1
|
Jamal RB, Bay Gosewinkel U, Ferapontova EE. Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers. Bioelectrochemistry 2024; 156:108620. [PMID: 38006817 DOI: 10.1016/j.bioelechem.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pathogen-triggered infections are the most severe global threat to human health, and to provide their timely treatment and prevention, robust methods for rapid and reliable identification of pathogenic microorganisms are required. Here, we have developed a fast and inexpensive electrocatalytic aptamer assay enabling specific and ultrasensitive detection of E. coli. E. coli, a biomarker of environmental contamination and infections, was captured on the mixed aptamer/thiolated PEG self-assembled monolayers formed on electrochemically pre-treated gold screen-printed electrodes (SPE). Signals from aptamer - E. coli binding were amplified by electrocatalytic reduction of ferricyanide mediated by methylene blue (MB) adsorbed on bacterial and aptamer surfaces. PEG operated as an antifouling agent and inhibited direct (not MB-mediated) discharge of ferricyanide. The assay allowed from 10 to 1000 CFU mL-1E. coli detection in 30 min, with no interference from B. subtilis, in buffer and artificial urine samples. This electrocatalytic approach is fast, specific, sensitive, and can be used directly in in-field and point-of-care applications for analysis of bacteria in human environment.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ulrich Bay Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Prado CM, Burgos Ferreira PA, Alves de Lima L, Gomes Trindade EK, Fireman Dutra R. A Methylene Blue-Enhanced Nanostructured Electrochemical Immunosensor for H-FABP Myocardial Injury Biomarker. BIOSENSORS 2023; 13:873. [PMID: 37754107 PMCID: PMC10526172 DOI: 10.3390/bios13090873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
A sensitive electrochemical immunosensor for the detection of the heart-type fatty acid binding protein (HFABP), an earlier biomarker for acute myocardial infarction than Troponins, is described. The sensing platform was enhanced with methylene blue (MB) redox coupled to carbon nanotubes (CNT) assembled on a polymer film of polythionine (PTh). For this strategy, monomers of thionine rich in amine groups were electrosynthesized by cyclic voltammetry on the immunosensor's gold surface, forming an electroactive film with excellent electron transfer capacity. Stepwise sensor surface preparation was electrochemically characterized at each step and scanning electronic microscopy was carried out showing all the preparation steps. The assembled sensor platform combines MB and PTh in a synergism, allowing sensitive detection of the H-FABP in a linear response from 3.0 to 25.0 ng∙mL-1 with a limit of detection of 1.47 ng∙mL-1 HFABP that is similar to the clinical level range for diagnostics. H-FABP is a newer powerful biomarker for distinguishing between unstable angina and acute myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | - Rosa Fireman Dutra
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-90, Brazil
| |
Collapse
|
3
|
Jamal RB, Vitasovic T, Gosewinkel U, Ferapontova EE. Detection of E.coli 23S rRNA by electrocatalytic "off-on" DNA beacon assay with femtomolar sensitivity. Biosens Bioelectron 2023; 228:115214. [PMID: 36906990 DOI: 10.1016/j.bios.2023.115214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Prevention of food spoilage, environmental bio-contamination, and pathogenic infections requires rapid and sensitive bacterial detection systems. Among microbial communities, the bacterial strain of Escherichia coli is most widespread, with pathogenic and non-pathogenic strains being biomarkers of bacterial contamination. Here, we have developed a fM-sensitive, simple, and robust electrocatalytically-amplified assay facilitating specific detection of E.coli 23S ribosomal rRNA, in the total RNA sample, after its site-specific cleavage by RNase H enzyme. Gold screen-printed electrodes (SPE) were electrochemically pre-treated to be productively modified with a methylene-blue (MB) - labelled hairpin DNA probes, which hybridization with the E. coli-specific DNA placed MB in the top region of the DNA duplex. The formed duplex acted as an electrical wire, mediating electron transfer from the gold electrode to the DNA-intercalated MB, and further to ferricyanide in solution, enabling its electrocatalytic reduction otherwise impeded on the hairpin-modified SPEs. The assay facilitated 20 min 1 fM detection of both synthetic E. coli DNA and 23S rRNA isolated from E.coli (equivalent to 15 CFU mL-1), and can be extended to fM analysis of nucleic acids isolated from any other bacteria.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Toni Vitasovic
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
4
|
Shabalina AV, Sharko DO, Glazyrin YE, Bolshevich EA, Dubinina OV, Kim AM, Veprintsev DV, Lapin IN, Zamay GS, Krat AV, Zamay SS, Svetlichnyi VA, Kichkailo AS, Berezovski MV. Development of Electrochemical Aptasensor for Lung Cancer Diagnostics in Human Blood. SENSORS 2021; 21:s21237851. [PMID: 34883850 PMCID: PMC8659852 DOI: 10.3390/s21237851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
We describe the preparation and characterization of an aptamer-based electrochemical sensor to lung cancer tumor markers in human blood. The highly reproducible aptamer sensing layer with a high density (up to 70% coverage) on the gold electrode was made. Electrochemical methods and confocal laser scanning microscopy were used to study the stability of the aptamer layer structure and binding ability. A new blocking agent, a thiolated oligonucleotide with an unrelated sequence, was applied to fill the aptamer layer’s defects. Electrochemical aptasensor signal processing was enhanced using deep learning and computer simulation of the experimental data array. It was found that the combinations (coupled and tripled) of cyclic voltammogram features allowed for distinguishing between the samples from lung cancer patients and healthy candidates with a mean accuracy of 0.73. The capacitive component from the non-Faradic electrochemical impedance spectroscopy data indicated the tumor marker’s presence in a sample. These findings allowed for the creation of highly informative aptasensors for early lung cancer diagnostics.
Collapse
Affiliation(s)
- Anastasiia V. Shabalina
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Darya O. Sharko
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Yury E. Glazyrin
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Elena A. Bolshevich
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Oksana V. Dubinina
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Anastasiia M. Kim
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Dmitry V. Veprintsev
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
| | - Ivan N. Lapin
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Galina S. Zamay
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Alexey V. Krat
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Krasnoyarsk Regional Clinical Cancer Center Named after A.I. Kryzhanovsky, 660133 Krasnoyarsk, Russia
| | - Sergey S. Zamay
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
| | - Valery A. Svetlichnyi
- Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (A.V.S.); (D.O.S.); (E.A.B.); (O.V.D.); (A.M.K.); (I.N.L.); (V.A.S.)
| | - Anna S. Kichkailo
- Federal Research Center, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia; (Y.E.G.); (D.V.V.); (G.S.Z.); (S.S.Z.)
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, 660022 Krasnoyarsk, Russia;
- Correspondence: (A.S.K.); (M.V.B.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, AB K1N 6N5, Canada
- Correspondence: (A.S.K.); (M.V.B.)
| |
Collapse
|
5
|
Kumar AS, Mageswari GV, Nisha S, Nellepalli P, Vijayakrishna K. Molecular orientation and dynamics of ferricyanide ion-bearing copoly(ionic liquid) modified glassy carbon electrode towards selective mediated oxidation reaction of cysteine versus ascorbic acid: A biomimicking enzyme functionality. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Escher D, Hossain MN, Kraatz HB, Müller J. Metal-dependent electrochemical discrimination of DNA quadruplex sequences. J Biol Inorg Chem 2021; 26:659-666. [PMID: 34347161 PMCID: PMC8437839 DOI: 10.1007/s00775-021-01881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Films of four different DNA quadruplex-forming (G4) sequences (c-KIT, c-MYC, HTelo, and BCL2) on gold surfaces were investigated by electrochemical impedance spectroscopy (EIS) to evaluate whether they evoke unique electrochemical responses that can be used for their identification. This could render EIS an alternative means for the determination of G4 sequences of unknown structure. Towards, this end, cation-dependent topology changes in the presence of either K+, K+ in combination with Li+, or Pb2+ in the presence of Li+ were first evaluated by circular dichroism (CD) spectroscopy, and electrochemical studies were performed subsequently. As a result, G4-sequence specific charge transfer resistance (RCT) patterns were in fact observed for each G4 sequence, allowing their discrimination by EIS.
Collapse
Affiliation(s)
- Daniela Escher
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
| |
Collapse
|
7
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
8
|
Wu Y, Ali S, White RJ. Electrocatalytic Mechanism for Improving Sensitivity and Specificity of Electrochemical Nucleic Acid-Based Sensors with Covalent Redox Tags-Part I. ACS Sens 2020; 5:3833-3841. [PMID: 33296188 DOI: 10.1021/acssensors.0c02362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The design and development of advanced electrocatalysis have been extensively explored for efficient energy conversion and electrochemical biosensing. Both ferricyanide (Fe(CN)63-) and methylene blue (MB) have been widely used in the development of electrochemical biosensing strategies. However, the electrocatalytic mechanism between nucleic acid-tethered MB and Fe(CN)63- remains unexplored. In this manuscript, we aim to provide readers in our community molecular insights into the electrocatalytic mechanism. The exploration of the electrocatalytic mechanism starts with a kinetic zone diagram for a one-electron homogeneous electrocatalytic reaction. Two factors-the excess factor γ and the kinetic parameter λ-are important for a homogeneous electrocatalytic reaction; as such, we studied both. The excess factor parameter was controlled by applying Fe(CN)63- with various concentrations (50, 100, and 200 μM), and the kinetic parameter effect on the electrocatalytic process was examined by varying scan rates of cyclic voltammetry (CV) or frequencies of square-wave voltammetry (SWV). Moreover, we discovered that the probe dynamics of the nucleic acid tether is the third rate-limiting factor for the electrocatalytic reaction. As the probe dynamics switch of electrode-bound nucleic acid is often utilized as a mechanism in electrochemical nucleic acid-based sensors, we believe the electrocatalysis between nucleic acid-tethered MB and Fe(CN)63- is capable of enhancing sensitivity and specificity of electrochemical nucleic acid-based sensors with covalent redox tags.
Collapse
Affiliation(s)
- Yao Wu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Sufyaan Ali
- Walnut Hills High School, Cincinnati, Ohio 45207, United States
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
9
|
Asefifeyzabadi N, Alkhaldi R, Qamar AZ, Pater AA, Patwardhan M, Gagnon KT, Talapatra S, Shamsi MH. Label-free Electrochemical Detection of CGG Repeats on Inkjet Printable 2D Layers of MoS 2. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52156-52165. [PMID: 33151065 DOI: 10.1021/acsami.0c14912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible and ultrasensitive biosensing platforms capable of detecting a large number of trinucleotide repeats (TNRs) are crucial for future technology development needed to combat a variety of genetic disorders. For example, trinucleotide CGG repeat expansions in the FMR1 gene can cause Fragile X syndrome (FXS) and Fragile X-associated tremor/ataxia syndrome (FXTAS). Current state-of-the-art technologies to detect repeat sequences are expensive, while relying on complicated procedures, and prone to false negatives. We reasoned that two-dimensional (2D) molybdenum sulfide (MoS2) surfaces may be useful for label-free electrochemical detection of CGG repeats due to its high affinity for guanine bases. Here, we developed a low-cost and sensitive wax-on-plastic electrochemical sensor using 2D MoS2 ink for the detection of CGG repeats. The ink containing few-layered MoS2 nanosheets was prepared and characterized using optical, electrical, electrochemical, and electron microscopic methods. The devices were characterized by electron microscopic and electrochemical methods. Repetitive CGG DNA was adsorbed on a MoS2 surface in a high cationic strength environment and the electrocatalytic current of the CGG/MoS2 interface was recorded using a soluble Fe(CN)6-3/-4 redox probe by differential pulse voltammetry (DPV). The dynamic range for the detection of prehybridized duplexes ranged from 1 aM to 100 nM with a 3.0 aM limit of detection. A detection range of 100 fM to 1 nM was recorded for surface hybridization events. Using this method, we were able to observe selectivity of MoS2 for CGG repeats and distinguish nonpathogenic from disease-associated repeat lengths. The detection of CGG repeat sequences on inkjet printable 2D MoS2 surfaces is a forward step toward developing chip-based rapid and label-free sensors for the detection of repeat expansion sequences.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Rana Alkhaldi
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Ahmad Z Qamar
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Adrian A Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Meera Patwardhan
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan 62901, United States
| | - Keith T Gagnon
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Saikat Talapatra
- Department of Physics, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Mohtashim H Shamsi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
10
|
Thomaz DV, de Oliveira MG, Rodrigues ESB, da Silva VB, dos Santos PA. Physicochemical Investigation of Psoralen Binding to Double Stranded DNA through Electroanalytical and Cheminformatic Approaches. Pharmaceuticals (Basel) 2020; 13:ph13060108. [PMID: 32481669 PMCID: PMC7344847 DOI: 10.3390/ph13060108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 02/05/2023] Open
Abstract
This work showcased the first physicochemical investigation of psoralen (PSO) binding to double stranded DNA (dsDNA) through electroanalytical methods. Results evidenced that PSO presents one non-reversible anodic peak at electric potential (Epa) ≈ 1.42 V, which is associated with its oxidation and the formation of an epoxide derivative. Moreover, PSO analytical signal (i.e., faradaic current) decreases linearly with the addition of dsDNA, while the electric potential associated to PSO oxidation shifts towards more positive values, indicating thence that dsDNA addition hinders PSO oxidation. These findings were corroborated by the chemoinformatic study, which evidenced that PSO intercalated noncovalently at first between base-pairs of the DNA duplex, and then irreversibly formed adducts with both DNA strands, leading up to the formation of a cross-link which bridges the DNA helix, which explains the linear dependence between the faradaic current generated by PSO oxidation and the concentration of DNA in the test-solution, as well as the dependence between Ep and the addition of dsDNA solution. Therefore, the findings herein reported evidence of the applicability of electroanalytical approaches, such as voltammetry in the study of DNA intercalating agents.
Collapse
Affiliation(s)
- Douglas Vieira Thomaz
- Faculty of Pharmacy, Federal University of Goias, Goiania-GO 74605-170, Brazil; (M.G.d.O.); (E.S.B.R.)
- Correspondence: (D.V.T.); (P.A.d.S.)
| | | | | | | | - Pierre Alexandre dos Santos
- Faculty of Pharmacy, Federal University of Goias, Goiania-GO 74605-170, Brazil; (M.G.d.O.); (E.S.B.R.)
- Correspondence: (D.V.T.); (P.A.d.S.)
| |
Collapse
|
11
|
Ferapontova EE. Electron Transfer in DNA at Electrified Interfaces. Chem Asian J 2019; 14:3773-3781. [PMID: 31545875 DOI: 10.1002/asia.201901024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/22/2019] [Indexed: 12/24/2022]
Abstract
The ability of the DNA double helix to transport electrons underlies many life-centered biological processes and bio-electronic applications. However, there is little consensus on how efficiently the base pair π-stacks of DNA mediate electron transport. This minireview scrutinizes the current state-of-the-art knowledge on electron transfer (ET) properties of DNA and its long-range ability to transfer (mediate) electrical signals at electrified interfaces, without being oxidized or reduced. Complex changes an electric field induces in the DNA structure and its electronic properties govern the efficiency of DNA-mediated ET at electrodes and allow addressing the existing phenomenological riddles, while recently discovered rectifying properties of DNA contribute both to our understanding of DNA's ET in living systems and to advances in molecular bioelectronics.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center, Science and Technology, Aarhus University, Gustav Wieds Vej 1590-14, 8000, Aarhus C, Denmark
| |
Collapse
|
12
|
Vizzini P, Braidot M, Vidic J, Manzano M. Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. MICROMACHINES 2019; 10:E500. [PMID: 31357655 PMCID: PMC6722628 DOI: 10.3390/mi10080500] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
Foodborne safety has aroused tremendous research interest in recent years because of a global public health problem. The rapid and precise detection of foodborne pathogens can reduce significantly infection diseases and save lives by the early initiation of an effective treatment. This review highlights current advances in the development of biosensors for detection of Campylobacter spp. and Listeria monocytogenes that are the most common causes of zoonosis. The consumption of pathogen contaminated food is responsible for humans hospitalization and death. The attention focused on the recognition elements such as antibodies (Ab), DNA probes and aptamers able to recognize cells, amplicons, and specific genes from different samples like bacteria, food, environment and clinical samples. Moreover, the review focused on two main signal-transducing mechanisms, i.e., electrochemical, measuring an amperometric, potentiometric and impedimetric signal; and optical, measuring a light signal by OLED (Organic Light Emitting Diode), SPR (Surface Plasmon Resonance), and Optical fiber. We expect that high-performance of devices being developed through basic research will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety.
Collapse
Affiliation(s)
- Priya Vizzini
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Matteo Braidot
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy.
| |
Collapse
|