1
|
Li X, Feng G, Zhou L, Zhao T, Jiang F, Li H, Liu Y, Yu Q, Ding H, Zou T, Zhao S, Cao J, Zhu Y, Cao H. Reduced graphene oxide-wrapped ZnS-SnS 2 heterojunction bimetallic hollow cubic boxes as high-magnification and long lifespan supercapacitor anode materials. NANOSCALE 2024; 16:12021-12036. [PMID: 38808549 DOI: 10.1039/d4nr01131g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Metal sulfides have attracted extensive attention due to their excellent electrochemical performance. However, issues such as poor conductivity and severe volume expansion during charge and discharge processes affect the applications of sulfides as electrode materials. Here, a combination of coprecipitation and high-temperature sulfidation methods are employed to synthesize a ZnS-SnS2 composite with a hollow cubic structure, which is further composited with reduced graphene oxide (RGO) to form ZnS-SnS2 hollow cubic boxes encapsulated in a conductive framework of reduced graphene oxide (RGO) (denoted as ZnS-SnS2@RGO) for electrode materials. The hollow structure effectively alleviates the pulverization of ZnS-SnS2@RGO caused by volume expansion during charge and discharge processes. The heterogeneous structure formed by ZnS and SnS2 effectively reduces the electron transfer resistance of the material. The use of RGO wrapping enhances the conductivity of the ZnS-SnS2 hollow cubic boxes, and RGO's dispersion effect on the ZnS-SnS2 cubes improves particle agglomeration, further mitigating volume expansion of the material. These results indicate the outstanding electrochemical performance of heterostructural ZnS-SnS2 hollow cubic electrodes encapsulated with reduced graphene oxide as a conductive framework. The fabrication process provides a novel approach for addressing volume expansion and poor conductivity issues in other pseudocapacitive materials.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Guoqing Feng
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Lingling Zhou
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Tiewei Zhao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Feng Jiang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Yongsheng Liu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Qing Yu
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Hao Ding
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Tian Zou
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Shanhai Zhao
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Jun Cao
- United Nova Technology Co., Ltd., Shaoxing 312000, PR China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Haijing Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
2
|
Yang Z, Chang X, Mi H, Wang Z, Gao J, Xiao X, Guo F, Ji C, Qiu J. Oxygen-enriched pitch-derived hierarchically porous carbon toward boosted zinc-ion storage performance. J Colloid Interface Sci 2024; 658:506-517. [PMID: 38128194 DOI: 10.1016/j.jcis.2023.12.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lack of cathode materials with satisfactory Zn2+ storage capability substantially hinders the realization of high-performance aqueous zinc-ion hybrid capacitors (ZHCs). Herein, we propose a facile KMnO4 template-assisted KOH activation strategy to prepare a novel oxygen-enriched hierarchically porous carbon (HPC-1-4). This strategy efficiently converts coal tar pitch (CTP) into a well-tuned carbon material with a large specific surface area of 3019 m2 g-1 and a high oxygen content of 9.20 at%, which is conducive to providing rich active sites, rapid charge transport, and appreciable pseudocapacitance for Zn-ion storage. Thus, the as-fabricated HPC-1-4-based aqueous ZHC exhibits prominent performance, including a high gravimetric capacity (206.7 mAh g-1 at 0.25 A g-1), a remarkable energy density (153.4 Wh kg-1 at 184.2 W kg-1), and an impressive power output (15240 W kg-1 at 63.5 Wh kg-1). In-depth ex-situ characterizations indicate that the excellent electrochemical properties of ZHCs are due to the synergistic effect of the Zn2+ adsorption mechanism and reversible chemisorption. In addition, the assembled quasi-solid-state device demonstrates excellent electrochemical stability of up to 100% capacity retention over 50000 cycles, accompanied with a desirable energy density of 115.6 Wh kg-1. The facile preparation method of converting CTP into carbonaceous functional materials has advanced the development of efficient and eco-friendly energy storage technologies.
Collapse
Affiliation(s)
- Zhoujing Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaqing Chang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Zhiyu Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Juntao Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoqiang Xiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Fengjiao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China; State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Ma R, Zhou D, Zhang Q, Zhang B, Zhang Y, Chen F, Guo N, Wang L. Crystallization-induced formation of two-dimensional carbon nanosheets derived from sodium lignosulfonate for fast lithium storage. Int J Biol Macromol 2024; 260:129570. [PMID: 38246456 DOI: 10.1016/j.ijbiomac.2024.129570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sodium lignosulfonate, an abundant natural resource, is regarded as an ideal precursor for the synthesis of hard carbon. The development of high-performance, low-cost and sustainable anode materials is a significant challenge facing lithium-ion batteries (LIBs). The modulation of morphology and defect structure during thermal transformation is crucial to improve Li+ storage behavior. Synthesized using sodium lignosulfonate as a precursor, two-dimensional carbon nanosheets with a high density of defects were produced. The synergistic influence of ice templates and KCl was leveraged, where the ice prevented clumping of potassium chloride during drying, and the latter served as a skeletal support during pyrolysis. This resulted in the formation of an interconnected two-dimensional nanosheet structure through the combined action of both templates. The optimized sample has a charging capacity of 712.4 mA h g-1 at 0.1 A g-1, which is contributed by the slope region. After 200 cycles at 0.2 A g-1, the specific charge capacity remains 514.4 mA h g-1, and a high specific charge capacity of 333.8 mA h g-1 after 800 cycles at 2 A g-1. The proposed investigation offers a promising approach for developing high-performance, low-cost carbon-based anode materials that could be used in advanced lithium-ion batteries.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Doudou Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Qing Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Binyuan Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Yanzhe Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Feifei Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China
| | - Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China.
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, PR China.
| |
Collapse
|
4
|
Guo N, Liu A, Luo W, Ma R, Yan L, Ai L, Xu M, Wang L, Jia D. Hybrid nanoarchitectonics of coal-derived carbon with oxidation-induced morphology-selectivity for high-performance supercapacitor. J Colloid Interface Sci 2023; 639:171-179. [PMID: 36805742 DOI: 10.1016/j.jcis.2023.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Coal-derived porous carbon with a large specific surface area is a common electrode material for supercapacitors. Its deep and branched micropores, dense bulk morphology and amorphous structure have greatly limited its practical applications. Herein, hybrid carbon materials were obtained from coal through oxidation followed by activation. The method allows tuning the morphology, porosity, structure, and the degree of graphitization. The pre-oxidation with KMnO4 can break raw coal into small hydrocarbon fragments, which deposit and grow on the surface of generated MnO during pyrolysis leading to hybrid carbon with mesoporous and graphitic nanostructures. Meanwhile, homogeneous etching of the carbon skeleton by the reaction intermediate of K2CO3 led to the formation of abundant active sites. Hence, the optimized sample exhibited a high capacitance of 333 F g-1 at 1 A g-1, an excellent rate capability with 58% capacitance retention at 100 A g-1 and superior cycle durability in a three-electrode system. Besides, an assembled symmetric two-electrode device displayed a high energy density of 8.9 Wh·kg-1 at 250 W·kg-1. This work proposed a facile and rational synthesis strategy by balancing the tradeoff between active sites and intrinsic conductivity and thus provided a new avenue for the value-added utilization of coal.
Collapse
Affiliation(s)
- Nannan Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Anjie Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Wanxia Luo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Rui Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Lihua Yan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Lili Ai
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Mengjiao Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
5
|
Phiri J, Ahadian H, Sandberg M, Granström K, Maloney T. The Influence of Physical Mixing and Impregnation on the Physicochemical Properties of Pine Wood Activated Carbon Produced by One-Step ZnCl 2 Activation. MICROMACHINES 2023; 14:572. [PMID: 36984979 PMCID: PMC10056672 DOI: 10.3390/mi14030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, two different sample preparation methods to synthesize activated carbon from pine wood were compared. The pine wood activated carbon was prepared by mixing ZnCl2 by physical mixing, i.e., "dry mixing" and impregnation, i.e., "wet mixing" before high temperature carbonization. The influence of these methods on the physicochemical properties of activated carbons was examined. The activated carbon was analyzed using nitrogen sorption (surface area, pore volume and pore size distribution), XPS, density, Raman spectroscopy, and electrochemistry. Physical mixing led to a slightly higher density carbon (1.83 g/cm3) than wet impregnation (1.78 g/cm3). Raman spectroscopy analysis also showed that impregnation led to activated carbon with a much higher degree of defects than physical mixing, i.e., ID/IG = 0.86 and 0.89, respectively. The wet impregnated samples also had better overall textural properties. For example, for samples activated with 1:1 ratio, the total pore volume was 0.664 vs. 0.637 cm3/g and the surface area was 1191 vs. 1263 m2/g for dry and wet mixed samples, respectively. In the electrochemical application, specifically in supercapacitors, impregnated samples showed a much better capacitance at low current densities, i.e., 247 vs. 146 F/g at the current density of 0.1 A/g. However, the physically mixed samples were more stable after 5000 cycles: 97.8% versus 94.4% capacitance retention for the wet impregnated samples.
Collapse
Affiliation(s)
- Josphat Phiri
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Hamidreza Ahadian
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| | - Maria Sandberg
- Department of Engineering and Chemical Sciences, Karlstad University, 651 88 Karlstad, Sweden
| | - Karin Granström
- Department of Engineering and Chemical Sciences, Karlstad University, 651 88 Karlstad, Sweden
| | - Thad Maloney
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland
| |
Collapse
|
6
|
Yin X, Wang Y, Wei L, Huang H, Zhou C. Reduced cadmium (Cd) accumulation in lettuce plants by applying KMnO4 modified water hyacinth biochar. Heliyon 2022; 8:e11304. [PMID: 36411895 PMCID: PMC9674871 DOI: 10.1016/j.heliyon.2022.e11304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, water hyacinth was adopted to prepare biochar followed by modification using KMnO4. And the modified biochars were applied in Cd contaminated soil, exploring the effects of water hyacinth biochar on lettuce growth, Cd enrichment, soil enzyme activities and microbial changes by pot experiments. Modified biochar application significantly reduced the Cd accumulation in lettuce shoots and roots. Compared to the control, the application of water hyacinth biochar at 1% rate resulted in significant reduction of Cd contents by 40.7% and 33.7% in the shoots and roots of lettuce. Also, the reduction was 33.3% and 20.8% compared with the application rate of unmodified biochar. With the increase of biochar application, the amount of Cd was absorbed by lettuce shoots and roots showing significant reduction of plant Cd accumulation in response to the biochar application rate. Additionally, the lowest available Cd concentration in soil (1.34 mg kg−1) was obtained with the application of modified biochar at 1% rate, which might be the main reason for the lower Cd concentration in lettuce shoot and root parts. Furthermore, structural analysis showed that Cd was fixed on the modified biochar, in a passivated state, by larger specific surface area, more active sites and more stable covalent binding complexes leading to a strong decrease of the available Cd in the soil. Moreover, it was concluded that the increment of the enzyme activities in the soil was up to 2.51 times significantly following the application of modified water hyacinth biochar with 3% amount. Lastly, 16sRNA sequencing showed that biochar addition may lead to changes of microbial structure and abundance in soil.
Collapse
|
7
|
Liu J, Zhang K, Wang H, Lin L, Zhang J, Li P, Zhang Q, Shi J, Cui H. Advances in Micro-/Mesopore Regulation Methods for Plant-Derived Carbon Materials. Polymers (Basel) 2022; 14:polym14204261. [PMID: 36297839 PMCID: PMC9611847 DOI: 10.3390/polym14204261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, renewable and clean energy has become increasingly important due to energy shortage and environmental pollution. Selecting plants as the carbon precursors to replace costly non-renewable energy sources causing severe pollution is a good choice. In addition, owing to their diverse microstructure and the rich chemical composition, plant-based carbon materials are widely used in many fields. However, some of the plant-based carbon materials have the disadvantage of possessing a large percentage of macroporosity, limiting their functionality. In this paper, we first introduce two characteristics of plant-derived carbon materials: diverse microstructure and rich chemical composition. Then, we propose improvement measures to cope with a high proportion of macropores of plant-derived carbon materials. Emphatically, size regulation methods are summarized for micropores (KOH activation, foam activation, physical activation, freezing treatment, and fungal treatment) and mesopores (H3PO4 activation, enzymolysis, molten salt activation, and template method). Their advantages and disadvantages are also compared and analyzed. Finally, the paper makes suggestions on the pore structure improvement of plant-derived carbon materials.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Ke Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Huiyan Wang
- Beijing Spacecraft Manufacturing Co., Ltd., Beijing 100094, China
| | - Lin Lin
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
- Correspondence: (L.L.); (J.S.)
| | - Jian Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Peng Li
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiang Zhang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China
- Correspondence: (L.L.); (J.S.)
| | - Hang Cui
- National Demonstration Center for Experimental Physics Education, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Zhao L, Jian W, Zhu J, Zhang X, Wen F, Fei X, Chen L, Huang S, Yin J, Chodankar NR, Qiu X, Zhang W. Molten Salt Self-Template Synthesis Strategy of Oxygen-Rich Porous Carbon Cathodes for Zinc Ion Hybrid Capacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43431-43441. [PMID: 36112058 DOI: 10.1021/acsami.2c13886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous carbon materials are widely used in capacitive energy storage devices because of their chemical stability, low cost, and controllable textures. Molten salt self-template methods are powerful and sustainable synthesis strategies for preparing porous carbons with tunable pore textures and surface chemistries. Herein, we propose a self-template synthesis strategy for preparing oxygen-rich porous carbons (ORC) by directly carbonizing potassium chloroacetate (ClCH2COOK) as the single carbon source. The potassium chloride salts generated in the carbonization play the roles of the template and etchant agent in the pore formation process. The as-prepared ORC samples feature abundant mesopores (average pore sizes of 1.95-2.19 nm and mesopore ratio of 36.4%), high specific surface areas (1410-1886 m2 g-1), and high oxygen doping levels (4.3-8.2 atom %). The zinc ion hybrid capacitors with an ORC cathode exhibited an ultrahigh capacitance of 308 F g-1 at 0.5 A g-1 and a high energy density of 136.5 Wh kg-1 at a power density of 570 W kg-1. Density functional theory demonstrates that oxygen-containing functional groups are conducive to the adsorption of Zn ions. Our work proposes a general synthesis methodology for the synthesis of oxygen-rich porous carbons for a variety of electrochemical energy storage devices.
Collapse
Affiliation(s)
- Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Jiahao Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xiaoshan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Fuwang Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xing Fei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Liheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Si Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nilesh R Chodankar
- Department of Energy and Material Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
- School of Advanced Manufacturing, Guangdong University of Technology (GDUT), Jieyang 522000, People's Republic of China
| |
Collapse
|
9
|
Qu Z, Mao C, Zhu X, Zhang J, Jiang H, Chen R. Pd-Decorated Hierarchically Porous Carbon Nanofibers for Enhanced Selective Hydrogenation of Phenol. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengyan Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chao Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
10
|
Memetova A, Tyagi I, Singh L, Karri RR, Tyagi K, Kumar V, Memetov N, Zelenin A, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E, Mubarak NM, Agarwal S. Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155943. [PMID: 35577088 DOI: 10.1016/j.scitotenv.2022.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Due to rapidly deteriorating water resources, the world is looking forward to a sustainable alternative for the remediation of noxious pollutants such as heavy metals and organic and gaseous contaminants. To address this global issue of environmental pollution, nanoporous carbon materials (NPCMs) can be used as a one-stop solution. They are widely applied as adsorbents for many toxic impurities and environmental contaminants. The present review provides a detailed overview of the role of different synthesis factors on the porous characteristics of carbon materials, activating agents, reagent-precursor ratio and their potential application in the remediation. Findings revealed that synthetic parameters result in the formation of microporous NPCMs (SBET: >4000 m3/g; VTotal (cm3/g) ≥ 2; VMicro (cm3/g) ≥ 1), micromesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.7) and mesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.5) NPCMs. Moreover, it was observed that a narrow pore size distribution (0.5-2.0 nm) yields excellent results in the remediation of noxious contaminants. Further, chemical activating agents such as NaOH, KOH, ZnCl2, and H3PO4 were compared. It was observed that activating agents KОН, H3PO4, and ZnCl2 were generally used and played a significant role in the possible large-scale production and commercialization of NPCMs. Thus, it can be interpreted that with a well-planned strategy for the synthesis, NPCMs with a "tuned" porosity for a specific application, in particular, microporosity for the accumulation and adsorption of energetically important gases (CO2, CH4, H2), micro-mesoporosity and mesoporosity for high adsorption capacity for towards metal ions and a large number of dyes, respectively.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India.
| | - Lipi Singh
- Department of Environmental Engineering, Delhi Technological University, New Delhi 110042, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Andrey Zelenin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Vladimir Bogoslovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenina Ave., Tomsk 634050, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Shilpi Agarwal
- Center for Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Liu L, Lu Y, Qiu D, Wang D, Ding Y, Wang G, Liang Z, Shen Z, Li A, Chen X, Song H. Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage. J Colloid Interface Sci 2022; 620:284-292. [DOI: 10.1016/j.jcis.2022.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
|
12
|
Liu L, Lu Y, Wang S, Ding Y, Chen Y, Qiu D, Wang D, Niu J, Zhang J, Chen X, Song H. B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage. J Colloid Interface Sci 2022; 620:24-34. [DOI: 10.1016/j.jcis.2022.03.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
|
13
|
Xu J, Zhang Y, Li B, Fan S, Xu H, Guan DX. Improved adsorption properties of tetracycline on KOH/KMnO 4 modified biochar derived from wheat straw. CHEMOSPHERE 2022; 296:133981. [PMID: 35176301 DOI: 10.1016/j.chemosphere.2022.133981] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 05/09/2023]
Abstract
Modification of pristine biochars has received increasing attentions due to the significant potential in enhancing adsorption performance. In this work, the co-modification of KOH and KMnO4 on biochar (K-Mn-BC) was performed, with the effect of KOH/KMnO4 modification on biochar properties and their adsorption toward tetracycline (TC) being extensively explored. Results showed that KOH/KMnO4 modification can significantly regulate biochars to form hierarchical structure. The obtained K-Mn-BC was characterized with a high specific surface area (1524.6 m2 g-1) and total pore volume (0.85 cm3 g-1). In addition, the K-Mn-BC exhibited a high adsorption capacity of 584.19 mg g-1 toward TC at 318 K, and pseudo-second-order (R2:0.993~0.998) and Langmuir (R2: 0.834~0.874) models can fit well with the adsorption behavior. Moreover, the obtained K-Mn-BC can efficiently adsorb TC within a wide pH range (3.0-10.0), and were not affected by the co-existing ions. The possible mechanisms for the high adsorption capacity were ascribed to the pore filling and π-π interaction, following by hydrogen bonding and metal complexation. The obtained K-Mn-BC is a suitable adsorbent for TC removal from water due to the hierarchical structure, high adsorption capacity, and stable adsorption effect.
Collapse
Affiliation(s)
- Jin Xu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yin Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Bin Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Jian W, Zhang W, Wu B, Wei X, Liang W, Zhang X, Wen F, Zhao L, Yin J, Lu K, Qiu X. Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5425-5438. [PMID: 35050588 DOI: 10.1021/acsami.1c22576] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The low energy density and low cost performance of electrochemical capacitors (ECs) are the principal factors that limit the wide applications of ECs. In this work, we used enzymatic hydrolysis lignin as the carbon source and an ammonia activation methodology to prepare nitrogen-doped lignin-derived porous carbon (NLPC) electrode materials with high specific surface areas. We elucidated the free radical mechanism of ammonia activation and the relationship between nitrogen doping configurations, doping levels, and preparation temperatures. Furthermore, we assembled NLPC∥NLPC symmetric ECs and NLPC∥Zn asymmetric ECs using aqueous sulfate electrolytes. Compared with the ECs using KOH aqueous electrolyte, the energy densities of NLPC∥NLPC and NLPC∥Zn ECs were significantly improved. The divergence of charge storage characteristics in KOH, Na2SO4, and ZnSO4 electrolytes were compared by analyzing their area surface capacitance. This work provides a strategy for the sustainable preparation of lignin-derived porous carbons toward ECs with high energy densities.
Collapse
Affiliation(s)
- Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Bingchi Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Xueer Wei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Wanling Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Xiaoshan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Fuwang Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| |
Collapse
|
15
|
Bian J, Zheng M, Chen Q, Liu H. N-doped graphitized porous carbon derived from N-rich polymer for improved supercapacitor performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj01685k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous carbons with the large specific surface area, high electrical conductivity as well as abundant heteroatom doping are regarded as a promising candidate for supercapacitor applications. In this report, a...
Collapse
|
16
|
Guo G, Zhou Z, Li J, Yan H, Li F. Preparation of Lignin Carbon/Zinc Oxide Electrode Material and Its Application in Supercapacitors. Molecules 2021; 26:molecules26123554. [PMID: 34200949 PMCID: PMC8230596 DOI: 10.3390/molecules26123554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, carbon/zinc oxide (LC/ZnO) composites were successfully synthesized and characterized by X-ray powder diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman, thermogravimetry, and N2 adsorption-desorption, and tested by electrochemical performance. Studies have shown that the morphology of LC/ZnO composites is that lignin pellets are embedded in ZnO microplates. The lignin carbon in the composites mainly exists in an amorphous structure, and the specific surface area and pore channels of metal oxides are increased by the presence of lignin carbon. The electrochemical performance test shows that the carbonization temperature of LC/ZnO with the highest specific capacitance is 550 °C, and the capacitance retention rate reaches 96.74% after 1000 cycles of testing, indicating that the composite material has good cycle stability. Compared with the control group, it is found that the specific capacitance of LC/ZnO-550 °C is 2.3 times and 1.8 times that of ZnO-550 °C and LC-550 °C, respectively. This shows that during the electrochemical test, the lignin carbon and the metal oxide promote each other and act synergistically. In addition, the composite material exhibits the characteristics of a pseudo-capacitance capacitor, indicating that the redox reaction occurred in the electrochemical performance test.
Collapse
Affiliation(s)
- Gaijuan Guo
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (G.G.); (Z.Z.); (J.L.)
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, Harbin 150040, China
| | - Zijing Zhou
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (G.G.); (Z.Z.); (J.L.)
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, Harbin 150040, China
| | - Jinda Li
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (G.G.); (Z.Z.); (J.L.)
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, Harbin 150040, China
| | - Hong Yan
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (G.G.); (Z.Z.); (J.L.)
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, Harbin 150040, China
- Correspondence: (H.Y.); (F.L.);Tel.: +86-451-863-927-20 (H.Y. & F.L.); Fax: +86-451-863-927-08 (H.Y. & F.L.)
| | - Fen Li
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (G.G.); (Z.Z.); (J.L.)
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, Harbin 150040, China
- Correspondence: (H.Y.); (F.L.);Tel.: +86-451-863-927-20 (H.Y. & F.L.); Fax: +86-451-863-927-08 (H.Y. & F.L.)
| |
Collapse
|
17
|
Ping Y, Yang S, Han J, Li X, Zhang H, Xiong B, Fang P, He C. N-self-doped graphitic carbon aerogels derived from metal–organic frameworks as supercapacitor electrode materials with high-performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138237] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Merin P, Jimmy Joy P, Muralidharan MN, Veena Gopalan E, Seema A. Biomass‐Derived Activated Carbon for High‐Performance Supercapacitor Electrode Applications. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pulikkottil Merin
- Centre for Materials for Electronics Technology 680581 Thrissur India
| | - P. Jimmy Joy
- Centre for Materials for Electronics Technology 680581 Thrissur India
| | | | | | - Ansari Seema
- Centre for Materials for Electronics Technology 680581 Thrissur India
| |
Collapse
|
19
|
Manikandan R, Raj CJ, Moulton SE, Todorov TS, Yu KH, Kim BC. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Chemistry 2021; 27:669-682. [PMID: 32700787 DOI: 10.1002/chem.202003253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 11/10/2022]
Abstract
Carbon-based symmetric supercapacitors (SCs) are known for their high power density and long cyclability, making them an ideal candidate for power sources in new-generation electronic devices. To boost their electrochemical performances, deriving activated carbon doped with heteroatoms such as N, O, and S are highly desirable for increasing the specific capacitance. In this regard, activated carbon (AC) self-doped with heteroatoms is directly derived from bio-waste (lima-bean shell) using different KOH activation processes. The heteroatom-enriched AC synthesized using a pretreated carbon-to-KOH ratio of 1:2 (ONS@AC-2) shows excellent surface morphology with a large surface area of 1508 m2 g-1 . As an SC electrode material, the presence of heteroatoms (N and S) reduces the interfacial charge-transfer resistance and increases the ion-accessible surface area, which inherently provides additional pseudocapacitance. The ONS@AC-2 electrode attains a maximum specific capacitance (Csp ) of 342 F g-1 at a specific current of 1 Ag-1 in 1 m NaClO4 electrolyte at the wide potential window of 1.8 V. Moreover, as symmetric SCs the ONS@AC-2 electrode delivers a maximum specific capacitance (Csc ) of 191 F g-1 with a maximum specific energy of 21.48 Wh kg-1 and high specific power of 14 000 W kg-1 and excellent retention of its initial capacitance (98 %) even after 10000 charge/discharge cycles. In addition, a flexible supercapacitor fabricated utilizing ONS@AC-2 electrodes and a LiCl/polyvinyl alcohol (PVA)-based polymer electrolyte shows a maximum Csc of 119 F g-1 with considerable specific energy and power.
Collapse
Affiliation(s)
- Ramu Manikandan
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul, 04620, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.,Biomedical Engineering Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Todor Stoilo Todorov
- Department of Theory of Mechanisms and Machines, Faculty of Industrial Technology, Technical University of Sofia, Sofia, 1797, Bulgaria
| | - Kook Hyun Yu
- Department of Chemistry, Dongguk University-Seoul, Jung-gu, Seoul, 04620, Republic of Korea
| | - Byung Chul Kim
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| |
Collapse
|
20
|
Gao Y, Yue Q, Gao B, Li A. Insight into activated carbon from different kinds of chemical activating agents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141094. [PMID: 32745853 DOI: 10.1016/j.scitotenv.2020.141094] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 05/12/2023]
Abstract
Activated carbon (AC) is an important material in various fields owing to its low cost, well-developed porosity, and favorable chemical stability. Key factors for the optimal synthesis of AC are the carbon precursors, activation pathways, activating agents, and design of the procedure parameters. So far, no case studies have reviewed the activating agents used during the chemical activation process. Accordingly, the present review provides a summary of recent research, highlighting the development of activating agents during the process of AC. Detailed lists of pore-forming mechanisms by various activating agents, including alkaline, acidic, neutral, and self-activating agents, have been systematically summarized. Furthermore, the effects of activating agents on the experimental procedures have also been established. Finally, a comprehensive discussion about the influences of activating agents on the physical and chemical properties of the resultant AC is included. The objective of this study is to reveal and distinguish the individual roles of different activating agents during AC synthesis.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China; National Marine Environmental Monitoring Center, Dalian 116023, PR China.
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
21
|
Phenol hydrogenation to cyclohexanone over palladium nanoparticles loaded on charming activated carbon adjusted by facile heat treatment. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Chen W, Luo M, Yang K, Zhou X. Simple pyrolysis of alginate-based hydrogel cross-linked by bivalent ions into highly porous carbons for energy storage. Int J Biol Macromol 2020; 158:265-274. [PMID: 32380099 DOI: 10.1016/j.ijbiomac.2020.04.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/21/2022]
Abstract
Searching for a sustainable precursor that is capable of absorbing microwave energy is crucial for its rapid conversion into porous carbon via microwave heating. Here, alginate-based hydrogel beads cross-linked by bivalent ions (Cu2+, Zn2+, and Ca2+) are converted into porous carbons (SPCs) in 10 min by applying simple microwave-assisted pyrolysis. Water wrapped in hydrogel beads and bivalent ions serve as initial microwave absorbers to convert alginate into char which acts as a good microwave absorber in the following stages. Additionally, bivalent ions also act as a gelling agent to generate hydrogel beads, as a porogen to obtain a highly porous structure, and as a metal donor to form the SPC/Cu composite. The resultant SPC has a high specific surface area of 1336 m2 g-1, a large total pore volume of 0.56 cm3 g-1, interconnected macropores, as well as a high oxygen content of up to 13.2%. These attractive characteristics give SPC a remarkable rate capability of 72% at 50 A g-1. Interestingly, the interconnected macropores in SPC offer sufficient space for Cu growth via the redox reactions of Cu2+; thus, the SPC/Cu composite without acid wash shows a specific capacitance as high as 804 F g-1 at 0.5 A g-1.
Collapse
Affiliation(s)
- Weimin Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Min Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Kai Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Xiaoyan Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China.
| |
Collapse
|
23
|
Jia S, Wei J, Meng X, Shao Z. Facile and friendly preparation of N/S Co-doped graphene-like carbon nanosheets with hierarchical pore by molten salt for all-solid-state supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135338] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Ma F, Ding S, Ren H, Liu Y. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv 2019; 9:2474-2483. [PMID: 35520485 PMCID: PMC9059875 DOI: 10.1039/c8ra09685f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/28/2018] [Indexed: 11/23/2022] Open
Abstract
3D porous carbonaceous materials were prepared by combining pre-carbonization and KOH activation with sakura petals as raw materials. The prepared porous sakura carbon (SAC-4) exhibits a high specific surface area, a suitable pore size distribution, a low proportion of oxygen-rich groups and N functional groups, and a partially graphitized phase, which are very beneficial for the electrochemical performance of the material as a supercapacitor electrode. In the activation step, when the mass ratio of KOH to sakura carbon (SC) is 4, a supercapacitor is prepared. A maximal specific capacitance of 265.8 F g−1 is obtained when the current density is 0.2 A g−1. When the current density is 1 A g−1, after 2000 cycles in succession, the capacitance retention rate is excellent and the cycling stability can reach as high as 90.2%. The obtained results indicate that porous carbon prepared with sakura blossom as the raw material is an effective and environmentally friendly electrode material for energy storage. 3D porous carbonaceous materials were prepared by combining pre-carbonization and KOH activation with sakura petals as raw materials.![]()
Collapse
Affiliation(s)
- Fei Ma
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Shaolan Ding
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Huijun Ren
- School of Arts and Sciences of Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Yanhua Liu
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| |
Collapse
|