1
|
Wang C, Zhao S, Han G, Bian H, Zhao X, Wang L, Xie G. Hierarchical Porous Nonprecious High-entropy Alloys for Ultralow Overpotential in Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301691. [PMID: 38372003 DOI: 10.1002/smtd.202301691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Water electrolysis is considered the cleanest method for hydrogen production. However, the widespread popularization of water splitting is limited by the high cost and scarce resources of efficient platinum group metals. Hence, it is imperative to develop an economical and high-performance electrocatalyst to improve the efficiency of hydrogen evolution reaction (HER). In this study, a hierarchical porous sandwich structure is fabricated through dealloying FeCoNiCuAl2Mn high-entropy alloy (HEA). This free-standing electrocatalyst shows outstanding HER performance with a very small overpotential of 9.7 mV at 10 mA cm-2 and a low Tafel slope of 56.9 mV dec-1 in 1 M KOH solution, outperforming commercial Pt/C. Furthermore, this electrocatalytic system recorded excellent reaction stability over 100 h with a constant current density of 100 mA cm-2. The enhanced electrochemical activity in high-entropy alloys results from the cocktail effect, which is detected by density functional theory (DFT) calculation. Additionally, micron- and nano-sized pores formed during etching boost mass transfer, ensuring sustained electrocatalyst performance even at high current densities. This work provides a new insight for development in the commercial electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Shen Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Guoqiang Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Haowei Bian
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Xinrui Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Lina Wang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Guangwen Xie
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| |
Collapse
|
2
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Chen DN, Jiang LY, Zhang JX, Tang C, Wang AJ, Feng JJ. Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Mikrochim Acta 2022; 189:455. [DOI: 10.1007/s00604-022-05553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
|
4
|
Pham HQ, Huynh TT. One-pot production of a sea urchin-like alloy electrocatalyst for the oxygen electro-reduction reaction. Dalton Trans 2022; 51:11427-11436. [PMID: 35822501 DOI: 10.1039/d2dt01268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing a cost-effective catalyst with high performance towards the oxygen electro-oxidation reaction (ORR) is of great interest for the development of green energy storage and conversion technologies. We report herein a facile self-assembly strategy in a mild reducing environment to realize an urchin-like NiPt bimetallic alloy with the domination of the (111) facets as an efficient ORR electrocatalyst. In the rotating-disk electrode test, the as-obtained NiPt nanourchins (NUCs)/C catalyst demonstrates an increase in both onset potential (0.96 VRHE) and half-wave potential (0.92 VRHE) and a direct four-electron ORR pathway with enhanced reaction kinetics. Additionally, the as-made NiPt NUCs/C electrocatalyst also shows impressive ORR catalytic stability compared to a commercial Pt NPs/C catalyst after an accelerated durability test with 15.29% degradation in mass activity, which is 3.04-times lower than 46.48% of the Pt NPs/C catalyst. The great ORR performance of the as-made catalyst is due to its unique urchin-like morphology with the dominant (111) facets and the synergistic and electronic effects of alloying Ni and Pt. This study not only provides a robust ORR electrocatalyst, but also opens a facile but effective route for fabricating 3D Pt-based binary and ternary alloy catalysts.
Collapse
Affiliation(s)
- Hau Quoc Pham
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tai Thien Huynh
- Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
5
|
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63680-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Xu H, Shang H, Wang C, Du Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005092. [PMID: 33448126 DOI: 10.1002/smll.202005092] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Duan JJ, Zhang RL, Feng JJ, Zhang L, Zhang QL, Wang AJ. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 581:774-782. [DOI: 10.1016/j.jcis.2020.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
|
8
|
Facile synthesis of Nafion-supported Pt nanoparticles with ultra-low loading as a high-performance electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 2020; 566:505-512. [PMID: 32044097 DOI: 10.1016/j.jcis.2019.10.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022]
Abstract
x%Pt-Naf-CV (Pt-Nafion-Cyclic Voltammetry) catalysts with homogeneously distributed platinum nanoparticles and ultra-low Pt loading are successfully synthesized by using a facile potential cycling approach. The as-synthesized 0.8%Pt-Naf-CV catalyst exhibits an enhanced electrocatalytic activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution, which obtains a low overpotential of 34 mV at 10 mA cm-2. The linear sweep voltammetry (LSV) curve of 0.8%Pt-Naf-CV catalyst is almost consistent with that of commercial Pt/C. However, the 0.8%Pt-Naf-CV catalyst displays a more excellent stability and durability in comparison with commercial Pt/C. Besides, the Pt loading of Pt/C (Pt-10 wt%) is about 10 times that of 0.8%Pt-Naf-CV catalyst. The improved electrocatalytic performances are derived from the synergistic effects of Pt and Nafion. The Nafion plays a significant role as a dispersant, carrier and structure directing agent on the morphology and size of the Pt catalyst. This result contributes a promising method to enhance the catalytic activity and reduce the amount of Pt.
Collapse
|
9
|
Wang C, Xu H, Shang H, Jin L, Chen C, Wang Y, Yuan M, Du Y. Ir-Doped Pd Nanosheet Assemblies as Bifunctional Electrocatalysts for Advanced Hydrogen Evolution Reaction and Liquid Fuel Electrocatalysis. Inorg Chem 2020; 59:3321-3329. [DOI: 10.1021/acs.inorgchem.0c00132] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Trimetallic PtRhCo petal-assembled alloyed nanoflowers as efficient and stable bifunctional electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J Colloid Interface Sci 2020; 559:206-214. [DOI: 10.1016/j.jcis.2019.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022]
|
11
|
Highly efficient Pt-Co alloy hollow spheres with ultra-thin shells synthesized via Co-B-O complex as intermediates for hydrogen evolution reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Construction of Ni@Pt/N-doped nanoporous carbon, derived from pyrolysis of nickel metal organic framework, and application for HER in alkaline and acidic solutions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Hydrogen Production from Ammonia Borane over PtNi Alloy Nanoparticles Immobilized on Graphite Carbon Nitride. Catalysts 2019. [DOI: 10.3390/catal9121009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Graphite carbon nitride (g-C3N4) supported PtNi alloy nanoparticles (NPs) were fabricated via a facile and simple impregnation and chemical reduction method and explored their catalytic performance towards hydrogen evolution from ammonia borane (AB) hydrolysis dehydrogenation. Interestingly, the resultant Pt0.5Ni0.5/g-C3N4 catalyst affords superior performance, including 100% conversion, 100% H2 selectivity, yielding the extraordinary initial total turnover frequency (TOF) of 250.8 molH2 min−1 (molPt)−1 for hydrogen evolution from AB at 10 °C, a relatively low activation energy of 38.09 kJ mol−1, and a remarkable reusability (at least 10 times), which surpass most of the noble metal heterogeneous catalysts. This notably improved activity is attributed to the charge interaction between PtNi NPs and g-C3N4 support. Especially, the nitrogen-containing functional groups on g-C3N4, serving as the anchoring sites for PtNi NPs, may be beneficial for becoming a uniform distribution and decreasing the particle size for the NPs. Our work not only provides a cost-effective route for constructing high-performance catalysts towards the hydrogen evolution of AB but also prompts the utilization of g-C3N4 in energy fields.
Collapse
|
14
|
Song M, Song Y, Li H, Liu P, Xu B, Wei H, Guo J, Wu Y. Sucrose leavening-induced hierarchically porous carbon enhanced the hydrogen evolution reaction performance of Pt nanoparticles. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Niyitanga T, Evans PE, Ekanayake T, Dowben PA, Jeong HK. Carbon nanotubes-molybdenum disulfide composite for enhanced hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Chen C, Jin L, Shang H, Song T, Gao F, Zhang Y, Wang C, Wang C, Du Y. Monodispersed bimetallic platinum-copper alloy nanospheres as efficient catalysts for ethylene glycol electrooxidation. J Colloid Interface Sci 2019; 551:81-88. [PMID: 31075636 DOI: 10.1016/j.jcis.2019.04.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Designing and fabricating highly active and efficient catalysts are of vital importance for the practical applications of direct ethylene glycol fuel cells (DEGFCs). In this study, we employ a feasible one-pot synthetic method to construct highly monodispersed PtCu nanospheres (NSs) as high-efficiency anode electrocatalysts for DEGFCs. Interestingly, the optimized carbon supported Pt1Cu1 NSs can display the highest mass activity of 2146.9 mA mg-1 in 1 M KOH + 1 M EG solution under the scan rate of 50 mV s-1, which is 1.9 times higher than that of commercial Pt/C catalysts. This is ascribed to the favorable electronic effect between Pt and Cu, which is beneficial for ethylene glycol oxidation reaction (EGOR) in fuel cells. Meanwhile, such monodispersed Pt1Cu1 NSs can also exhibit excellent durability, where the Pt1Cu1 catalyst retains 62.6% of the initial value after the cyclic voltammetry of 500 cycles. This work not only provides a significant approach for designing catalysts for fuel cells, but also constructs a novel class of active and stable electrocatalysts for EGOR.
Collapse
Affiliation(s)
- Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Caiqin Wang
- College of Science & Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
17
|
Li J, Liu L, Ai Y, Hu Z, Xie L, Bao H, Wu J, Tian H, Guo R, Ren S, Xu W, Sun H, Zhang G, Liang Q. Facile and Large‐Scale Fabrication of Sub‐3 nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation. Chemistry 2019; 25:7191-7200. [PMID: 30913325 DOI: 10.1002/chem.201900320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jifan Li
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryCenter for Synthetic and Systems BiologyTsinghua University Beijing 100084 P. R. China
| | - Lei Liu
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryCenter for Synthetic and Systems BiologyTsinghua University Beijing 100084 P. R. China
| | - Zenan Hu
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Liping Xie
- School of Sino-Dutch Biomedical and Information EngineeringNortheastern University Shenyang 110169 P. R. China
| | - Hongjie Bao
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Jiajing Wu
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Haimeng Tian
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Rongxiu Guo
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Shucheng Ren
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Wenjuan Xu
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Hongbin Sun
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Gang Zhang
- Department of ChemistryNortheastern University Shenyang 110819 P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryCenter for Synthetic and Systems BiologyTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
18
|
Liao F, Jiang B, Shen W, Chen Y, Li Y, Shen Y, Yin K, Shao M. Ir‐Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Binbin Jiang
- Provincial Key Laboratory of Functional Coordination Compounds and Nanomaterials School of Chemistry and Chemical EngineeringAnqing Normal University Anqing 246001 P. R. China
| | - Wen Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Ying Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Yanqing Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Yuwei Shen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Kui Yin
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow University 199 Ren'ai Road Suzhou 215123, Jiangsu P. R. China
| |
Collapse
|
19
|
Huang XY, You LX, Zhang XF, Feng JJ, Zhang L, Wang AJ. -proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Qian J, Wang T, Xia B, Xi P, Gao D. Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Unique hierarchical flower-like PtNi alloy nanocrystals with enhanced oxygen reduction properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Huang XY, Wang AJ, Zhang L, Fang KM, Wu LJ, Feng JJ. Melamine-assisted solvothermal synthesis of PtNi nanodentrites as highly efficient and durable electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 2018; 531:578-584. [PMID: 30056333 DOI: 10.1016/j.jcis.2018.07.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
Abstract
Rational design of highly efficient and durable electrocatalysts for hydrogen evolution reaction (HER) is of prime importance for renewable and sustainable energy. Herein, PtNi nanodentrites (PtNi NDs) were facilely synthesized in oleylamine (OAm) by a one-pot solvothermal method, using melamine and cetyltrimethylammonium chloride (CTAC) as co-structure-directing agents. The obtained catalyst showed superior catalytic activity and enhanced durability for HER relative to commercial Pt/C, home-made PtNi3 nanocrystals (NCs) and Pt3Ni NCs both in alkaline and acidic media. The enhanced HER activities are attributed to bimetallic synergies and interface structures in PtNi NDs. This work provides an effective strategy to prepare highly efficient and durable electrocatalysts for HER.
Collapse
Affiliation(s)
- Xian-Yan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lan-Ju Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|