1
|
Vasu S, Verma D, Souraph S OS, Anki Reddy K, Packirisamy G, S UK. In Situ Ag-Seeded Lamellar Ti 3C 2 Nanosheets: An Electroactive Interface for Noninvasive Diagnosis of Oral Carcinoma via Salivary TNF-α Sensing. ACS APPLIED BIO MATERIALS 2025; 8:420-434. [PMID: 39787292 DOI: 10.1021/acsabm.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In the fast-paced quest for early cancer detection, noninvasive screening techniques have emerged as game-changers, offering simple and accessible avenues for precession diagnostics. In line with this, our study highlights the potential of silver nanoparticle-decorated titanium carbide MXene nanosheets (Ti3C2_AgNPs) as an electroactive interface for the noninvasive diagnosis of oral carcinoma based on the prevalence of the salivary biomarker, tumor necrosis factor-α (TNF-α). An in situ reduction was utilized to synthesize the Ti3C2_AgNPs nanohybrid, wherein Ti3C2 acts as the reducing agent, and the resulting nanohybrid was subjected to various characterization techniques to examine the optical, structural, and morphological attributes. The results revealed that spherical AgNPs formed on the surface of Ti3C2 MXene nanosheets by virtue of the low-valent Ti species present in Ti3C2, which facilitated the reduction of AgNO3 to AgNPs. Furthermore, the electrochemical characterization of the nanohybrid-modified screen-printed electrode (Ti3C2_AgNPs/SPE) indicated enhanced heterogeneous electron transfer kinetics. With these encouraging results, the Ti3C2_AgNPs nanohybrid was employed as an immobilization matrix for TNF-α antibodies and applied for electrochemical sensing. Analytical studies of the fabricated immunosensor, conducted by differential pulse voltammetry (DPV), exhibited a broader linear range (1 to 180 pg mL-1), a low limit of detection (0.97 pg mL-1), and high sensitivity (1.214 μA mL pg-1 cm-2) and specificity, even in artificial saliva, indicating its reliability for oral carcinoma diagnosis. Therefore, the Ti3C2_AgNP nanohybrid seems a promising candidate for the effective sensing of TNF-α and could also be explored for other biomarkers.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Damini Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Omal Surya Souraph S
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Katha Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Uday Kumar S
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| |
Collapse
|
2
|
Irimeș MB, Tertiș M, Oprean R, Cristea C. Unrevealing the connection between real sample analysis and analytical method. The case of cytokines. Med Res Rev 2024; 44:23-65. [PMID: 37246889 DOI: 10.1002/med.21978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.
Collapse
Affiliation(s)
- Maria-Bianca Irimeș
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Oprean
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Çapkın E, Kutlu A, Yüce M. Repurposing Fc gamma receptor I (FcγRI, CD64) for site-oriented monoclonal antibody capture: A proof-of-concept study for real-time detection of tumor necrosis factor-alpha (TNF -α). Heliyon 2023; 9:e19469. [PMID: 37809995 PMCID: PMC10558606 DOI: 10.1016/j.heliyon.2023.e19469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The controlled orientation of biomolecules on the sensor surface is crucial for achieving high sensitivity and accurate detection of target molecules in biosensing. FcγRI is an immune cell surface receptor for recognizing IgG-coated targets, such as opsonized pathogens or immune complexes. It plays a crucial role in T cell activation and internalization of the cargos, leading downstream signaling cascades. In this study, we repurposed the FcγRI as an analytical ligand molecule for site-oriented ADA capture, a monoclonal antibody-based biosimilar drug, on a plasmonic sensor surface and demonstrated the real-time detection of the corresponding analyte molecule, TNF-α. The study encompasses the analysis of comparative ligand behaviors on the surface, biosensor kinetics, concentration-dependent studies, and sensor specificity assays. The findings of this study suggest that FcγRI has a significant potential to serve as a universal ligand molecule for site-specific monoclonal antibody capture, and it can be used for biosensing studies, as it represents low nanomolar range affinity and excellent selectivity towards the target. However, there is still room for improvement in the surface stability and sensing response, and further studies are needed to reveal its performance on the monoclonal antibodies with various antigen binding sites and glycoforms.
Collapse
Affiliation(s)
- Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Aslı Kutlu
- Istinye University, Faculty of Natural Science and Engineering, 34396, Istanbul, Turkey
| | - Meral Yüce
- Imperial College London, Department of Bioengineering, SW7 2AZ, London, UK
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| |
Collapse
|
4
|
Noh S, Lee H, Kim J, Jang H, An J, Park C, Lee MH, Lee T. Rapid electrochemical dual-target biosensor composed of an Aptamer/MXene hybrid on Au microgap electrodes for cytokines detection. Biosens Bioelectron 2022; 207:114159. [DOI: 10.1016/j.bios.2022.114159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
|
5
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
6
|
|
7
|
Sri S, Lakshmi GBVS, Gulati P, Chauhan D, Thakkar A, Solanki PR. Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient's sample. Anal Chim Acta 2021; 1182:338909. [PMID: 34602194 DOI: 10.1016/j.aca.2021.338909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Tumour Necrosis Factor (TNF-α) is a pro-inflammatory cytokine having key roles in cell death, differentiation, survival, proliferation, migration and is a modulator of immune system. Therefore, TNF-α is an ideal biomarker for several disease diagnosis including cancer. However, out of all the biomarkers of cancer, TNF-α) is less explored for cancer detection. Only a few reports are available of developing biosensors for TNF-α targeting in human serum samples. Also, Carbon Dots (CDs) remains less explored in biosensor application. In this regard, for the first time, a sensitive and low-cost electrochemical biosensor based on CDs has developed. CDs were synthesized by simple yet facile microwave pyrolysis. Poly methyl methacrylate (PMMA) was selected as the matrix to hold CDs to fabricate the biosensing platform. This novel CD-PMMA nanocomposite featuring excellent biocompatibility, exceptional electrocatalytic conductivity, and large surface area. CD-PMMA was applied as transducing material to efficiently conjugate antibodies specific towards TNF-α and fabricate electrochemical immunosensor for specific detection of TNF-α. The fabricated immunosensor was used for the detection of TNF-α within a wide dynamic range of 0.05-160 pg mL-1 with a lower detection limit of 0.05 pg mL-1 and sensitivity of 5.56 pg mL-1 cm-2. Furthermore, this CDs based immunosensor retains high sensitivity, selectivity, and stability. This immunosensor demonstrated a high correlation with the conventional technique, Enzyme-Linked Immunosorbent Assay for early screening of cancer patient serum samples.
Collapse
Affiliation(s)
- Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Payal Gulati
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepika Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Alok Thakkar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Lu Y, Zhou Q, Xu L. Non-Invasive Electrochemical Biosensors for TNF-α Cytokines Detection in Body Fluids. Front Bioeng Biotechnol 2021; 9:701045. [PMID: 34621727 PMCID: PMC8490748 DOI: 10.3389/fbioe.2021.701045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
The measurement of pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-α), which is an important indicator of the inflammatory process, has received increasing attention recently because it is easy to extract from body fluid and serves as an early sign of a serious systemic inflammatory disease. Developing fast and simple detection methods to quantify the concentration of TNF-α is essential. Saliva, tears, and urine, which can easily be sampled in a non-invasive way, are considered to be important matrices for monitoring and assessing the physiological status of humans; importantly, they also provide an ideal window for monitoring the concentration of TNF-α. As a fast, accurate, inexpensive, portable, and scalable method, electrochemical biosensors are very promising for biomarker detection in matrices obtained in a non-invasive manner. This review summarises and compares the electrochemical biosensors for the detection of TNF-α in a non-invasive manner and highlights recent advances and future prospects in developing high-performance electrochemical platforms for noninvasive measurement of TNF-α.
Collapse
Affiliation(s)
- Yang Lu
- Department of Cardiovascular, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Qingqing Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhou S, Wang X, Jiang L, Sun H, Huo D, Hou C. A three-dimensional hydrogel-modified indium tin oxide electrode with enhanced performance for in situ electrochemical detection of extracellular H 2O 2. Analyst 2021; 146:5403-5412. [PMID: 34346414 DOI: 10.1039/d1an00875g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two different electrochemical sensors (Hemin-G4/Au/GCE and Hemin-G4/Au/ITO) were developed and applied to explore the electrocatalytic capacity of H2O2 reduction. Due to the excellent catalytic activity of Hemin-G4 and high conductivity of gold nanoparticles, both electrodes show excellent electrochemical performances towards H2O2 with a low LOD (0.67 μM for Hemin-G4/Au/GCE and 0.65 μM for Hemin-G4/Au/ITO), rapid response (<4 s), and high selectivity and sensitivity (314.33 μA mM-1 cm-2 for Hemin-G4/Au/GCE and 322.22 μA mM-1 cm-2 for Hemin-G4/Au/ITO). The two electrodes allow sensitive capture of H2O2 produced by A549 cells. Compared with the conventional method of detection in cell suspensions, an ITO electrode with a large specific surface area and good biocompatibility can provide a promising platform for cell adhesion, so as to realize real-time and in situ detection of extracellular H2O2. The experimental results show that A549 cells can adhere to the surface of the Hemin-G4/Au/ITO electrode and grow well. This is benefitted from the three-dimensional structure of the Hemin-G4/Au hydrogel, which provides a suitable microenvironment for cell adhesion and growth. Furthermore, the in situ detection shows a faster response time than that of in-solution detection. This is because the H2O2 generated by the cells can be directly captured by the ITO electrode, which avoids diffusion from the solution to the electrode. These results indicate that the self-supporting hydrogel modified ITO electrode has great application prospects in basic biomedical research and continuous dynamic surveillance of diseases.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | |
Collapse
|
10
|
Karakaya S, Kaya İ. A Novel Sensitive and Selective Amperometric Detection Platform for the Vanillin Content in Real Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Serkan Karakaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - İsmet Kaya
- Polymer Synthesis and Analysis Laboratory Department of Chemistry Faculty of Science and Arts Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| |
Collapse
|
11
|
Aydin EB, Aydin M, Sezgintürk MK. A Label-free Electrochemical Immunosensor for Highly Sensitive Detection of TNF α, Based on Star Polymer-modified disposable ITO Electrode. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200409111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Biomarkers are very important disease-related biomolecules which should be
analyzed sensitive and selective in related physiological fluids or tissues. Tumor necrosis factor-α is a
type of cytokine which plays vitlly important roles in different methabolic pathways such as cell death,
survival, differentiation, proliferation and migration, and infectious and inflammatory diseases including
rheumatoid arthritis, diabetes.
Objective:
In this study, it was aimed to develop a reliable tool based on star-shaped poly(glycidyl
methacrylate) polymer coated disposable indium tin oxide electrode for determination of Tumor necrosis
factor-α, an important disease biomarker.
Methods:
Star shaped polymer was used as an interface material for anti- Tumor necrosis factor α antibodies
immobilization. The antibodies were immobilized covalently onto polymer coated indium tin
oxide electrode. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were
used for all electrochemical measurements.
Results:
The suggested immunosensor exhibited a linear range between 0.02 and 4 pg/mL Tumor necrosis
factor-α, and the detection limit was found as 6 fg/mL. Scanning electron microscopy and atomic
force microscopy were used for electrode surface characterization. In addition, the suggested immunosensor
was used for Tumor necrosis factor-α sensing in human serum samples. The results displayed
recoveries between 97.07 and 100.19%. Moreover, this immunosensor had a simple fabrication
procedure and a long storage-stability.
Conclusion:
A new biosensor based on a Star shaped polymer for the ultra sensitive determination of a
biomarker Tumor necrosis factor-α was developed. The biosensor presented excellent repeatability and
reproducubility, and also wide calibration range for Tumor necrosis factor- α.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Muhammet Aydin
- Scientific and Technological Research Center, Namik Kemal University, Tekirdag,Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale,Turkey
| |
Collapse
|
12
|
Sivasakthi P, Sangaranarayanan MV, Gurumallesh Prabu H. Micro–nanoarchitectures of electrodeposited Ni–ITO nanocomposites on copper foil as electrocatalysts for the oxygen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj05954d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple conventional three electrodes system was used for the preparation of Ni and Ni–ITO nanocomposites as an electrocatalyst for oxygen evolution reaction.
Collapse
Affiliation(s)
- P. Sivasakthi
- Department of Industrial Chemistry
- Alagappa University
- Karaikudi
- India
| | | | | |
Collapse
|
13
|
Nanostructure ITO and Get More of It. Better Performance at Lower Cost. NANOMATERIALS 2020; 10:nano10101974. [PMID: 33028040 PMCID: PMC7600850 DOI: 10.3390/nano10101974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/02/2022]
Abstract
In this paper, we investigated how different growth conditions (i.e., temperature, growth time, and composition) allows for trading off cost (i.e., In content) and performance of nanostructured indium tin oxide (ITO) for biosensing applications. Next, we compared the behavior of these functionalized nanostructured surfaces obtained in different growth conditions between each other and with a standard thin film as a reference, observing improvements in effective detection area up to two orders of magnitude. This enhanced the biosensor’s sensitivity, with higher detection level, better accuracy and higher reproducibility. Results show that below 150 °C, the growth of ITO over the substrate forms a homogenous layer without any kind of nanostructuration. In contrast, at temperatures higher than 150 °C, a two-phase temperature-dependent growth was observed. We concluded that (i) nanowire length grows exponentially with temperature (activation energy 356 meV) and leads to optimal conditions in terms of both electroactive surface area and sensitivity at around 300 °C, (ii) longer times of growth than 30 min lead to larger active areas and (iii) the In content in a nanostructured film can be reduced by 10%, obtaining performances equivalent to those found in commercial flat-film ITO electrodes. In summary, this work shows how to produce appropriate materials with optimized cost and performances for different applications in biosensing.
Collapse
|
14
|
Mobed A, Shakouri SK, Dolati S. Biosensors: A novel approach to and recent discovery in detection of cytokines. Cytokine 2020; 136:155272. [PMID: 32916473 DOI: 10.1016/j.cyto.2020.155272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Cytokines in tissues and physiological fluids can function as potentially suitable biomarkers. Cytokines are involved in stimulating different body responses including inflammatory response to external pathogens, regulating cell-to-cell communication, and maintaining tissue homeostasis. Consequently, cytokines are extensively used to monitor and predict disease progression and to track the outcome of patient treatment. The critical diagnosis of cytokine and chemokine biomarkers has been the focus of attention and it has been continuously directing the trajectory of related research to developing a novel sensing platform. Given the major challenges and constraints of the older identification methods including their high costs, low sensitivity, and high specificity, the development of biosensor technology as a simple and inexpensive tool with high sensitivity is quite attractive and interesting. The fundamental aim of this study is to present the state-of-the-art biosensor systems in order to detect different types of cytokines and to emphasize the role of these systems in the prevention, monitoring, and treatment of various cytokine-associated diseases.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran; Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Kazem Shakouri
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran; Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Jarczewska M, Malinowska E. The application of antibody-aptamer hybrid biosensors in clinical diagnostics and environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3183-3199. [PMID: 32930180 DOI: 10.1039/d0ay00678e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growing number of various diseases and the increase of environmental contamination are the causes for the development of novel methods for their detection. The possibility of the application of affinity-based biosensors for such purposes seems particularly promising as they provide high selectivity and low detection limits. Recently, the usage of hybrid antibody-aptamer sandwich constructs was shown to be more advantageous in terms of working parameters in comparison to aptamer-based and immune-based biosensors. This review is focused on the usage of hybrid antibody-aptamer receptor layers for the determination of clinically and environmentally important target molecules. In this work, antibodies and aptamer molecules are characterized and the methods of their immobilization as well as analytical signal generation are shown. This is followed by the critical presentation of examples of hybrid sandwich biosensors that have been elaborated in the past 12 years.
Collapse
Affiliation(s)
- Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
16
|
Runsewe D, Betancourt T, Irvin JA. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2629. [PMID: 31426613 PMCID: PMC6720215 DOI: 10.3390/ma12162629] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Conducting polymers are of interest due to their unique behavior on exposure to electric fields, which has led to their use in flexible electronics, sensors, and biomaterials. The unique electroactive properties of conducting polymers allow them to be used to prepare biosensors that enable real time, point of care (POC) testing. Potential advantages of these devices include their low cost and low detection limit, ultimately resulting in increased access to treatment. This article presents a review of the characteristics of conducting polymer-based biosensors and the recent advances in their application in the recognition of disease biomarkers.
Collapse
Affiliation(s)
- Damilola Runsewe
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Jennifer A Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
17
|
A review of microfabricated electrochemical biosensors for DNA detection. Biosens Bioelectron 2019; 134:57-67. [DOI: 10.1016/j.bios.2019.03.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
18
|
Pruna R, López M, Teixidor F. Tuning the deposition parameters for optimizing the faradaic and non-faradaic electrochemical performance of nanowire array-shaped ITO electrodes prepared by electron beam evaporation. NANOSCALE 2018; 11:276-284. [PMID: 30534714 DOI: 10.1039/c8nr07908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanostructured indium tin oxide (ITO) surfaces present an interesting yet unusual combination of properties (high electrical conductivity and optical transparency) at a high surface-to-volume ratio. Thus, previous studies presented nanostructured ITO electrodes as potentially suitable platforms for electrochemical biosensors, but still there is a lack of research on the optimization of preparation methods for such electrodes. We present a systematic study on the properties of nanostructured ITO electrodes prepared by physical deposition, where the substrate temperature was tuned for achieving the best combination of structural properties (namely electrical conductivity and optical transparency) and electrochemical performance. Analysis of faradaic cyclic voltammetry (CV) was performed to determine the electroactive surface area of the samples, and these results were benchmarked against those obtained by non-faradaic CV and Mott-Schottky (MS) analysis. The latter was useful to determine the dependence of some intrinsic features of the semiconductor on the substrate temperature during deposition. The results show that, out of a wide temperature range covering from 200 °C to 500 °C, there is a two-phase temperature-dependent growth, explained by the Stranski-Krastanov and self-catalytic vapor-liquid-solid (VLS) methods, and, on the other hand, that there is an optimal growth temperature at 300 °C that maximizes the electroactive surface area and sensitivity. This means that cost-effective electrodes can be prepared at low temperatures outperforming in terms of electroactive surface area, surface capacitance and sensitivity. As a proof-of-concept, nanostructured ITO electrodes were electrochemically derivatized with aryl diazonium salts (as a first step towards biochemical functionalization), and the performance of the optimized electrodes was tested in a real scenario.
Collapse
Affiliation(s)
- Raquel Pruna
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, C/Martí i Franquès 1, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
19
|
Nsabimana A, Ma X, Yuan F, Du F, Abdussalam A, Lou B, Xu G. Nanomaterials-based Electrochemical Sensing of Cardiac Biomarkers for Acute Myocardial Infarction: Recent Progress. ELECTROANAL 2018. [DOI: 10.1002/elan.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anaclet Nsabimana
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
| | - Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| |
Collapse
|