazine. The detection of atrazine was achieved with a high sensor sensitivity (limit of detection = 0.01 nM) and specificity in the presence of diverse pesticides (e.g., endosulfan, parathion, paraoxon, malathion, and monochrotophos).
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C Chandigarh 160030, India
- Academy of Scientific and Innovative Research, CSIR-CSIO , Sector 30 C, Chandigarh 160030, India
| | - Neha Bhardwaj
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C Chandigarh 160030, India
- Academy of Scientific and Innovative Research, CSIR-CSIO , Sector 30 C, Chandigarh 160030, India
| | - Girish C Mohanta
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C Chandigarh 160030, India
- Academy of Scientific and Innovative Research, CSIR-CSIO , Sector 30 C, Chandigarh 160030, India
| | - Pawan Kumar
- Department of Civil & Environmental Engineering, Hanyang University , 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea
| | - Amit L Sharma
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C Chandigarh 160030, India
- Academy of Scientific and Innovative Research, CSIR-CSIO , Sector 30 C, Chandigarh 160030, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University , 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C Chandigarh 160030, India
- Academy of Scientific and Innovative Research, CSIR-CSIO , Sector 30 C, Chandigarh 160030, India
| |
Collapse
|