1
|
Kim HS, Hariri K, Zhang X, Chen L, Katz BB, Pei H, Louie SG, Zhang Y. Synthesis of site-specific Fab-drug conjugates using ADP-ribosyl cyclases. Protein Sci 2024; 33:e4924. [PMID: 38501590 PMCID: PMC10949397 DOI: 10.1002/pro.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Targeted delivery of small-molecule drugs via covalent attachments to monoclonal antibodies has proved successful in clinic. For this purpose, full-length antibodies are mainly used as drug-carrying vehicles. Despite their flexible conjugation sites and versatile biological activities, intact immunoglobulins with conjugated drugs, which feature relatively large molecular weights, tend to have restricted tissue distribution and penetration and low fractions of payloads. Linking small-molecule therapeutics to other formats of antibody may lead to conjugates with optimal properties. Here, we designed and synthesized ADP-ribosyl cyclase-enabled fragment antigen-binding (Fab) drug conjugates (ARC-FDCs) by utilizing CD38 catalytic activity. Through rapidly forming a stable covalent bond with a nicotinamide adenine dinucleotide (NAD+ )-based drug linker at its active site, CD38 genetically fused with Fab mediates robust site-specific drug conjugations via enzymatic reactions. Generated ARC-FDCs with defined drug-to-Fab ratios display potent and antigen-dependent cytotoxicity against breast cancer cells. This work demonstrates a new strategy for developing site-specific FDCs. It may be applicable to different antibody scaffolds for therapeutic conjugations, leading to novel targeted agents.
Collapse
Affiliation(s)
- Hyo Sun Kim
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimia Hariri
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xiao‐Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Liang‐Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin B. Katz
- Department of ChemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemistry, Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Research Center for Liver DiseasesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Ossowski MS, Gallardo JP, Niborski LL, Rodríguez-Durán J, Lapadula WJ, Juri Ayub M, Chadi R, Hernandez Y, Fernandez ML, Potenza M, Gómez KA. Characterization of Novel Trypanosoma cruzi-Specific Antigen with Potential Use in the Diagnosis of Chagas Disease. Int J Mol Sci 2024; 25:1202. [PMID: 38256275 PMCID: PMC10816184 DOI: 10.3390/ijms25021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.
Collapse
Affiliation(s)
- Micaela S. Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Juan Pablo Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Leticia L. Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Jessica Rodríguez-Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Walter J. Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires 1430, Argentina;
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Marisa L. Fernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| |
Collapse
|
3
|
Neves MMPS, Richards SJ, Baker AN, Walker M, Georgiou PG, Gibson MI. Discrimination between protein glycoforms using lectin-functionalised gold nanoparticles as signal enhancers. NANOSCALE HORIZONS 2023; 8:377-382. [PMID: 36651292 PMCID: PMC9969229 DOI: 10.1039/d2nh00470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Glycoforms (and other post-translational modifications) of otherwise identical proteins can indicate pathogenesis/disease state and hence new tools to detect and sense a protein's glycosylation status are essential. Antibody-based assays against specific protein sequences do not typically discriminate between glycoforms. Here we demonstrate a 'sandwich' bio-assay approach, whereby antibodies immobilised onto biolayer interferometry sensors first select proteins, and then the specific glycoform is identified using gold nanoparticles functionalised with lectins which provide signal enhancement. The nanoparticles significantly enhance the signal relative to lectins alone, allowing glycoform specific detection as low as 0.04 μg mL-1 (1.4 nM) in buffer, and crucially there is no need for an enrichment step and all steps can be automated. Proof of concept is demonstrated using prostate specific antigen: a biomarker for prostate cancer, where glycoform analysis could distinguish between cancerous and non-cancerous status, rather than only detecting overall protein concentration.
Collapse
Affiliation(s)
- Marta M P S Neves
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Institute of Advanced Study, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alexander N Baker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Su J, Liu X, Guo S, Zhang J, Wei X, Li X. Nanobodies: a new potential for prostate cancer treatment. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04515-y. [PMID: 36680579 DOI: 10.1007/s00432-022-04515-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/02/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The current progressive increase in the cancer burden of prostate cancer requires the exploration of new diagnostic and therapeutic approaches. Nanobodies are single-domain antibodies with the advantages of small size, high stability, easy processing and modification, which are increasingly used in the treatment of many types of cancer. METHODS This review analyzed the relevant literature in PubMed and other databases. RESULT In the retrieved literature, nanobodies are widely used in the treatment of prostate cancer. The preparation of nanobodies targeting PSA or PSMA is straightforward. For diagnostic purposes, nanobodies can be used in the preparation of biosensors for more sensitive identification of prostate cancer; for therapeutic purposes, nanobodies are used in the preparation of immunotoxic and ADC drugs. Preclinical in vivo and in vitro experiments have shown that this therapeutic approach is feasible. This article is a review of the above to provide new ideas for the treatment of prostate cancer. CONCLUSION Compared with traditional antibodies, nano-antibodies have the advantages of small size, high stability, and high penetration. These advantages make nano-antibodies worthy to be widely used. Current studies have shown that nanobodies have advantages and future in the diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfei Su
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodi Liu
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanqi Guo
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingxian Zhang
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqin Wei
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojiang Li
- National Clinical Research Center of Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
5
|
Fattahi Z, Tohidkia MR, Yari Khosroushahi A. Phage display-derived immunorecognition elements LSPR nanobiosensor for peptide hormone glycine-extended gastrin 17 detection. Mikrochim Acta 2022; 189:48. [PMID: 34988639 DOI: 10.1007/s00604-021-05159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
The current study intended to evaluate two types of biorecognition element (BRE), namely recombinant antibody fragments and M13 bacteriophage-displayed antibody fragments, where protein L and electrostatic interactions were used to respectively conjugated antibodies and bacteriophages on AuNPs. The functionalization process was examined by DLS to monitor the changes in the size and zeta potential. The formation of the BRE-G17-Gly immunological complexes was manifested by aggregation (confirmed by FE-SEM) and color change from red to dark blue visible to the naked eye. Local refractive index variations of functionalized AuNPs were monitored by a UV - vis spectrophotometer, showing increasing size and decreasing zeta potential in all stages. The calibration plot was developed in the concentration range 1-5 µg/mL and the limit of detection (LOD) was 1 µg/mL. The LSRP nanobiosensor in combination with the phage-based BRE was an affordable and simple approach, as it was able to eliminate the time-consuming and costly step of extracting antibodies. Contrary to the traditional immunoassays, this method does not require additional amplification, e.g., enzymatic, to read the result. The proposed LSPR nanobiosensor model can be adapted to detect a wide range of pathogens, viruses, and biomarkers in the shortest possible time.
Collapse
Affiliation(s)
- Zahra Fattahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Research and Development Complex, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
7
|
Abrantes-Coutinho VE, Santos AO, Moura RB, Pereira-Junior FN, Mascaro LH, Morais S, Oliveira TMBF. Systematic review on lectin-based electrochemical biosensors for clinically relevant carbohydrates and glycoconjugates. Colloids Surf B Biointerfaces 2021; 208:112148. [PMID: 34624598 DOI: 10.1016/j.colsurfb.2021.112148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Carbohydrates and glycoconjugates are involved in numerous natural and pathological metabolic processes, and the precise elucidation of their biochemical functions has been supported by smart technologies assembled with lectins, i.e., ubiquitous proteins of nonimmune origin with carbohydrate-specific domains. When lectins are anchored on suitable electrochemical transducers, sensitive and innovative bioanalytical tools (lectin-based biosensors) are produced, with the ability to screen target sugars at molecular levels. In addition to the remarkable electroanalytical sensitivity, these devices associate specificity, precision, stability, besides the possibility of miniaturization and portability, which are special features required for real-time and point-of-care measurements. The mentioned attributes can be improved by combining lectins with biocompatible 0-3D semiconductors derived from carbon, metal nanoparticles, polymers and their nanocomposites, or employing labeled biomolecules. This systematic review aims to substantiate and update information on the progress made with lectin-based biosensors designed for electroanalysis of clinically relevant carbohydrates and glycoconjugates (glycoproteins, pathogens and cancer biomarkers), highlighting their main detection principles and performance in highly complex biological milieus. Moreover, particular emphasis is given to the main advantages and limitations of the reported devices, as well as the new trends for the current demands. We believe that this review will support and encourage more cutting-edge research involving lectin-based electrochemical biosensors.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Rafael B Moura
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Francisco N Pereira-Junior
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Lucia H Mascaro
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, 13565-905 São Carlos, SP, Brazil
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
8
|
Regan B, O'Kennedy R, Collins D. Advances in point-of-care testing for cardiovascular diseases. Adv Clin Chem 2021; 104:1-70. [PMID: 34462053 DOI: 10.1016/bs.acc.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Point-of-care testing (POCT) is a specific format of diagnostic testing that is conducted without accompanying infrastructure or sophisticated instrumentation. Traditionally, such rapid sample-to-answer assays provide inferior analytical performances to their laboratory counterparts when measuring cardiac biomarkers. Hence, their potentially broad applicability is somewhat bound by their inability to detect clinically relevant concentrations of cardiac troponin (cTn) in the early stages of myocardial injury. However, the continuous refinement of biorecognition elements, the optimization of detection techniques, and the fabrication of tailored fluid handling systems to manage the sensing process has stimulated the production of commercial assays that can support accelerated diagnostic pathways. This review will present the latest commercial POC assays and examine their impact on clinical decision-making. The individual elements that constitute POC assays will be explored, with an emphasis on aspects that contribute to economically feasible and highly sensitive assays. Furthermore, the prospect of POCT imparting a greater influence on early interventions for medium to high-risk individuals and the potential to re-shape the paradigm of cardiovascular risk assessments will be discussed.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland; Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
9
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
10
|
Screen printed electrode-based biosensor functionalized with magnetic cobalt/single-chain antibody fragments for cocaine biosensing in different matrices. Talanta 2020; 217:121111. [PMID: 32498832 DOI: 10.1016/j.talanta.2020.121111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
On-site detection of substance abuse is an important approach in the preventive and intervention protocols implementations. It is known that the traditional methods are heavy, time-consuming, and need a high level of logistical requirements. As such, biosensors represent great potential to simplify and improve substance abuse detection. In this study, we have designed a functionalized screen-printed electrode (SPE) electrochemical biosensor with cobalt oxide nanoparticles and single-chain antibody fragments (scFvs) for cocaine detection. Different electrochemical techniques such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectrometry were used to examine the functionality of the designed biosensor. Furthermore, SEM observations were performed to observe the surface changes after functionalization. The results showed that the linearity ranged between 5.0 and 250 ng/mL and a detection limit of 3.6 ng/mL (n = 6). These results were compared to results obtained from Q-TOF/MS where four different matrices (serum, sweat, urine, and saliva) were spiked with 100 ng/mL cocaine and were analyzed by both methods (Biosensor and Q-TOF/MS). Results showed a higher performance of the biosensor compared to traditional methods. In addition, the selectivity of the biosensor was shown in the presence of different interferents where the designed platform showed a specific response to only cocaine. In conclusion, the designed biosensor proposes great potential for portable and on-site substance abuse detection in addition to boasting the capability of reuse of the SPE and thus, reducing the costs related to such applications.
Collapse
|
11
|
Sugawara K, Ishizaki S, Kuramitz H, Kadoya T. Electrochemical Sensing of Ovalbumin Based on the Interaction between Lysozyme Origin/Tyrosine‐rich Peptides Modified on Magnetic Beads and Oligothreonine/Ovalbumin‐origin Peptide. ELECTROANAL 2020. [DOI: 10.1002/elan.201900336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Sora Ishizaki
- Maebashi Institute of Technology Gunma 371-0816 Japan
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for ResearchUniversity of Toyama Toyama 930-8555 Japan
| | | |
Collapse
|
12
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci 2019; 15:2548-2560. [PMID: 31754328 PMCID: PMC6854376 DOI: 10.7150/ijbs.34213] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy by chimeric antigen receptor-modified T (CAR-T) cells has shown exhilarative clinical efficacy for hematological malignancies. Recently two CAR-T cell based therapeutics, Kymriah (Tisagenlecleucel) and Yescarta (Axicabtagene ciloleucel) approved by US FDA (US Food and Drug Administration) are now used for treatment of B cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) respectively in the US. Despite the progresses made in treating hematological malignancies, challenges still remain for use of CAR-T cell therapy to treat solid tumors. In this landscape, most studies have primarily focused on improving CAR-T cells and overcoming the unfavorable effects of tumor microenvironment on solid tumors. To further understand the current status and trend for developing CAR-T cell based therapies for various solid tumors, this review emphasizes on CAR-T techniques, current obstacles, and strategies for application, as well as necessary companion diagnostics for treatment of solid tumors with CAR-T cells.
Collapse
Affiliation(s)
- Shuo Ma
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinchun Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinyue Wang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Liang Cheng
- Shanghai Baize Medical Laboratory, Shanghai, China.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhong Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | | | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| |
Collapse
|
13
|
Insights on the kinetics of concanavalin A adsorption on platinum and glassy carbon electrodes from electrochemical impedance spectroscopy data. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Bertok T, Lorencova L, Hroncekova S, Gajdosova V, Jane E, Hires M, Kasak P, Kaman O, Sokol R, Bella V, Eckstein AA, Mosnacek J, Vikartovska A, Tkac J. Advanced impedimetric biosensor configuration and assay protocol for glycoprofiling of a prostate oncomarker using Au nanoshells with a magnetic core. Biosens Bioelectron 2019; 131:24-29. [PMID: 30798249 PMCID: PMC7116381 DOI: 10.1016/j.bios.2019.01.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 01/14/2023]
Abstract
In this paper several advances were implemented for glycoprofiling of prostate specific antigen (PSA), what can be applied for better prostate cancer (PCa) diagnostics in the future: 1) application of Au nanoshells with a magnetic core (MP@silica@Au); 2) use of surface plasmons of Au nanoshells with a magnetic core for spontaneous immobilization of zwitterionic molecules via diazonium salt grafting; 3) a double anti-fouling strategy with integration of zwitterionic molecules on Au surface and on MP@silica@Au particles was implemented to resist non-specific protein binding; 4) application of anti-PSA antibody modified Au nanoshells with a magnetic core for enrichment of PSA from a complex matrix of a human serum; 5) direct incubation of anti-PSA modified MP@silica@Au with affinity bound PSA to the lectin modified electrode surface. The electrochemical impedance spectroscopy (EIS) signal was enhanced 43 times integrating Au nanoshells with a magnetic core compared to the biosensor without them. This proof-of-concept study shows that the biosensor could detect PSA down to 1.2 fM and at the same time to glycoprofile such low PSA concentration using a lectin patterned biosensor device. The biosensor offers a recovery index of 108%, when serum sample was spiked with a physiological concentration of PSA (3.5 ng mL-1).
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics Ltd., Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics Ltd., Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Veronika Gajdosova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ondrej Kaman
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10/112, Prague 162 00, Czech Republic
| | - Roman Sokol
- Private Urological Ambulance, Piaristicka 6, Trencin 911 01, Slovak Republic
| | - Vladimir Bella
- St. Elisabeth Cancer Institute, Heydukova 10, Bratislava 812 50, Slovak Republic
| | - Anita Andicsova Eckstein
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 41, Slovak Republic
| | - Jaroslav Mosnacek
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 41, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics Ltd., Dubravska cesta 9, Bratislava 845 38, Slovak Republic.
| |
Collapse
|
15
|
Bertok T, Lorencova L, Chocholova E, Jane E, Vikartovska A, Kasak P, Tkac J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2018. [DOI: 10.1002/celc.201800848] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas Bertok
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Erika Chocholova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Eduard Jane
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced MaterialsQatar University Doha 2713 Qatar
| | - Jan Tkac
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| |
Collapse
|
16
|
Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS 2 quantum dots and g-C 3N 4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal Chim Acta 2018; 1036:121-132. [PMID: 30253822 DOI: 10.1016/j.aca.2018.06.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
A novel nanostructured biosensing platform was designed based on two-dimensional (2D) nanocomposite of graphitic carbon nitride (g-C3N4) nanosheets and MoS2 quantum dots (MoS2 QDs), followed by decoration with chitosan-stabilized Au nanoparticles (CS-AuNPs) (denoted as MoS2QDs@g-C3N4@CS-AuNPs), of which CS-AuNPs were prepared by plasma enhanced-chemical vapor deposition. Owning to the good surface plasmon performance of the CS-AuNPs and excellent electrochemical activity of MoS2QDs@g-C3N4 nanosheets, the as-obtained 2D MoS2QDs@g-C3N4@CS-AuNPs nanocomposite was simultaneously explored to construct both surface plasmon resonance spectroscopy (SPR) sensor and electrochemical aptasensor. The MoS2QDs@g-C3N4@CS-AuNPs-based aptasensor shows strong bio-binding affinity toward the prostate specific antigen (PSA) targeted aptamer strands as compared to the individual component, including MoS2 QDs, g-C3N4, and CS-AuNPs. When detecting PSA, the low limit of detection (LOD) of 0.71 pg mL-1 deduced by electrochemical aptasensor is three orders of magnitude lower than that deduced by SPR sensor (0.77 ng mL-1). As expected, both SPR sensor and electrochemical aptasensor demonstrate good selectivity, highly stability, acceptable reproducibility, and well consistent applicability in human serum. The satisfactory results suggest potential application of the MoS2QDs@g-C3N4@CS-AuNPs in bifunctional biosensing fields and clinical monitoring of cancer markers.
Collapse
Affiliation(s)
- Fenghe Duan
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Shuai Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, PR China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, PR China
| |
Collapse
|