1
|
Sun L, Zhang Z, Wang J, Hui N. A dual-mode electrochemical biosensor based on GO-Fe 3O 4 doped PEDOT nanocomposite for the ultrasensitive assay of microRNA. Bioelectrochemistry 2024; 160:108786. [PMID: 39111272 DOI: 10.1016/j.bioelechem.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
MicroRNA, as a distinctive biomarker, plays a crucial role in the early prognosis and diagnosis of numerous severe diseases. However, due to its inherent properties such as low abundance, small size, and high sequence similarity, the sensitive and accurate detection of microRNA remains a major challenge. Herein, a dual-mode electrochemical biosensing platform was developed for microRNA detection, based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposite. The GO-Fe3O4/PEDOT composite demonstrated a porous microstructure, outstanding conductivity, and robust catalytic activity towards nitrite. It was electrodeposited onto the electrode surface in a one-step process using the cyclic voltammetry method (CV). The microRNA biosensor was obtained by anchoring DNA with amino groups to the GO-Fe3O4/PEDOT layer through the formation of amide bonds. The designed dual-mode microRNA biosensor demonstrated a broad linear range spanning from 10-15 M to 10-6 M, with low detection limits of 5.18 × 10-15 M and 7.36 × 10-15 M when using chronocoulometry (CC) and amperometric i-t curve (i-t) modes, respectively. Furthermore, a dual-mode electrochemical biosensor has been successfully developed and utilized for the detection of microRNA in human serum, demonstrating its potential for precise and sensitive microRNA detection and its practical application value in clinical medicine.
Collapse
Affiliation(s)
- Luyu Sun
- Qingdao Agricultural University, Qingdao, PR China
| | | | | | - Ni Hui
- Qingdao Agricultural University, Qingdao, PR China.
| |
Collapse
|
2
|
Pereira RL, Oliveira D, Pêgo AP, Santos SD, Moreira FTC. Electrochemical miRNA-34a-based biosensor for the diagnosis of Alzheimer's disease. Bioelectrochemistry 2023; 154:108553. [PMID: 37672968 DOI: 10.1016/j.bioelechem.2023.108553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia type and a leading cause of death and disability in the elderly. Diagnosis is expensive and invasive, urging the development of new, affordable, and less invasive diagnostic tools. The identification of changes in the expression of non-coding RNAs prompts the development of diagnostic tools to detect disease-specific blood biomarkers. Building on this idea, this work reports a novel electrochemical microRNA (miRNA) biosensor for the diagnosis of AD, based on carbon screen-printed electrodes (C-SPEs) modified with two gold nanostructures and a complementary anti-miR-34a oligonucleotide probe. This biosensor showed good target affinity, reflected on a 100 pM to 1 μM linearity range and a limit of detection (LOD) of 39 pM in buffer and 94 aM in serum. Moreover, the biosensor's response was not affected by serum compounds, indicating selectivity for miR-34a. The biosensor also detected miR-34a in the cell culture medium of a common AD model, stimulated with a neurotoxin to increase miR-34a secretion. Overall, the proposed biosensor makes a solid case for the introduction of a novel, inexpensive, and minimally invasive tool for the early diagnosis of AD, based on the detection of a circulating miRNA overexpressed in this pathology.
Collapse
Affiliation(s)
- Raquel L Pereira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Daniela Oliveira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia D Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Štukovnik Z, Fuchs-Godec R, Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. BIOSENSORS 2023; 13:899. [PMID: 37887092 PMCID: PMC10605062 DOI: 10.3390/bios13100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Impedimetric biosensors measure changes in the electrical impedance due to a biochemical process, typically the binding of a biomolecule to a bioreceptor on the sensor surface. Nanomaterials can be employed to modify the biosensor's surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors. These nanomaterials have yielded promising results in improving sensitivity, selectivity, and overall biosensor performance. Hence, they offer a wide range of possibilities for developing advanced biosensing platforms that can be employed in various fields, including healthcare, environmental monitoring, and food safety. This review focuses on the recent developments in nanoparticle-functionalized electrochemical-impedimetric biosensors.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (Z.Š.); (R.F.-G.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, 6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Pishbin E, Sadri F, Dehghan A, Kiani MJ, Hashemi N, Zare I, Mousavi P, Rahi A. Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer's disease. ENVIRONMENTAL RESEARCH 2023; 227:115705. [PMID: 36958383 DOI: 10.1016/j.envres.2023.115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis. Different kinds of biosensors have been introduced in recent years for the detection of these valuable biomarkers. Isolation of the exosomes is a crucial step in the detection process which is traditionally carried out by multi-step ultrafiltration. Microfluidics has improved the efficiency and costs of exosome isolation by implementing various effects and forces on the nano and microparticles in the microchannels. This paper reviews recent advancements in detecting Alzheimer's disease related exosomal microRNAs based on methods such as electrochemical, fluorescent, and SPR. The presented devices' pros and cons and their efficiencies compared with the gold standard methods are reported. Moreover, the application of microfluidic devices to detect Alzheimer's disease related biomarkers is summarized and presented. Finally, some challenges with the performance of novel technologies for isolating and detecting exosomal microRNAs are addressed.
Collapse
Affiliation(s)
- Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Fatemeh Sadri
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Dehghan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Amid Rahi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Studies on the application of single-stranded DNA and PNA probes for electrochemical detection of miRNA 141. Bioelectrochemistry 2023; 150:108363. [PMID: 36608369 DOI: 10.1016/j.bioelechem.2022.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The abnormal concentration of microRNAs (miRNAs) can be associated with occurrence of various diseases including cancer, cardiovascular and neurodegenerative, hence they can be considered as potential biomarkers. An attractive approach could be the application of electrochemical methods, particularly where hybridization event between single-stranded deoxyribonucleic acid (ssDNA) or peptide-nucleic acid (PNA) with miRNA strand happens. Recently, the use of various nanomaterials such as gold nanoparticles, graphene oxide, quantum dots as well as catalyzed hairpin assembly or hybridization chain reaction were proposed to further enhance the performance of elaborated sensors. Herein, we present the studies on selection of receptor layer composition for detection of miRNA 141. The possibility of formation of receptor layer and further duplex monolayer between ssDNA or PNA with miRNA was analyzed by atomic force microscopy (AFM) technique. The interaction of ssDNA and PNA probes with miRNA was further verified using surface plasmon resonance (SPR) and quartz - crystal microbalance (QCM) techniques. On the basis of impedance spectroscopy it was shown that the use of unlabelled ssDNA as receptor layer provided 0.1 pM detection limit. This shows that proposed biosensor that is simple in preparation and use is an attractive alternative to other recently presented approaches.
Collapse
|
6
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH, Vakili O, Taheri-Anganeh M, Karima S, Movahedpour A. A review of highly sensitive electrochemical genosensors for microRNA detection: A novel diagnostic platform for neurodegenerative diseases diagnostics. Biotechnol Appl Biochem 2022. [PMID: 36445196 DOI: 10.1002/bab.2419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.
Collapse
Affiliation(s)
- Mehrnoosh Azimi Sanavi
- Department of Biochemistry and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Mahdavian
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Sari, Iran
| | - Neda Karami
- TU Wien, Institute of Solid State Electronics, Vienna, Austria
| | - Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Yarali E, Eksin E, Torul H, Ganguly A, Tamer U, Papakonstantinou P, Erdem A. Impedimetric detection of miRNA biomarkers using paper-based electrodes modified with bulk crystals or nanosheets of molybdenum disulfide. Talanta 2022; 241:123233. [DOI: 10.1016/j.talanta.2022.123233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
|
9
|
Graphene-Oxide and Ionic Liquid Modified Electrodes for Electrochemical Sensing of Breast Cancer 1 Gene. BIOSENSORS 2022; 12:bios12020095. [PMID: 35200355 PMCID: PMC8870019 DOI: 10.3390/bios12020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/23/2022]
Abstract
Graphene-oxide and ionic liquid composite-modified pencil graphite electrodes (GO-IL-PGEs) were developed and used as a sensing platform for breast cancer 1 (BRCA1) gene detection. The characterization of GO-IL modified electrodes was executed by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The nucleic-acid hybridization was monitored by a differential pulse voltammetry (DPV) technique by directly measuring the guanine oxidation signal without using any indicator. The effects of the IL concentration, the probe concentration, and the hybridization time were optimized to the biosensor response. The limit of detection (LOD) was calculated in the concentration range of 2–10 μg/mL for the BRCA1 gene and found to be 1.48 µg/mL. The sensitivity of the sensor was calculated as 1.49 µA mL/µg cm2. The developed biosensor can effectively discriminate the complementary target sequence in comparison to a three-base-mismatched sequence or the non-complementary one.
Collapse
|
10
|
Su H, Yin S, Yang J, Wu Y, Shi C, Sun H, Wang G. In situ monitoring of circulating tumor cell adhered on three-dimensional graphene/ZnO macroporous structure by resistance change and electrochemical impedance spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Talebi M, Esmaeeli H, Talebi M, Farkhondeh T, Samarghandian S. A Concise Overview of Biosensing Technologies for the Detection of Alzheimer's Disease Biomarkers. Curr Pharm Biotechnol 2021; 23:634-644. [PMID: 34250871 DOI: 10.2174/2666796702666210709122407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a brain-linked pathophysiological condition with neuronal degeneration, cognition dysfunctions, and other debilitations. Due to the growing prevalence of AD, there is a highly commended tendency to accelerate and develop analytical technologies for easy, cost-effective, and sensitive detection of AD biomarkers. In the last decade, remarkable advancements have been achieved on the gate to the progression of biosensors, predominantly optical and electrochemical, to detect AD biomarkers. Biosensors are commanding analytical devices that can conduct biological responses on transducers into measurable signals. These analytical devices can assist the case finding and management of AD. This review focuses on up-to-date developments, contests, and tendencies regarding AD biosensing principally, emphasizing the exclusive possessions of nanomaterials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Hadi Esmaeeli
- Department of Research & Development, Niak Pharmaceutical Co., Gorgan. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
12
|
Parmin NA, Hashim U, Gopinath SCB, Nadzirah S, Salimi MN, Voon CH, Uda MNA, Uda MNA, Rozi SKM, Rejali Z, Afzan A, Azan MIA, Yaakub ARW, Hamzah AA, Dee CF. Potentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors. Crit Rev Anal Chem 2021; 52:1511-1523. [PMID: 34092138 DOI: 10.1080/10408347.2021.1890543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.
Collapse
Affiliation(s)
- N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - M N Salimi
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - C H Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - M N A Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Siti Khalijah Mahmad Rozi
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Amilia Afzan
- Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Mohammad Isa Ahmad Azan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Ahmad Radi Wan Yaakub
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Eksin E, Torul H, Yarali E, Tamer U, Papakonstantinou P, Erdem A. Paper-based electrode assemble for impedimetric detection of miRNA. Talanta 2020; 225:122043. [PMID: 33592766 DOI: 10.1016/j.talanta.2020.122043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
In the present work, a paper-based electrode assemble was developed and implemented to detect target microRNA 155 (miRNA 155) via electrochemical impedance spectroscopy (EIS) measurements. In this concept, gold nanoparticles (AuNPs) modified paper based electrode assemble system (AuNP-PE) was designed, and characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and EIS measurements. The impedimetric detection of miRNA 155 was performed by measuring the fractional change at the charge transfer resistance (Rct). The detection limits were found as 33.8 nM in PBS and 93.4 nM in fetal bovine serum (FBS) medium, respectively. The selectivity of the proposed assay was tested against to non-complementary (NC) and mismatch (MM) miRNA sequences in the presence of mixture sample containing miRNA:NC (1:1) and miRNA:MM (1:1) in PBS (pH 7.40) or FBS. The analytical performance and the selectivity of impedimetric biosensor were also tested in FBS.
Collapse
Affiliation(s)
- Ece Eksin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hilal Torul
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Ece Yarali
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, İzmir, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| | - Pagona Papakonstantinou
- School of Engineering, Engineering Research Institute, Ulster University, Newtownabbey BT37 0QB, United Kingdom
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, İzmir, Turkey.
| |
Collapse
|
14
|
Wang J, Wen J, Yan H. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing. Chem Asian J 2020; 16:114-128. [DOI: 10.1002/asia.202001260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jiameng Wang
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Jia Wen
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
- College of Public Health Hebei University Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Baoding 071002 P. R. China
| |
Collapse
|
15
|
Mobed A, Hasanzadeh M. Biosensing: The best alternative for conventional methods in detection of Alzheimer's disease biomarkers. Int J Biol Macromol 2020; 161:59-71. [PMID: 32504710 DOI: 10.1016/j.ijbiomac.2020.05.257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022]
|
16
|
Huang CH, Huang TT, Chiang CH, Huang WT, Lin YT. A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21. Biosens Bioelectron 2020; 164:112320. [DOI: 10.1016/j.bios.2020.112320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
|
17
|
Choi MH, Ravi Kumara GS, Seo YJ. rkDNA-graphene oxide as a simple probe for the rapid detection of miRNA21. Bioorg Med Chem Lett 2020; 30:127398. [PMID: 32738995 DOI: 10.1016/j.bmcl.2020.127398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/10/2023]
Abstract
In this study we developed a novel diagnostic tool for the detection of miRNA21, based on the fluorescent nucleotide morpholine naphthalimide deoxyuridine (dUrkTP). We incorporated dUrkTP into DNA through primer extension to obtain rkDNA displaying high fluorescence. We then used lambda exonuclease, a specific nuclease for 3́-monophosphate-containing DNA, to separate rkDNA from its complementary sequence. The fluorescence of the free rkDNA was quenched dramatically upon interacting with graphene oxide (GO). Our rkDNA-GO fluorescence probing system exhibited high sensitivity and selectivity for the detection of miRNA21. This inexpensive probing system, employing simple primer extension and exonuclease degradation, required only 30 min to detect its target miRNA. This strategy appears suitable for the detection of diverse types of miRNA.
Collapse
Affiliation(s)
- Moon Hyeok Choi
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | | | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
18
|
Determination of nitrogen deficiency-related microRNAs in plants using fluorescence quenching of graphene oxide nanosheets. Mol Cell Probes 2020; 52:101576. [DOI: 10.1016/j.mcp.2020.101576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
|
19
|
Erdem A, Eksin E, Kadikoylu G, Yildiz E. Voltammetric detection of miRNA hybridization based on electroactive indicator-cobalt phenanthroline. Int J Biol Macromol 2020; 158:819-825. [PMID: 32339576 DOI: 10.1016/j.ijbiomac.2020.04.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
The indicator-based nucleic acid detection protocol is one of the major approaches to monitor the sequence-selective nucleic acid hybridization-mediated recognition events in biochemical analysis. The metal complex, cobalt phenanthroline, [Co(phen)33+], which is one of the electroactive indicators, interacts more with double stranded nucleic acids via intercalation. Thus, this interaction permits an increase at the electrochemical signal of [Co(phen)33+]. In our study, the interaction of metal complex, [Co(phen)33+] with nucleic acids was examined using pencil graphite electrodes (PGEs) in combination with differential pulse voltammetry (DPV) technique. The voltammetric detection of miRNA-34a was investigated based on the changes at the electrochemical signal of [Co(phen)33+] under optimized experimental conditions; such as accumulation potentialof metal complex and DNA probe concentration, hybridization time, target miRNA concentration. Furthermore, the selectivity of electrochemical miRNA-34a biosensor was studied in contrast to different miRNAs. The applicability of indicator-based biosensor specific to miRNA-34a was also presented by using total RNA samples.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey; Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Ece Eksin
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Gulce Kadikoylu
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey; Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Esma Yildiz
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey; Biomedical Technologies Department, Graduate School of Natural and Applied Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
20
|
Asefpour Vakilian K. Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Sci Rep 2020; 10:3041. [PMID: 32080299 PMCID: PMC7033123 DOI: 10.1038/s41598-020-59981-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/03/2022] Open
Abstract
During the last two decades, human has increased his knowledge about the role of miRNAs and their target genes in plant stress response. Biotic and abiotic stresses result in simultaneous tissue-specific up/down-regulation of several miRNAs. In this study, for the first time, feature selection algorithms have been used to investigate the contribution of individual plant miRNAs in Arabidopsis thaliana response towards different levels of several abiotic stresses including drought, salinity, cold, and heat. Results of information theory-based feature selection revealed that miRNA-169, miRNA-159, miRNA-396, and miRNA-393 had the highest contributions to plant response towards drought, salinity, cold, and heat, respectively. Furthermore, regression models, i.e., decision tree (DT), support vector machines (SVMs), and Naïve Bayes (NB) were used to predict the plant stress by having the plant miRNAs' concentration. SVM with Gaussian kernel was capable of predicting plant stress (R2 = 0.96) considering miRNA concentrations as input features. Findings of this study prove the performance of machine learning as a promising tool to investigate some aspects of miRNAs' contribution to plant stress responses that have been undiscovered until today.
Collapse
Affiliation(s)
- Keyvan Asefpour Vakilian
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran.
- Private Laboratory of Biosensor Applications, Hamadan, Iran.
| |
Collapse
|
21
|
Sheervalilou R, Shahraki O, Hasanifard L, Shirvaliloo M, Mehranfar S, Lotfi H, Pilehvar-Soltanahmadi Y, Bahmanpour Z, Zadeh SS, Nazarlou Z, Kangarlou H, Ghaznavi H, Zarghami N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med 2019; 20:13-35. [DOI: 10.2174/1566524019666191001114941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In both men and women around the world, lung cancer accounts as the
principal cause of cancer-related death after breast cancer. Therefore, early detection of
the disease is a cardinal step in improving prognosis and survival of patients. Today, the
newly-defined microRNAs regulate about 30 to 60 percent of the gene expression.
Changes in microRNA Profiles are linked to numerous health conditions, making them
sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation
of microRNAs in real samples has proved to be rather challenging, which is largely
attributable to the unique characteristics of these molecules. Short length, sequence
similarity, and low concentration stand among the factors that define microRNAs.
Recently, diagnostic technologies with a focus on wide-scale point of care have recently
garnered attention as great candidates for early diagnosis of cancer. Electrochemical
nano-biosensors have recently garnered much attention as a molecular method,
showing great potential in terms of sensitivity, specificity and reproducibility, and last but
not least, adaptability to point-of-care testing. Application of nanoscale materials in
electrochemical devices as promising as it is, brings multiplexing potential for conducting
simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling
properties, these materials can be used to improve the efficiency of cancer diagnostics,
offer more accurate predictions of prognosis, and monitor response to therapy in a more
efficacious way. This article presents a concise overview of recent advances in the
expeditiously evolving area of electrochemical biosensors for microRNA detection in
lung cancer.
Collapse
Affiliation(s)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Hasanifard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Sarraf Zadeh
- Neurosciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey
| | - Haleh Kangarlou
- Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Asefpour Vakilian K. Gold nanoparticles-based biosensor can detect drought stress in tomato by ultrasensitive and specific determination of miRNAs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:195-204. [PMID: 31706222 DOI: 10.1016/j.plaphy.2019.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 05/16/2023]
Abstract
Drought stress can significantly affect the yield and quality of tomato production. However, the development of a sensitive and specific method for the determination of drought stress is somehow challenging since plant common morpho-physiological and biochemical characteristic are not generally specific to biotic and abiotic stresses. As a solution, the concentration of miRNAs in plant tissues can be a selective and specific indicator of plant stress. In this study, an optical biosensor based on gold nanoparticles is introduced to determine miRNA-1886 in tomato plant roots. Results showed that irrigation levels from 100% to 60% of field capacity increased the concentration of miRNA-1886 in a range from ca. 100 to 6800 fM (fM) causing a linear change in the biosensor response (R2 = 0.97). Results also revealed that in contrast with plant conventional morpho-physiological and biochemical characteristic, miRNA-1886 concentration was not significantly affected (P < 0.01) by other stresses, i.e., salinity and temperature during the growth period. The biosensor introduced in this study is a reliable method to study stress-related functions of miRNAs in plants and their application in specific plant stress determination.
Collapse
Affiliation(s)
- Keyvan Asefpour Vakilian
- Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran; Private Laboratory of Biosensor Applications, Hamadan, Iran.
| |
Collapse
|
23
|
Erdem A, Eksin E. Electrochemical Detection of Solution Phase Hybridization Related to Single Nucleotide Mutation by Carbon Nanofibers Enriched Electrodes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3377. [PMID: 31623126 PMCID: PMC6829215 DOI: 10.3390/ma12203377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
In the present study, a sensitive and selective impedimetric detection of solution-phase nucleic acid hybridization related to Factor V Leiden (FV Leiden) mutation was performed by carbon nanofibers (CNF) modified screen printed electrodes (SPE). The microscopic and electrochemical characterization of CNF-SPEs was explored in comparison to the unmodified electrodes. Since the FV Leiden mutation is a widespread inherited risk factor predisposing to venous thromboembolism, this study herein aimed to perform the impedimetric detection of FV Leiden mutation by a zip nucleic acid (ZNA) probe-based assay in combination with CNF-SPEs. The selectivity of the assay was then examined against the mutation-free DNA sequences as well as the synthetic PCR samples.
Collapse
Affiliation(s)
- Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir 35100, Turkey.
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir 35100, Turkey.
| | - Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir 35100, Turkey.
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
24
|
Akbarnia A, Zare HR, Moshtaghioun SM, Benvidi A. Highly selective sensing and measurement of microRNA-541 based on its sequence-specific digestion by the restriction enzyme Hinf1. Colloids Surf B Biointerfaces 2019; 182:110360. [PMID: 31325778 DOI: 10.1016/j.colsurfb.2019.110360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/22/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023]
Abstract
In this study, a genosensor is introduced to detect microRNA-541 through an enzymatic digestion method and using a restriction enzyme (RE). Hinf1 is a type of RE which can cut the double helix DNA at specific sequences. The hybridization event and the corresponding enzymatic reactions are studied through guanine signal tracing on a pencil graphite electrode modified with graphene quantum dots (GQDs/PGE). The stages of fabricating the electrode are monitored by atomic force microscopy, and its electrochemical behavior is studied by cyclic voltammetry. The results indicate that the guanine current response of a 25-mer oligonucleotide of 7-guanine immobilized on the electrode surface decreases after hybridization despite an increase in the number of the guanine bases. Also, after enzyme treatment, the current decreases further due to the separation of a number of guanine bases from ds-DNA. A comparison of the analytical parameters of the proposed method with those of the conventional guanine oxidation method indicates that the linear concentration range in the proposed method, i.e. 1.0 fM to 1.0 nM, is lower than that in the conventional method, i.e. 10.0 pM-1.0 μM. On the basis of these findings, it is concluded that the use of Hinf1 enzyme makes it possible to measure microRNA at a femtomolar level. The selectivity of the designed biosensor has been proved using a non-complementary sequence with a one-base mismatch in the recognition site, rather than a complementary sequence. Finally, the proposed genosensor can be satisfactorily applied to measure microRNA-541 in human plasma samples.
Collapse
Affiliation(s)
- Azam Akbarnia
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | - Hamid R Zare
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | | | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| |
Collapse
|
25
|
Yaralı E, Kanat E, Erac Y, Erdem A. Ionic Liquid Modified Single‐use Electrode Developed for Voltammetric Detection of miRNA‐34a and its Application to Real Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ece Yaralı
- Department of Analytical Chemistry, Faculty of PharmacyEge University, Bornova 35100 Izmir Turkey
- Department of Materials Science and Engineering, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
| | - Erkin Kanat
- Department of Analytical Chemistry, Faculty of PharmacyEge University, Bornova 35100 Izmir Turkey
- Department of Biotechnology, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of PharmacyEge University Izmir Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of PharmacyEge University, Bornova 35100 Izmir Turkey
- Department of Materials Science and Engineering, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
- Department of Biotechnology, Graduate School of Natural and Applied ScienceEge University Izmir Turkey
| |
Collapse
|
26
|
Zhang C, Miao P, Sun M, Yan M, Liu H. Progress in miRNA Detection Using Graphene Material-Based Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901867. [PMID: 31379135 DOI: 10.1002/smll.201901867] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that play critical roles in physiologic and pathologic processes and are vital biomarkers for several disease diagnostics and therapeutics. Therefore, rapid, low-cost, sensitive, and selective detection of miRNAs is of paramount importance and has aroused increasing attention in the field of medical research. Among the various reported miRNA sensors, devices based on graphene and its derivatives, which form functional supramolecular nanoassemblies of π-conjugated molecules, have been revealed to have great potential due to their extraordinary electrical, chemical, optical, mechanical, and structural properties. This Review critically and comprehensively summarizes the recent progress in miRNA detection based on graphene and its derivative materials, with an emphasis on i) the underlying working principles of these types of sensors, and the unique roles and advantages of graphene materials; ii) state-of-the-art protocols recently developed for high-performance miRNA sensing, including representative examples; and iii) perspectives and current challenges for graphene sensors. This Review intends to provide readers with a deep understanding of the design and future of miRNA detection devices.
Collapse
Affiliation(s)
- Congcong Zhang
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Pei Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Mingyuan Sun
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Mei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
27
|
Masud MK, Umer M, Hossain MSA, Yamauchi Y, Nguyen NT, Shiddiky MJA. Nanoarchitecture Frameworks for Electrochemical miRNA Detection. Trends Biochem Sci 2019; 44:433-452. [PMID: 30686572 DOI: 10.1016/j.tibs.2018.11.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/29/2023]
Abstract
With revolutionary advances in next-generation sequencing, the human transcriptome has been comprehensively interrogated. These discoveries have highlighted the emerging functional and regulatory roles of a large fraction of RNAs suggesting the potential they might hold as stable and minimally invasive disease biomarkers. Although a plethora of molecular-biology- and biosensor-based RNA-detection strategies have been developed, clinical application of most of these is yet to be realized. Multifunctional nanomaterials coupled with sensitive and robust electrochemical readouts may prove useful in these applications. Here, we summarize the major contributions of engineered nanomaterials-based electrochemical biosensing strategies for the analysis of miRNAs. With special emphasis on nanostructure-based detection, this review also chronicles the needs and challenges of miRNA detection and provides a future perspective on the presented strategies.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; School of Mechanical & Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia; School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia.
| |
Collapse
|
28
|
Zhang T, Chai H, Meng F, Guo Z, Jiang Y, Miao P. DNA-Functionalized Porous Fe 3O 4 Nanoparticles for the Construction of Self-Powered miRNA Biosensor with Target Recycling Amplification. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36796-36804. [PMID: 30303365 DOI: 10.1021/acsami.8b15419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we have developed an ultrasensitive self-powered biosensor for miRNA assay based on biofuel cells. The system is composed of indium tin oxide cathode and graphene oxide/gold nanoparticle/glucose oxidase anode. Redox probe of [Fe(CN)6]3- is entrapped inside porous Fe3O4 nanoparticles by DNA. However, in the presence of target miRNA, hybridization reaction occurs between miRNA and DNA, which initiates the release of [Fe(CN)6]3-. Moreover, duplex specific nuclease is further employed to trigger target recycling amplification. As a result, much more redox probes are released and the open circuit voltage is significantly increased. A "signal-on" self-powered biosensor for miRNA quantification is thus developed. The detection range is from 10 aM to 10 fM; meanwhile, the limit of detection is as low as 1.4 aM, which is superior to that in most reported methods. Therefore, the proposed biosensor is expected to be a powerful point-of-care tool for miRNA diagnostics, which may have wide applications in the future.
Collapse
Affiliation(s)
- Tian Zhang
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Hua Chai
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Fanyu Meng
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| | - Yu Jiang
- Department of Orthopedics , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi 214000 , People's Republic of China
| | - Peng Miao
- University of Science and Technology of China , Hefei 230026 , People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , Suzhou 215163 , People's Republic of China
| |
Collapse
|
29
|
Electrochemical detection of microRNAs by graphene oxide modified disposable graphite electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Eksin E, Bikkarolla SK, Erdem A, Papakonstantinou P. Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Biosensor for Impedimetric Detection of microRNA. ELECTROANAL 2018. [DOI: 10.1002/elan.201700663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ece Eksin
- Ege University; Faculty of Pharmacy, Analytical Chemistry Department, Bornova; 35100 Izmir Turkey
- Ege University; The Institute of Natural and Applied Sciences, Biotechnology Department, Bornova; 35100 Izmir Turkey
| | - Santosh Kumar Bikkarolla
- Nanotechnology and Integrated Bio-Engineering Centre, NIBEC, School of Engineering; Ulster University, Jordanstown campus; BT37 OQB United Kingdom
| | - Arzum Erdem
- Ege University; Faculty of Pharmacy, Analytical Chemistry Department, Bornova; 35100 Izmir Turkey
- Ege University; The Institute of Natural and Applied Sciences, Biotechnology Department, Bornova; 35100 Izmir Turkey
| | - Pagona Papakonstantinou
- Nanotechnology and Integrated Bio-Engineering Centre, NIBEC, School of Engineering; Ulster University, Jordanstown campus; BT37 OQB United Kingdom
| |
Collapse
|
31
|
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 2018; 99:525-546. [DOI: 10.1016/j.bios.2017.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
|
32
|
Yammouri G, Mandli J, Mohammadi H, Amine A. Development of an electrochemical label-free biosensor for microRNA-125a detection using pencil graphite electrode modified with different carbon nanomaterials. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Impedimetric genosensor for miRNA-34a detection in cell lysates using polypyrrole. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosens Bioelectron 2017; 92:207-214. [DOI: 10.1016/j.bios.2017.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/12/2023]
|
35
|
Isin D, Eksin E, Erdem A. Graphene oxide modified single-use electrodes and their application for voltammetric miRNA analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1242-1249. [DOI: 10.1016/j.msec.2017.02.166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
|
36
|
Erdem A, Eksin E, Isin D, Polat D. Graphene Oxide Modified Chemically Activated Graphite Electrodes for Detection of microRNA. ELECTROANAL 2017. [DOI: 10.1002/elan.201600761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department; Ege University; 35100 Bornova Izmir TURKEY
| | - Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department; Ege University; 35100 Bornova Izmir TURKEY
| | - Deniz Isin
- Faculty of Pharmacy, Analytical Chemistry Department; Ege University; 35100 Bornova Izmir TURKEY
| | - Derya Polat
- Faculty of Pharmacy, Analytical Chemistry Department; Ege University; 35100 Bornova Izmir TURKEY
| |
Collapse
|
37
|
Azimzadeh M, Nasirizadeh N, Rahaie M, Naderi-Manesh H. Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv 2017. [DOI: 10.1039/c7ra09767k] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Serum miR-137 is quantified for the early detection of Alzheimer's disease using a electrochemically reduced graphene oxide and gold nanowire modified electrode.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Stem Cell Biology Research Center
- Yazd Reproductive Sciences Institute
- Shahid Sadoughi University of Medical Sciences
- Yazd
- Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering
- Yazd Branch
- Islamic Azad University
- Yazd
- Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
38
|
Daneshpour M, Omidfar K, Ghanbarian H. A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:2023-2036. [PMID: 28144550 PMCID: PMC5238648 DOI: 10.3762/bjnano.7.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Gastric cancer (GC) is the second leading cause of cancer-related deaths all over the world. miR-106a is a circulatory oncogenic microRNA (miRNA), which overexpresses in various malignancies, especially in GC. In this study, an ultrasensitive electrochemical nanobiosensor was developed for the detection of miR-106a using a double-specific probe methodology and a gold-magnetic nanocomposite as tracing tag. The successful modification of the electrode and hybridization with the target miRNA were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) was used for quantitative evaluation of miR-106a via recording the reduction peak current of gold nanoparticles. The electrochemical signal had a linear relationship with the concentration of the target miRNA ranging from 1 × 10-3 pM to 1 × 103 pM, and the detection limit was 3 × 10-4 pM. The proposed miRNA-nanobiosensor showed remarkable selectivity, high specificity, agreeable storage stability, and great performance in real sample investigation with no pretreatment or amplification. Consequently, our biosensing strategy offers such a promising application to be used for clinical early detection of GC and additionally the screen of any miRNA sequence.
Collapse
Affiliation(s)
- Maryam Daneshpour
- Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Giner-Sanz J, Ortega E, Pérez-Herranz V. Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CHA, Eng AYS, Bonanni A, Pumera M. Graphene and its electrochemistry - an update. Chem Soc Rev 2016; 45:2458-93. [PMID: 27052352 DOI: 10.1039/c6cs00136j] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The electrochemistry of graphene and its derivatives has been extensively researched in recent years. In the aspect of graphene preparation methods, the efficiencies of the top-down electrochemical exfoliation of graphite, the electrochemical reduction of graphene oxide and the electrochemical delamination of CVD grown graphene, are currently on par with conventional procedures. Electrochemical analysis of graphene oxide has revealed an unexpected inherent redox activity with, in some cases, an astonishing chemical reversibility. Furthermore, graphene modified with p-block elements has shown impressive electrocatalytic performances in processes which have been historically dominated by metal-based catalysts. Further progress has also been achieved in the practical usage of graphene in sensing and biosensing applications. This review is an update of our previous article in Chem. Soc. Rev. 2010, 39, 4146-4157, with special focus on the developments over the past two years.
Collapse
Affiliation(s)
- Adriano Ambrosi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical Biosensors for Cancer Biomarkers Detection: Recent Advances and Challenges. ELECTROANAL 2016. [DOI: 10.1002/elan.201501174] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry; Faculty of Pharmacy; Ege University, Ege University Faculty of Pharmacy Department of Analytical Chemistry; Izmir Turkey 35100 Bornova/Izmir Turkey
| | - Mostafa Azimzadeh
- Department of Life Science Engineering; Faculty of New Sciences and Technologies; University of Tehran; Tehran Iran
| | - Mehmet Ozsoz
- Department of Biomedical Engineering Faculty of Engineering and Architecture; Gediz University; İzmir Turkey
| |
Collapse
|
42
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
43
|
Electrochemical biosensor for microRNA detection based on hybridization protection against nuclease S1 digestion. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-3005-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|