1
|
Liu R, Zhao M, Zhang X, Zhang C, Ren B, Ma J. Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety. Crit Rev Anal Chem 2025:1-19. [PMID: 39912733 DOI: 10.1080/10408347.2025.2460751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Molecularly imprinted electrochemical sensors (MIECSs) are a specialized class of sensors based on molecularly imprinted derivative materials (MIDPs), which have been extensively applied in environmental monitoring, biomedicine, and food safety, allowing for high selectivity and sensitivity in detecting target molecules. This review provides an in-depth exploration of the most innovative and successful nanomaterials employed for modifying imprinted polymers, highlighting their crucial role in enhancing sensor performance, including carbon-based nanomaterials, meal derivatives, magnetic nanomaterials, polymeric and composite nanomaterials. In addition to reviewing advances in derivative materials design, this article delves into the current challenges facing molecularly imprinted sensors, such as issues related to template removal, nonspecific binding, and fabrication reproducibility. These challenges limit the practical application of MIECSs, particularly in complex real-world environments. The review also discusses representative applications of these sensors, including environmental monitoring, biomedicine and food safety, which demonstrate their versatility and potential. Finally, the review outlines future research directions aimed at overcoming these challenges. This includes strategies for improving the stability and reusability of MIECSs, enhancing their selectivity and sensitivity, and developing novel imprinting techniques. By addressing these issues, researchers can pave the way for the next generation of electrochemical sensors, which will be more robust, reliable, and suitable for a wide range of industrial and clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Meiting Zhao
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Xin Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Binqiao Ren
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jing Ma
- Department of Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
2
|
Makwana M. FEM simulation of SARS-CoV-2 sensing in single-layer graphene-based bionanosensors. J Mol Model 2024; 30:327. [PMID: 39240273 DOI: 10.1007/s00894-024-06123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
CONTEXT Airborne pathogens, defined as microscopic organisms, pose significant health risks and can potentially cause a variety of diseases. Given their ability to spread through diverse transmission routes from infected hosts, there is a critical need for accurate monitoring of these pathogens. This study aims to develop a sensor by investigating the vibrational responses of cantilever and bridged boundary-conditioned single-layer graphene (SLG) sheets with microorganisms, specifically SARS-CoV-2, attached at various positions on the sheet. The dynamic analysis of SLG with different boundary conditions and lengths was conducted using the atomistic finite element method (AFEM). Simulations were performed to evaluate SLG's performance as a sensor for biological entities. Altering the sheet's length and the mass of the attached biological object revealed observable frequency differences. This sensor design shows promise for enhancing the detection capabilities of graphene-based technologies for viruses. METHODS Finite element method (FEM) analysis is employed to model the sensor's performance and optimize its design parameters. The simulation results highlight the sensor's potential for achieving high sensitivity and rapid detection of SARS-CoV-2. Bridged and cantilever boundary conditions are applied at the ends of the SLG structure by using ANSYS software. Simulations have been conducted to observe how SLG behaves when used as sensors. In armchair graphene, under both boundary conditions, an SLG (5, 5) structure with a length of 50 nm displayed the highest frequency when a SARS-CoV-2 molecule with a mass of 2.6594 × 10-18 g was attached. Conversely, the chiral SLG (17, 1) structure exhibited its lowest frequency at a length of 10 nm. This insight is crucial for grasping detection limits and how factors such as size and boundary conditions influence sensor efficacy. These biosensors hold immense promise in biological sciences and medical applications, revolutionizing patient care by enabling early detection and accurate pathogen identification in clinical settings.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, CVM University, Vallabh Vidyanagar, Gujarat, India.
| |
Collapse
|
3
|
Li W, Ma J, Zhang H, Cheng S, Yang W, Yi Z, Yang H, Zhang J, Wu X, Wu P. Tunable broadband absorber based on a layered resonant structure with a Dirac semimetal. Phys Chem Chem Phys 2023; 25:8489-8496. [PMID: 36883439 DOI: 10.1039/d2cp05562g] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
With the development of science and technology, intermediate infrared technology has gained more and more attention in recent years. In the research described in this paper, a tunable broadband absorber based on a Dirac semimetal with a layered resonant structure was designed, which could achieve high absorption (more than 0.9) of about 8.7 THz in the frequency range of 18-28 THz. It was confirmed that the high absorption of the absorber comes from the strong resonance absorption between the layers, and the resonance of the localised surface plasmon. The absorber has a gold substrate, which is composed of three layers of Dirac semimetal and three layers of optical crystal plates. In addition, the resonance frequency of the absorber can be changed by adjusting the Fermi energy of the Dirac semimetal. The absorber also shows excellent characteristics such as tunability, absorption stability at different polarisation waves and incident angles, and has a high application value for use in radar countermeasures, biotechnology and other fields.
Collapse
Affiliation(s)
- Wenxin Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Jing Ma
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Huafeng Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Zao Yi
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
- Joint Laboratory for Extreme Conditions Matter Properties, State Key Laboratory of EnvironmentFriendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hua Yang
- School of Science, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong, 030619, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou, 362000, China
| |
Collapse
|
4
|
Wang X, Lin J, Yan Z, Yi Z, Yu J, Zhang W, Qin F, Wu X, Zhang J, Wu P. Tunable high-sensitivity sensing detector based on Bulk Dirac semimetal. RSC Adv 2022; 12:32583-32591. [PMID: 36425681 PMCID: PMC9661490 DOI: 10.1039/d2ra05402g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
This paper proposes a tunable sensing detector based on Bulk Dirac semimetals (BDS). The bottom-middle-top structure of the detector is a metal-dielectric-Dirac semimetal. The designed detector is simulated in the frequency domain by the finite element method (FEM). And the simulation results indicate that the detector achieves three perfect absorption peaks with absorptivity greater than 99.8% in the range of 2.4-5.2 THz. We analyze the cause of the absorption peak by using random phase approximation theory. The device exhibits good angular insensitivity in different incident angle ranges, and the three absorption peaks can reach 90% absorption rate when the incident angle is in the ranges of 0-60°. And when adjusting the Fermi level of BDS in the ranges of 0.1-0.5 eV, our detector can realize the frequency regulation of the ultra-wide range of 3.90-4.56 THz and realize multi-frequency controllable sensing while maintain the absorption efficiency above 96%. The detector has maximum sensitivity S of 238.0 GHz per RIU when the external environment of the refractive index changes from 1.0 to 1.8, and the maximum detection accuracy is 6.5. The device has broad development prospects in the field of space detection and high-sensitivity biosensing detection.
Collapse
Affiliation(s)
- Xingyu Wang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Jiangchuan Lin
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Zhiyang Yan
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Jiaxin Yu
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Wei Zhang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Feng Qin
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Jianguo Zhang
- Department of Physics and Electronic Engineering, Jinzhong University Jinzhong 030619 China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
5
|
Wang D, Zhu W, Yi Z, Ma G, Gao X, Dai B, Yu Y, Zhou G, Wu P, Liu C. Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. OPTICS EXPRESS 2022; 30:39055-39067. [PMID: 36258455 DOI: 10.1364/oe.470386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A surface plasmon resonance (SPR) sensor comprising photonic crystal fiber (PCF) is designed for magnetic field and temperature dual-parameter sensing. In order to make the SPR detection of magnetic field and temperature effectively, the two open ring channels of the proposed sensor are coated with gold and silver layers and filled with magnetic fluid (MF) and Polydimethylsiloxane (PDMS), respectively. The sensor is analyzed by the finite element method and its mode characteristics, structure parameters and sensing performance are investigated. The analysis reveals when the magnetic field is a range of 40-310 Oe and the temperature is a range of 0-60 °C, the maximum magnetic field sensitivity is 308.3 pm/Oe and temperature sensitivity is 6520 pm/°C. Furthermore, temperature and magnetic field do not crosstalk with each other's SPR peak. Its refractive index sensing performance is also investigated, the maximum sensitivity and FOM of the left channel sensing are 16820 nm/RIU and 1605 RIU-1, that of the right channel sensing are 13320 nm/RIU and 2277 RIU-1. Because of its high sensitivity and special sensing performance, the proposed sensor will have potential application in solving the problems of cross-sensitivity and demodulation due to nonlinear changes in sensitivity of dual-parameter sensing.
Collapse
|
6
|
Wang D, Yi Z, Ma G, Dai B, Yang J, Zhang J, Yu Y, Liu C, Wu X, Bian Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys Chem Chem Phys 2022; 24:21233-21241. [PMID: 36040374 DOI: 10.1039/d2cp02778j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a dual-parameter sensor based on surface plasmon resonance (SPR)-photonic crystal fiber (PCF) is proposed, which can be applied in detecting the magnetic field and temperature. In this sensor, two elliptical channels are designed on both sides of the fiber core. The left channel (Ch 1) is coated with gold film and filled with magnetic fluid (MF) to achieve a response to the magnetic field and temperature using SPR. The right channel (Ch 2) is coated with gold film as well as Ta2O5 film to improve the SPR sensing performance. Finally, Ch 2 is filled with polydimethylsiloxane (PDMS) to achieve a response to the temperature. The mode characteristics, structural parameters and sensing performance are investigated by the finite element method. The results show that when the magnetic field is in the range of 50-130 Oe, the magnetic field sensitivities of Ch 1 and Ch 2 are 65 pm Oe-1 and 0 pm Oe-1, respectively. When the temperature is in the range of 17.5-27.5 °C, the temperature sensitivities of Ch 1 and Ch 2 are 520 pm °C-1 and 2360 pm °C-1, respectively. By establishing and demodulating a sensing matrix, the sensor can not only measure the temperature and magnetic field simultaneously but also solve the temperature cross-sensitivity problem. In addition, when the temperature exceeds a certain value, the proposed sensor is expected to achieve dual-parameter sensing without a matrix. The proposed dual-parameter SPR-PCF sensor has a unique structure and excellent sensing performance, which are important for the simultaneous sensing of multiple basic physical parameters.
Collapse
Affiliation(s)
- Dongying Wang
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Guolu Ma
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Bo Dai
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Junbo Yang
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China.
| | - Jianfa Zhang
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China.
| | - Yang Yu
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China. .,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem And Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Qiang Bian
- Institute for Measurement and Sensor Technology, Technical University of Munich, Munich 80333, Germany
| |
Collapse
|
7
|
Shangguan Q, Chen Z, Yang H, Cheng S, Yang W, Yi Z, Wu X, Wang S, Yi Y, Wu P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176483. [PMID: 36080942 PMCID: PMC9460058 DOI: 10.3390/s22176483] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 05/27/2023]
Abstract
The paper proposes an ultra-narrow band graphene refractive index sensor, consisting of a patterned graphene layer on the top, a dielectric layer of SiO2 in the middle, and a bottom Au layer. The absorption sensor achieves the absorption efficiency of 99.41% and 99.22% at 5.664 THz and 8.062 THz, with the absorption bandwidths 0.0171 THz and 0.0152 THz, respectively. Compared with noble metal absorbers, our graphene absorber can achieve tunability by adjusting the Fermi level and relaxation time of the graphene layer with the geometry of the absorber unchanged, which greatly saves the manufacturing cost. The results show that the sensor has the properties of polarization-independence and large-angle insensitivity due to the symmetric structure. In addition, the practical application of testing the content of hemoglobin biomolecules was conducted, the frequency of first resonance mode shows a shift of 0.017 THz, and the second resonance mode has a shift of 0.016 THz, demonstrating the good frequency sensitivity of our sensor. The S (sensitivities) of the sensor were calculated at 875 GHz/RIU and 775 GHz/RIU, and quality factors FOM (Figure of Merit) are 26.51 and 18.90, respectively; and the minimum limit of detection is 0.04. By comparing with previous similar sensors, our sensor has better sensing performance, which can be applied to photon detection in the terahertz band, biochemical sensing, and other fields.
Collapse
Affiliation(s)
- Qianyi Shangguan
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zihao Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
8
|
Enhanced Electrochemical Water Oxidation Activity by Structural Engineered Prussian Blue Analogue/rGO Heterostructure. Molecules 2022; 27:molecules27175472. [PMID: 36080240 PMCID: PMC9458107 DOI: 10.3390/molecules27175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Prussian blue analogue (PBA), with a three-dimensional open skeleton and abundant unsaturated surface coordination atoms, attracts extensive research interest in electrochemical energy-related fields due to facile preparation, low cost, and adjustable components. However, it remains a challenge to directly employ PBA as an electrocatalyst for water splitting owing to their poor charge transport ability and electrochemical stability. Herein, the PBA/rGO heterostructure is constructed based on structural engineering. Graphene not only improves the charge transfer efficiency of the compound material but also provides confined growth sites for PBA. Furthermore, the charge transfer interaction between the heterostructure interfaces facilitates the electrocatalytic oxygen evolution reaction of the composite, which is confirmed by the results of the electrochemical measurements. The overpotential of the PBA/rGO material is only 331.5 mV at a current density of 30 mA cm−2 in 1.0 M KOH electrolyte with a small Tafel slope of 57.9 mV dec−1, and the compound material exhibits high durability lasting for 40 h.
Collapse
|
9
|
Maghoul A, Simonsen I, Rostami A, Mirtaheri P. An Optical Modeling Framework for Coronavirus Detection Using Graphene-Based Nanosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2868. [PMID: 36014733 PMCID: PMC9412525 DOI: 10.3390/nano12162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of the COVID-19 virus has faced the world with a new and dangerous challenge due to its contagious nature. Hence, developing sensory technologies to detect the coronavirus rapidly can provide a favorable condition for pandemic control of dangerous diseases. In between, because of the nanoscale size of this virus, there is a need for a good understanding of its optical behavior, which can give an extraordinary insight into the more efficient design of sensory devices. For the first time, this paper presents an optical modeling framework for a COVID-19 particle in the blood and extracts its optical characteristics based on numerical computations. To this end, a theoretical foundation of a COVID-19 particle is proposed based on the most recent experimental results available in the literature to simulate the optical behavior of the coronavirus under varying physical conditions. In order to obtain the optical properties of the COVID-19 model, the light reflectance by the structure is then simulated for different geometrical sizes, including the diameter of the COVID-19 particle and the size of the spikes surrounding it. It is found that the reflectance spectra are very sensitive to geometric changes of the coronavirus. Furthermore, the density of COVID-19 particles is investigated when the light is incident on different sides of the sample. Following this, we propose a nanosensor based on graphene, silicon, and gold nanodisks and demonstrate the functionality of the designed devices for detecting COVID-19 particles inside the blood samples. Indeed, the presented nanosensor design can be promoted as a practical procedure for creating nanoelectronic kits and wearable devices with considerable potential for fast virus detection.
Collapse
Affiliation(s)
- Amir Maghoul
- Optical/FNIR Laboratory of Biomedical Group, Department of Mechanical, Electronics and Chemical Engineering, OsloMet–Oslo Metropolitan University, 0167 Oslo, Norway
| | - Ingve Simonsen
- Department of Physics, NTNU—Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ali Rostami
- Photonics and Nanocrystals Research Laboratory (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166614761, Iran
| | - Peyman Mirtaheri
- Optical/FNIR Laboratory of Biomedical Group, Department of Mechanical, Electronics and Chemical Engineering, OsloMet–Oslo Metropolitan University, 0167 Oslo, Norway
| |
Collapse
|
10
|
Betti MG, Blundo E, De Luca M, Felici M, Frisenda R, Ito Y, Jeong S, Marchiani D, Mariani C, Polimeni A, Sbroscia M, Trequattrini F, Trotta R. Homogeneous Spatial Distribution of Deuterium Chemisorbed on Free-Standing Graphene. NANOMATERIALS 2022; 12:nano12152613. [PMID: 35957041 PMCID: PMC9370689 DOI: 10.3390/nano12152613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
Atomic deuterium (D) adsorption on free-standing nanoporous graphene obtained by ultra-high vacuum D2 molecular cracking reveals a homogeneous distribution all over the nanoporous graphene sample, as deduced by ultra-high vacuum Raman spectroscopy combined with core-level photoemission spectroscopy. Raman microscopy unveils the presence of bonding distortion, from the signal associated to the planar sp2 configuration of graphene toward the sp3 tetrahedral structure of graphane. The establishment of D–C sp3 hybrid bonds is also clearly determined by high-resolution X-ray photoelectron spectroscopy and spatially correlated to the Auger spectroscopy signal. This work shows that the low-energy molecular cracking of D2 in an ultra-high vacuum is an efficient strategy for obtaining high-quality semiconducting graphane with homogeneous uptake of deuterium atoms, as confirmed by this combined optical and electronic spectro-microscopy study wholly carried out in ultra-high vacuum conditions.
Collapse
Affiliation(s)
- Maria Grazia Betti
- INFN Sezione di Roma 1, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
- Correspondence: (M.G.B.); (R.F.); (C.M.); Tel.: +39-06-49914389 (M.G.B.); +39-06-49914281 (R.F.); +39-06-49914393 (C.M.)
| | - Elena Blundo
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Marta De Luca
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Marco Felici
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Riccardo Frisenda
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
- Correspondence: (M.G.B.); (R.F.); (C.M.); Tel.: +39-06-49914389 (M.G.B.); +39-06-49914281 (R.F.); +39-06-49914393 (C.M.)
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan; (Y.I.); (S.J.)
| | - Samuel Jeong
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan; (Y.I.); (S.J.)
| | - Dario Marchiani
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Carlo Mariani
- INFN Sezione di Roma 1, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
- Correspondence: (M.G.B.); (R.F.); (C.M.); Tel.: +39-06-49914389 (M.G.B.); +39-06-49914281 (R.F.); +39-06-49914393 (C.M.)
| | - Antonio Polimeni
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Marco Sbroscia
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Francesco Trequattrini
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| | - Rinaldo Trotta
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy; (E.B.); (M.D.L.); (M.F.); (D.M.); (A.P.); (M.S.); (F.T.); (R.T.)
| |
Collapse
|
11
|
Wu P, Qu S, Zeng X, Su N, Chen M, Yu Y. High- Q refractive index sensors based on all-dielectric metasurfaces. RSC Adv 2022; 12:21264-21269. [PMID: 35975043 PMCID: PMC9344899 DOI: 10.1039/d2ra02176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Possessing fantastic abilities to freely manipulate electromagnetic waves on an ultrathin platform, metasurfaces have aroused intense interest in the academic circle. In this work, we present a high-sensitivity refractive index sensor excited by the guided mode of a two-dimensional periodic TiO2 dielectric grating structure. Numerical simulation results show that the optimized nanosensor can excite guided-mode resonance with an ultra-narrow linewidth of 0.19 nm. When the thickness of the biological layer is 20 nm, the sensitivity, Q factor, and FOM values of the nanosensor can reach 82.29 nm RIU-1, 3207.9, and 433.1, respectively. In addition, the device shows insensitivity to polarization and good tolerance to the angle of incident light. This demonstrates that the utilization of low-loss all-dielectric metasurfaces is an effective way to achieve ultra-sensitive biosensor detection.
Collapse
Affiliation(s)
- Pinghui Wu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Shuangcao Qu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Xintao Zeng
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Ning Su
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Musheng Chen
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Yanzhong Yu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
12
|
Perfect Absorption of Fan-Shaped Graphene Absorbers with Good Adjustability in the Mid-Infrared. COATINGS 2022. [DOI: 10.3390/coatings12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper presents a graphene metamaterial absorber based on impedance matching. A finite difference in time domain (FDTD) method is used to achieve a theoretically perfect absorption in the mid-infrared band. A basis is created for the multiband stable high absorption of graphene in the mid-infrared. The designed graphene absorber is composed of graphene, a dielectric layer, a gold plane, and a silicon substrate, separately. The incident source of mid-infrared can be utilized to stimulate multiband resonance absorption peaks from 2.55 to 4.15 μm. The simulation results show that the absorber has three perfect resonance peaks exceeding 99% at λ1 = 2.67 μm, λ2 = 2.87 μm, and λ3 = 3.68 μm, which achieve an absorption efficiency of 99.67%, 99.61%, and 99.40%, respectively. Furthermore, the absorber maintains an excellent performance with a wide incident angle range of 0°–45°, and it also keeps the insensitive characteristic to transverse electric wave (TE) and transverse magnetic wave (TM). The results above indicate that our perfect graphene absorber, with its tunability and wide adaptability, has many potential applications in the fields of biosensing, photodetection, and photocell.
Collapse
|
13
|
A Self-Color-Changing Film with Periodic Nanostructure for Anti-Counterfeit Application. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A self-color-changing film aimed at enhanced security and anti-counterfeit packaging is presented. Its function is to change color automatically when flipped under visible light. It is low-cost, takes a few seconds to check by the naked eye, and does not need any special tools to evaluate. The design of the color-changing, anti-counterfeiting film is based on a frequency-selective surface (FSS). The film is designed with aluminum nanocubes. They are laid out as an array in a plane with equal distance from one another. This arrangement allows us to select certain wavelengths of light to pass through by the size of the cubes and the separation distance between them. The performance is evaluated by a finite element analysis (FEA) method. The results show that the intersection of transmittance and the reflectance curves cause the film to change its color automatically when flipped. We also propose a method to predict the color of the film based on the transmittance values. The accuracy of this method is verified by actual colors from experiments with an error of no more than 12.8%, analyzed by the CIE chromaticity diagram.
Collapse
|
14
|
Metamaterial Solar Absorber Based on Refractory Metal Titanium and Its Compound. COATINGS 2022. [DOI: 10.3390/coatings12070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metamaterials refers to a class of artificial materials with special properties. Through its unique geometry and the small size of each unit, the material can acquire unique electromagnetic field properties that conventional materials do not have. Based on these factors, we put forward a kind of high absorption near-ultraviolet to near-infrared electromagnetic wave absorber of the solar energy. The surface structure of the designed absorber is composed of TiN-TiO2-Al2O3 with rectangles and disks, and the substrate is Ti-Al2O3-Ti layer. In the study band range (0.1–3.0 μm), the solar absorber’s average absorption is up to 96.32%, and the designed absorber absorbs more than 90% of the electromagnetic wave with a wavelength width of 2.577 μm (0.413–2.990 μm). Meanwhile, the designed solar absorber has good performance under different angles of oblique incident light. Ultra-wideband solar absorbers have great potential in light absorption related applicaitions because of their wide spectrum high absorption properites.
Collapse
|
15
|
Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al2O3-Nickel Nanofilms. NANOMATERIALS 2022; 12:nano12132205. [PMID: 35808043 PMCID: PMC9268592 DOI: 10.3390/nano12132205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
In the traditional surface plasmon resonance sensor, the sensitivity is calculated by the usage of angular interrogation. The proposed surface plasmon resonance (SPR) sensor uses a diamagnetic material (Al2O3), nickel (Ni), and two-dimensional (2D) BlueP/WS2 (blue phosphorous-tungsten di-sulfide). The Al2O3 sheet is sandwiched between silver (Ag) and nickel (Ni) films in the Kretschmann configuration. A mathematical simulation is performed to improve the sensitivity of an SPR sensor in the visible region at a frequency of 633 nm. The simulation results show that an upgraded sensitivity of 332°/RIU is achieved for the metallic arrangement consisting of 17 nm of Al2O3 and 4 nm of Ni in thickness for analyte refractive indices ranging from 1.330 to 1.335. The thickness variation of the layers plays a curial role in enhancing the performance of the SPR sensor. The thickness variation of the proposed configuration containing 20 nm of Al2O3 and 1 nm of Ni with a monolayer of 2D material BlueP/WS2 enhances the sensitivity to as high as 374°/RIU. Furthermore, it is found that the sensitivity can be altered and managed by means of altering the film portions of Ni and Al2O3
Collapse
|
16
|
The Dose- and Time-Dependent Cytotoxic Effect of Graphene Nanoplatelets: In Vitro and In Vivo Study. NANOMATERIALS 2022; 12:nano12121978. [PMID: 35745317 PMCID: PMC9229803 DOI: 10.3390/nano12121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
Graphene-based nanomaterials received attention from scientists due to their unique properties: they are highly conductive, mechanically resistant and elastic. These materials can be used in different sectors of society from electronic energy storage in industry to biomedical applications. This study evaluates the influence of graphene nanoplatelets in vitro and in vivo. The toxicological influence of graphene nanoplatelets (GPs) was analyzed by cytotoxic methods, the change of cell proliferation was assessed in real-time, and the effect of GPs on a living organism was evaluated in an animal model using histopathological examination. We analyzed two types of GP administration: intratracheal and peroral. We found dose- and time-dependent cytotoxic effects of GPs in vitro; the concentration above 50 μg/mL increased the cytotoxicity significantly. The real-time analysis confirmed these data; the cells exposed to a high concentration of GPs for a longer time period resulted in a decrease in cell index which indicated lower cell viability. Histopathological examination revealed thickened alveolar septa and accumulation of GPs in the endocardium after intratracheal exposure. Peroral administration did not reveal any morphological changes. This study showed the dose- and time-dependent cytotoxic potential of graphene nanoplatelets in in vitro and in vivo models.
Collapse
|
17
|
Grating Structure Broadband Absorber Based on Gallium Arsenide and Titanium. COATINGS 2022. [DOI: 10.3390/coatings12050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We designed a broadband absorber based on a multilayer grating structure composed of gallium arsenide and titanium. The basic unit is a grating structure stacked on top of a semiconductor of gallium arsenide and titanium metal. We used the finite difference time domain method to simulate the designed model and found that the absorber absorption efficiency exceeded 90% in the range from 736 nm to 3171 nm. The absorption efficiency near perfect absorption at 867 nm was 99.69%. The structure had good angle insensitivity, and could maintain good absorption under both the TE mode and TM mode polarized light when the incident angle of the light source changed from 0° to 50°. This kind of metamaterial grating perfect absorber is expected to be widely used in optical fields such as infrared detection, optical sensing, and thermal electronics.
Collapse
|
18
|
Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P. Thermal tuning of terahertz metamaterial absorber properties based on VO 2. Phys Chem Chem Phys 2022; 24:8846-8853. [PMID: 35356962 DOI: 10.1039/d2cp01070d] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel, structurally simple, multifunctional broadband absorber. It consists of a patterned vanadium dioxide film and a metal plate spaced by a dielectric layer. Temperature control allows flexible adjustment of the absorption intensity from 0 to 0.999. The modulation mechanism of the absorber stems from the thermogenic phase change properties of the vanadium dioxide material. The absorber achieves total reflection properties in the terahertz band when the vanadium dioxide is in the insulated state. When the vanadium dioxide is in its metallic state, the absorber achieves near-perfect absorption in the ultra-broadband range of 3.7 THz-9.7 THz. Impedance matching theory and the analysis of electric field are also used to illustrate the mechanism of operation. Compared to previous reports, our structure utilizes just a single cell structure (3 layers only), and it is easy to process and manufacture. The absorption rate and operating bandwidth of the absorber are also optimised. In addition, the absorber is not only insensitive to polarization, but also very tolerant to the angle of incidence. Such a design would have great potential in wide-ranging applications, including photochemical energy harvesting, stealth devices, thermal emitters, etc.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China.
| | - Qianjv Song
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
19
|
Fan Z, Guo X, Jin Z, Li X, Li Y. Bridging Effect of S-C Bond for Boosting Electron Transfer over Cubic Hollow CoS/g-C 3N 4 Heterojunction toward Photocatalytic Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3244-3256. [PMID: 35225625 DOI: 10.1021/acs.langmuir.1c03379] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of interfacial effects and chemical bonds between catalysts is one of the effective strategies to facilitate photogenerated electron transfer. A novel hollow cubic CoS is derived from Co-ZIF-9 and the S-C bond is successfully constructed between CoS and g-C3N4. The S-C bond acts as a bridge for electronic transmission, allowing the rapid transmission of photoelectron to hydrogen evolution active site in CoS. In addition, the results of electrochemical impedance spectroscopy and time-resolved photoluminescence spectroscopy show that the S-C bond acts as a bridge to quickly transfer photogenerated carriers in the composite material, and achieves the effect of high-efficiency hydrogen evolution. The hydrogen production of SgZ-45 reaches 9545 μmol·g-1 in 5 h, which is 53 and 12 times that of g-C3N4 and ZIF-9, respectively. The intrinsic mechanism of photoelectron transfer through S-C bonds can be further confirmed by density functional theory (DFT) calculations. This work provides new insights for building a chemical bond electron transfer bridge between MOF derivatives and nonmetallic photocatalytic materials.
Collapse
Affiliation(s)
- Zhaobo Fan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xin Li
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China
| | - Youji Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, PR China
| |
Collapse
|
20
|
Yoosefian M, Fouladi M, Atanase LI. Molecular Dynamics Simulations of Docetaxel Adsorption on Graphene Quantum Dots Surface Modified by PEG-b-PLA Copolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:926. [PMID: 35335739 PMCID: PMC8955431 DOI: 10.3390/nano12060926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Cancer is associated with a high level of morbidity and mortality, and has a significant economic burden on health care systems around the world in almost all countries due to poor living and nutritional conditions. In recent years, with the development of nanomaterials, research into the drug delivery system has become a new field of cancer treatment. With increasing interest, much research has been obtained on carbon-based nanomaterials (CBNs); however, their use has been limited, due to their impact on human health and the environment. The scientific community has turned its research efforts towards developing new methods of producing CBN. In this work, by utilizing theoretical methods, including molecular dynamics simulation, graphene quantum dots (GQD) oxide was selected as a carbon-based nanocarriers, and the efficiency and loading of the anticancer drug docetaxel (DTX) onto GQD oxide surfaces in the presence and in the absence of a PEG-b-PLA copolymer, as a surface modifier, were investigated. According to the results and analyzes performed (total energy, potential energy, and RMSD), it can be seen that the two systems have good stability. In addition, it was determined that the presence of the copolymer at the interface of GQD oxide delays the adsorption of the drug at first; but then, in time, both the DTX adsorption and solubility are increased.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Mitra Fouladi
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman 7631885356, Iran;
| | | |
Collapse
|
21
|
Chen H, Chen Z, Yang H, Wen L, Yi Z, Zhou Z, Dai B, Zhang J, Wu X, Wu P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv 2022; 12:7821-7829. [PMID: 35424732 PMCID: PMC8982188 DOI: 10.1039/d2ra00611a] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, a multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene is proposed, which has the advantages of polarization independence, tunability, high sensitivity, high figure of merit, etc. The device consists of a top layer dart-like patterned single-layer graphene array, a thicker silicon dioxide spacer layer and a metal reflector layer, and has simple structural characteristics. The numerical results show that the device achieves the perfect polarization-independent absorption at the resonance wavelengths of λ I = 3369.55 nm, λ II = 3508.35 nm, λ III = 3689.09 nm and λ IV = 4257.72 nm, with the absorption efficiencies of 99.78%, 99.40%, 99.04% and 99.91%, respectively. The absorption effect of the absorber can be effectively regulated and controlled by adjusting the numerical values such as the geometric parameters and the structural period p of the single-layer graphene array. In addition, by controlling the chemical potential and the relaxation time of the graphene layer, the resonant wavelength and the absorption efficiency of the mode can be dynamically tuned. And can keep high absorption in a wide incident angle range of 0° to 50°. At last, we exposed the structure to different environmental refractive indices, and obtained the corresponding maximum sensitivities in four resonance modes, which are S I = 635.75 nm RIU-1, S II = 695.13 nm RIU-1, S III = 775.38 nm RIU-1 and S IV = 839.39 nm RIU-1. Maximum figure of merit are 54.03 RIU-1, 51.49 RIU-1, 43.56 RIU-1, and 52.14 RIU-1, respectively. Therefore, this study has provided a new inspiration for the design of the graphene-based tunable multi-band perfect metamaterial absorber, which can be applied to the fields such as photodetectors and chemical sensors.
Collapse
Affiliation(s)
- Hao Chen
- School of Science, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology Mianyang 621010 China
| | - Zihao Chen
- School of Science, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology Mianyang 621010 China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology Lanzhou 730050 China
| | - Lianghua Wen
- Division of Intelligent Manufactuning of Yibin University Yibin 644600 China
| | - Zao Yi
- School of Science, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology Mianyang 621010 China
| | - Zigang Zhou
- School of Science, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology Mianyang 621010 China
| | - Bo Dai
- School of Science, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology Mianyang 621010 China
| | - Jianguo Zhang
- Department of Physics, Jinzhong University Jinzhong 030619 China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
22
|
Zeng X, Su N, Wu P. The Structure Design and Photoelectric Properties of Wideband High Absorption Ge/GaAs/P3HT:PCBM Solar Cells. MICROMACHINES 2022; 13:349. [PMID: 35334641 PMCID: PMC8948855 DOI: 10.3390/mi13030349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
Using the finite-difference time-domain (FDTD) method, we designed an ultra-thin Ge/GaAs/P3HT:PCBM hybrid solar cell (HSC), which showed good effects of ultra-wideband (300 nm-1200 nm), high absorption, and a short-circuit current density of 44.7 mA/cm2. By changing the thickness of the active layer P3HT:PCBM, we analyzed the capture of electron-hole pairs. We also studied the effect of Al2O3 on the absorption performance of the cell. Through adding metal Al nanoparticles (Al-NPs) and then analyzing the figures of absorption and electric field intensity, we found that surface plasma is the main cause of solar cell absorption enhancement, and we explain the mechanism. The results show that the broadband absorption of the solar cell is high, and it plays a great role in capturing sunlight, which will be of great significance in the field of solar cell research.
Collapse
Affiliation(s)
| | | | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Quanzhou 362000, China; (X.Z.); (N.S.)
| |
Collapse
|
23
|
Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys Chem Chem Phys 2022; 24:2527-2533. [PMID: 35023523 DOI: 10.1039/d1cp04974g] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terahertz functional devices have been instrumental in the development of terahertz technology. Moreover, the advent of metamaterials has greatly contributed to the advancement of terahertz devices. However, most of today's metamaterials in the terahertz band exhibit poor performance and are mono-functional. This greatly limits the scalability and application potential of the devices. To achieve diversification and tunability of device functionality, we propose a combination of metamaterial structures and vanadium dioxide film. A metamaterial absorber based on the thermotropic phase change material VO2 has been designed. Flexible switching of absorption performance (complete reflection and ultra-broadband perfect absorption) can be achieved through temperature adjustment. Moreover, the perfectly absorbed bandwidth is a staggering 3.3 THz. The thermal tuning of spectral absorbance has a maximal range of 0.01 to 0.999. The shift in absorption properties is explained by the phase change process of vanadium oxide (MIT). The electric field intensity on the absorber surface at different temperatures was monitored and analysed as a way to correlate the VO2 film phase transition process. The impedance matching theory is applied to explain the high level of absorption generated by the absorber. Finally, the effects of the structural parameters on the performance of the absorber are analysed. This work will have many applications in the terahertz field and offers a wide range of ideas for the design of terahertz-enabled devices.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Ying Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China
| | - Zhimin Liu
- School of Science, East China Jiaotong University, Nanchang 330013, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yang Yu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
24
|
Fan Z, Guo X, Yang M, Jin Z. Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Liu B, Wu P, Zhu H, Lv L. Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric-Dielectric-Metal Three-Layer Film Material. MICROMACHINES 2021; 12:1552. [PMID: 34945402 PMCID: PMC8708341 DOI: 10.3390/mi12121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
This paper proposes a perfect metamaterial absorber based on a dielectric-dielectric-metal structure, which realizes ultra-narrowband dual-band absorption in the near-infrared band. The maximum Q factor is 484. The physical mechanism that causes resonance is hybrid coupling between magnetic polaritons resonance and plasmon resonance. At the same time, the research results show that the intensity of magnetic polaritons resonance is much greater than the intensity of the plasmon resonance. By changing the structural parameters and the incident angle of the light source, it is proven that the absorber is tunable, and the working angle tolerance is 15°. In addition, the sensitivity and figure of merit when used as a refractive index sensor are also analyzed. This design provides a new idea for the design of high-Q optical devices, which can be applied to photon detection, spectral sensing, and other high-Q multispectral fields.
Collapse
Affiliation(s)
- Bin Liu
- Rural Revitalization Institute, Linyi University, Linyi 276000, China;
- Center for International Education, Philippine Christian University, Manila 1004, Philippines
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China;
| | - Hongyang Zhu
- School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
| | - Li Lv
- School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
26
|
Wu X, Zheng Y, Luo Y, Zhang J, Yi Z, Wu X, Cheng S, Yang W, Yu Y, Wu P. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys Chem Chem Phys 2021; 23:26864-26873. [PMID: 34821236 DOI: 10.1039/d1cp04568g] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A four-band terahertz tunable narrow-band perfect absorber based on a bulk Dirac semi-metallic (BDS) metamaterial with a microstructure is designed. The three-layer structure of this absorber from top to bottom is the Dirac semi-metallic layer, the dielectric layer and the metal reflector layer. Based on the Finite Element Method (FEM), we use the simulation software CST STUDIO SUITE to simulate the absorption characteristics of the designed absorber. The simulation results show that the absorption rate of the absorber is over 93% at frequencies of 1.22, 1.822, 2.148 and 2.476 THz, and three of them have achieved a perfect absorption rate of more than 95%. We use the localized surface plasmon resonance (LSPR), impedance matching and other theories to analyze its physical mechanism in detail. The influence of the geometric structure parameters of the absorber and the incident angle of electromagnetic waves on the absorption performance has also been studied in detail. Due to the rotational symmetry of the structure, the designed absorber has excellent polarization insensitivity. In addition, the maximum adjustable range of absorption frequency is 0.051 THz, which can be achieved by changing the Fermi energy of BDS. We also define the refractive index sensitivity (S), which is 39.1, 75.4, 119.1 and 122.0 GHz RIU-1 for the four absorption modes when the refractive index varies in the range of 1 to 1.9. This high-performance absorber has a very good development prospect in the frontier fields of bio-chemical sensing and special environmental detection.
Collapse
Affiliation(s)
- Xianglong Wu
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Ying Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics and Electronic Engineering, Jinzhong University, Jinzhong 030619, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yang Yu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
27
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
28
|
Huang M, Wei K, Wu P, Xu D, Xu Y. Terahertz Broadband Absorber Based on a Combined Circular Disc Structure. MICROMACHINES 2021; 12:1290. [PMID: 34832704 PMCID: PMC8620649 DOI: 10.3390/mi12111290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
To solve the problem of complex structure and narrow absorption band of most of today's terahertz absorbers, this paper proposes and utilizes the finite element (COMSOL) method to numerically simulate a broadband absorber based on a straightforward periodic structure consisting of a disk and concentric ring. The final results show that our designed absorber has an absorption rate of over 99% in the broadband range of 9.06 THz to 9.8 THz and an average of over 97.7% in the ultra-broadband range of 8.62 THz to 10 THz. The reason for the high absorption is explained by the depiction of the electric field on the absorber surface at different frequencies. In addition, the materials for the top pattern of the absorber are replaced by Cu, Ag, or Al, and the absorber still achieves perfect absorption with different metal materials. Due to the perfect symmetry of the absorber structure, the absorber is very polarization-insensitive. The overall design is simple, easy to process and production. Therefore, our research will offer great potential for applications in areas such as terahertz electromagnetic stealth, sensing, and thermal imaging.
Collapse
Affiliation(s)
- Meihong Huang
- College of Transportation and Navigation, Quanzhou Normal University, Quanzhou 362000, China;
| | - Kaihua Wei
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China;
| | - Danyang Xu
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Yan Xu
- School of Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
29
|
Preparation of ZnO/Bi2O3 Composites as Heterogeneous Thin Film Materials with High Photoelectric Performance on FTO Base. COATINGS 2021. [DOI: 10.3390/coatings11091140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, ZnO nanomaterials have achieved great performance in solar energy applications. How to synthesize a ZnO nanocomposite structure with high photoelectric conversion efficiency has become an urgent problem to solved. In this paper, a narrow band gap bismuth trioxide (Bi2O3) coated on a ZnO nanoarray by magnetron sputtering was used to prepare a composite heterojunction ZnO/Bi2O3. Studies have found that ZnO/Bi2O3 exhibits excellent photoelectric conversion performance. By preparing a composite heterostructure of ZnO/Bi2O3, it can effectively compensate for the insufficient absorption of ZnO in the visible light range and inhibit the recombination of carriers within the material. The influence of Bi2O3 thickness on the microstructure and electronic structure of the ZnO/Bi2O3 composite structure was explored and analyzed. The energy gap width of the composite heterostructure decreases with the increase in the Bi2O3 thickness on the surface of the ZnO nanorod array. At the same time, the conductive glass composite film structure is simple to prepare and is very environmentally friendly. The ZnO/Bi2O3 composite heterogeneous material prepared this time is suitable for solar cells, photodetectors, photocatalysis and other fields.
Collapse
|
30
|
Wu P, Wei K, Xu D, Chen M, Zeng Y, Jian R. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2040. [PMID: 34443871 PMCID: PMC8398894 DOI: 10.3390/nano11082040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
In this paper, we designed an ultra-wideband solar energy absorber and approved it numerically by the finite-difference time-domain simulation. The designed solar energy absorber can achieve a high absorption of more than 90% of light in a continuous 3.506 μm (0.596 μm-4.102 μm) wavelength range. The basic structure of the absorber is based on silicon dioxide colloidal crystal and Ti. Since the materials have a high melting point, the designed solar energy absorber can work normally under high temperature, and the structure of this solar energy absorber is simpler than most solar energy absorbers fabricated with traditional metal. In the entire wavelength band researched, the average absorption of the colloidal crystal-based solar energy absorber is as high as 94.3%, demonstrating an excellent performance under the incidence light of AM 1.5 solar spectrum. In the meantime, the absorption spectrum of the solar energy absorber is insensitive to the polarization of light. In comparison to other similar structures, our designed solar energy absorber has various advantages, such as its high absorption in a wide spectrum range and that it is low cost and easy to make.
Collapse
Affiliation(s)
- Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China; (P.W.); (M.C.); (Y.Z.)
| | - Kaihua Wei
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Danyang Xu
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Musheng Chen
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China; (P.W.); (M.C.); (Y.Z.)
| | - Yongxi Zeng
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China; (P.W.); (M.C.); (Y.Z.)
| | - Ronghua Jian
- School of Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
31
|
A Tunable “Ancient Coin”-Type Perfect Absorber with High Refractive Index Sensitivity and Good Angular Polarization Tolerance. COATINGS 2021. [DOI: 10.3390/coatings11070814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, we design and present a graphene-based “ancient coin”-type dual-band perfect metamaterial absorber, which is composed of a silver layer, silicon dioxide layer, and a top “ancient coin” graphene layer. The absorption performance of the absorber is affected by the hollowed-out square in the center of the graphene layer and geometric parameters of the remaining nano disk. The optical properties of graphene can be changed by adjusting the voltage, to control the absorption performance of the absorber dynamically. In addition, the centrally symmetric pattern structure greatly eliminates the polarization angle dependence of our proposed absorber, and it exhibits good angular polarization tolerance. Furthermore, the proposed “ancient coin”-type absorber shows great application potential as a sensor or detector in biopharmaceutical, optical imaging, and other fields due to its strong tunability and high refractive index sensitivity.
Collapse
|
32
|
Based on Ultrathin PEDOT:PSS/c-Ge Solar Cells Design and Their Photoelectric Performance. COATINGS 2021. [DOI: 10.3390/coatings11070748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, nanostructures have improved the performance of solar cells and are regarded as the most promising microstructures. The optical properties of PEDOT:PSS/c-Ge hybrid solar cells (HSCs) based on the octagon germanium nanoparticles (O-GNPs) were numerically analyzed using the finite-difference time-domain (FDTD) method. The optimal structure of the hybrid solar cell is determined by changing the thickness of the organic layer and structural parameters of nanoparticles to enhance the optical absorption and eventually achieve high broadband absorption. By changing the structure parameter of O-GNPs, we studied its effect on solar cells. The optimization of geometric parameters is based on maximum absorption. The light absorption of our optimized HSCs is basically above 90% between 200 and 1500 nm. PEDOT:PSS is placed on top of O-GNPs to transmit the holes better, allowing O-GNPs to capture a lot of photons, to increase absorbance value properties in the AM1.5 solar spectral irradiated region. The transmittance is increased by adding poly-methyl methacrylate (PMMA). At the same time, the electrical characteristics of Ge solar cells were simulated by DEVICE, and short-circuit current (Jsc), open-circuit voltage (Voc), maximum power (Pmax), filling coefficient (FF) and photoelectric conversion efficiency (PCE) were obtained. According to the optimization results after adjusting the structural parameters, the maximum short-circuit current is 44.32 mA/cm2; PCE is 7.84 mW/cm2; FF is 69%. The results show that the O-GNPs have a good light trapping effect, and the structure design has great potential for the absorption of HSCs; it is believed that the conversion efficiency will be further improved through further research.
Collapse
|
33
|
Rajeev R, Datta R, Varghese A, Sudhakar Y, George L. Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 2020; 175:112836. [PMID: 33272868 DOI: 10.1016/j.bios.2020.112836] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023]
Abstract
The surging growth of the pharmaceutical industry is a result of the rapidly increasing human population, which has inevitably led to new biomedical and environmental issues. Aside from the quality control of pharmaceutical production and drug delivery, there is an urgent need for precise, sensitive, portable, and cost-effective technologies to track patient overdosing and to monitor ambient water sources and wastewater for pharmaceutical pollutants. The development of advanced nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds has garnered immense attention due to their advantages, such as high sensitivity and selectivity, real-time monitoring, and ease of use. This review article surveys state-of-the-art nanomaterials-based electrochemical sensors and biosensors for the detection and quantification of six classes of significant pharmaceutical compounds, including anti-inflammatory, anti-depressant, anti-bacterial, anti-viral, anti-fungal, and anti-cancer drugs. Important factors such as sensor/analyte interactions, design rationale, fabrication, characterization, sensitivity, and selectivity are discussed. Strategies for the development of high-performance electrochemical sensors and biosensors tailored toward specific pharmaceuticals are highlighted to provide readers and scientists with an extensive toolbox for the detection of a wide range of pharmaceuticals. Our aims are two-fold: (i) to inspire readers by further elucidating the properties and functionalities of existing nanomaterials for the detection of pharmaceuticals; and (ii) to provide examples of the potential opportunities that these devices have for the advanced sensing of pharmaceutical compounds toward safeguarding human health and ecosystems on a global scale.
Collapse
Affiliation(s)
- Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Scott Prins
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada.
| |
Collapse
|
35
|
Synthesis, and New Design into Enhanced Photocatalytic Activity of Porphyrin Immobilization on the Surface of Bismuth Oxyhalides Modified with Polyaniline. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01652-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Akshaya K, Anitha V, Nidhin M, Sudhakar Y, Louis G. Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 2020; 217:121028. [DOI: 10.1016/j.talanta.2020.121028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
|
37
|
Gui R, Guo H, Jin H. Preparation and applications of electrochemical chemosensors based on carbon-nanomaterial-modified molecularly imprinted polymers. NANOSCALE ADVANCES 2019; 1:3325-3363. [PMID: 36133548 PMCID: PMC9419493 DOI: 10.1039/c9na00455f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 05/25/2023]
Abstract
The past few decades have witnessed a rapid development in electrochemical chemosensors (ECCSs). The integration of carbon nanomaterials (CNMs) and molecularly imprinted polymers (MIPs) has endowed ECCSs with high selectivity and sensitivity toward target detection. Due to the integrated merits of MIPs and CNMs, CNM-modified MIPs as ECCSs have been widely reported and have excellent detection applications. This review systematically summarized the general categories, preparation strategies, and applications of ECCSs based on CNM-modified MIPs. The categories include CNM-modified MIPs often hybridized with various materials and CNM-encapsulated or CNM-combined imprinting silica and polymers on working electrodes or other substrates. The preparation strategies include the polymerization of MIPs on CNM-modified substrates, co-polymerization of MIPs and CNMs on substrates, drop-casting of MIPs on CNM-modified substrates, self-assembly of CNMs/MIP complexes on substrates, and so forth. We discussed the in situ polymerization, electro-polymerization, and engineering structures of CNM-modified MIPs. With regard to potential applications, we elaborated the detection mechanisms, signal transducer modes, target types, and electrochemical sensing of targets in real samples. In addition, this review discussed the present status, challenges, and prospects of CNM-modified MIP-based ECCSs. This comprehensive review is desirable for scientists from broad research fields and can promote the further development of MIP-based functional materials, CNM-based hybrid materials, advanced composites, and hybrid materials.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University Shandong 266071 PR China +86 532 85953981 +86 532 85953981
| | - Huijun Guo
- Advanced Fiber and Composites Research Institute, Jilin Institute of Chemical Technology Jilin 132022 PR China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University Shandong 266071 PR China +86 532 85953981 +86 532 85953981
| |
Collapse
|
38
|
Singh A, Samanta D, Maji TK. Realization of Oxygen Reduction and Evolution Electrocatalysis by In Situ Stabilization of Co Nanoparticles in a Redox‐Active Donor‐Acceptor Porous Organic Polymer. ChemElectroChem 2019. [DOI: 10.1002/celc.201900905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore- 560064 India
| | - Debabrata Samanta
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore- 560064 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore- 560064 India
| |
Collapse
|
39
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Azzouz A, Kailasa SK, Kumar P, Ballesteros E, Kim KH. Advances in functional nanomaterial-based electrochemical techniques for screening of endocrine disrupting chemicals in various sample matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
42
|
Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. ELECTROANAL 2018. [DOI: 10.1002/elan.201800623] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdellatif Ait Lahcen
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| | - Aziz Amine
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| |
Collapse
|
43
|
Synthesis, characterization, and preparation of nickel nanoparticles decorated electrochemically reduced graphene oxide modified electrode for electrochemical sensing of diclofenac. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4071-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Premlatha S, Ramesh Bapu G. Fabrication of Co-Ni alloy nanostructures on copper foam for highly sensitive amperometric sensing of acetaminophen. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal Chim Acta 2018; 1033:185-192. [PMID: 30172325 DOI: 10.1016/j.aca.2018.05.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 01/21/2023]
Abstract
An ultrasensitive electrochemical aptasensor for kanamycin (KAN) detection was constructed with a dual-signal amplification strategy. The aptasensor achieved greatly amplified sensitivity due to the excellent electrical conductivity of the ordered mesoporous carbon-chitosan (OMC-CS)/gold nanoparticles-streptavidin (AuNPs-SA) and DNA2 labelled with ferrocene (Fc-DNA2). The AuNPs-SA was used to immobilize the DNA strand (biotin labelled) with the biotin-streptavidin system. The DNA2 strand containing the KAN aptamer was labelled with ferrocene to increase the current signal on the electrode surface when bound to KAN. Some factors that affect the performance of the aptasensor were optimized, and the proposed aptasensor provided a wide linear range from 1 × 10-10 M to 4 × 10-6 M, with a detection limit as low as 35.69 pM for KAN under the optimized conditions. This aptasensor had satisfactory electrochemical performance with good stability, sensitivity and reproducibility. Additionally, it also displayed a good specificity for KAN without interference from competitive analogues. Furthermore, the constructed aptasensor was successfully used to detect KAN in a real milk sample. The proposed method for KAN detection has great potential for the detection of other antibiotics.
Collapse
|
46
|
A selective glucose sensor based on direct oxidation on a bimetal catalyst with a molecular imprinted polymer. Biosens Bioelectron 2018; 99:471-478. [DOI: 10.1016/j.bios.2017.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/26/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022]
|
47
|
Zhong C, Yang B, Jiang X, Li J. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit Rev Anal Chem 2017; 48:15-32. [PMID: 28777018 DOI: 10.1080/10408347.2017.1360762] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.
Collapse
Affiliation(s)
- Chunju Zhong
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Bin Yang
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Xinxin Jiang
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| | - Jianping Li
- a Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology , Guilin , China
| |
Collapse
|
48
|
Zhang Y, Zheng J, Guo M. Preparation of Molecularly Imprinted Electrochemical Sensor for Detection of Vincristine Based on Reduced Graphene Oxide/Gold Nanoparticle Composite Film. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Guo H, Pu B, Chen H, Yang J, Zhou Y, Yang J, Bismark B, Li H, Niu X. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties. NANOSCALE RESEARCH LETTERS 2016; 11:352. [PMID: 27473115 PMCID: PMC4967064 DOI: 10.1186/s11671-016-1562-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Pure metallic nickel submicron spheres (Ni-SSs), flower-like nickel nanoflakes, and hollow micrometer-sized nickel spheres/tubes were controllably synthesized by a facile and efficient one-step solvothermal method with no reducing agent. The characteristics of these nickel nanostructures include morphology, structure, and purification. Possible synthesis mechanisms were discussed in detail. The resultant Ni-SSs had a wide diameter distribution of 200~800 nm through the aggregation of small nickel nanocrystals. The ferromagnetic behaviors of Ni-SSs investigated at room temperature showed high coercivity values. Furthermore, the microwave absorption properties of magnetic Ni-SSs were studied in the frequency range of 0.5-18.0 GHz. The minimum reflection loss reached -17.9 dB at 17.8 GHz with a thin absorption thickness of 1.2 mm, suggesting that the submicron spherical structures could exhibit excellent microwave absorption properties. More importantly, this one-pot synthesize route provides a universal and convenient way for preparation of larger scale pure Ni-SSs, showing excellent microwave absorption properties.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bingxue Pu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiyuan Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jin Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yajun Zhou
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jian Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Boateng Bismark
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Handong Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaobin Niu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
50
|
|